Effects of 12-Week Endurance Training at Natural Low Altitude on the Blood Redox Homeostasis of Professional Adolescent Athletes: A Quasi-Experimental Field Trial

Tomas K Tong, Zhaowei Kong, Hua Lin, Yeheng He, Giuseppe Lippi, Qingde Shi, Haifeng Zhang, Jinlei Nie, Tomas K Tong, Zhaowei Kong, Hua Lin, Yeheng He, Giuseppe Lippi, Qingde Shi, Haifeng Zhang, Jinlei Nie

Abstract

This field study investigated the influences of exposure to natural low altitude on endurance training-induced alterations of redox homeostasis in professional adolescent runners undergoing 12-week off-season conditioning program at an altitude of 1700 m (Alt), by comparison with that of their counterparts completing the program at sea-level (SL). For age-, gender-, and Tanner-stage-matched comparison, 26 runners (n = 13 in each group) were selected and studied. Following the conditioning program, unaltered serum levels of thiobarbituric acid reactive substances (TBARS), total antioxidant capacity (T-AOC), and superoxide dismutase accompanied with an increase in oxidized glutathione (GSSG) and decreases of xanthine oxidase, reduced glutathione (GSH), and GSH/GSSG ratio were observed in both Alt and SL groups. Serum glutathione peroxidase and catalase did not change in SL, whereas these enzymes, respectively, decreased and increased in Alt. Uric acid (UA) decreased in SL and increased in Alt. Moreover, the decreases in GSH and GSH/GSSG ratio in Alt were relatively lower compared to those in SL. Further, significant interindividual correlations were found between changes in catalase and TBARS, as well as between UA and T-AOC. These findings suggest that long-term training at natural low altitude is unlikely to cause retained oxidative stress in professional adolescent runners.

Figures

Figure 1
Figure 1
The timeline of the experimental field trial.

References

    1. Dosek A., Ohno H., Acs Z., Taylor A. W., Radak Z. High altitude and oxidative stress. Respiratory Physiology & Neurobiology. 2007;158(2-3):128–131. doi: 10.1016/j.resp.2007.03.013.
    1. Mohanraj P., Merola A. J., Wright V. P., Clanton T. L. Antioxidants protect rat diaphragmatic muscle function under hypoxic conditions. Journal of Applied Physiology. 1998;84(6):1960–1966.
    1. McCord J. M. Oxygen-derived free radicals in postischemic tissue injury. The New England Journal of Medicine. 1985;312(3):159–163. doi: 10.1056/nejm198501173120305.
    1. Renzing J., Hansen S., Lane D. P. Oxidative stress is involved in the UV activation of p53. Journal of Cell Science. 1996;109(5):1105–1112.
    1. Joanny P., Steinberg J., Robach P., et al. Operation Everest III (Comex'97): the effect of simulated severe hypobaric hypoxia on lipid peroxidation and antioxidant defence systems in human blood at rest and after maximal exercise. Resuscitation. 2001;49(3):307–314. doi: 10.1016/s0300-9572(00)00373-7.
    1. Nakanishi K., Tajima F., Nakamura A., et al. Effects of hypobaric hypoxia on antioxidant enzymes in rats. Journal of Physiology. 1995;489(3):869–876. doi: 10.1113/jphysiol.1995.sp021099.
    1. Finaud J., Lac G., Filaire E. Oxidative stress: relationship with exercise and training. Sports Medicine. 2006;36(4):327–358. doi: 10.2165/00007256-200636040-00004.
    1. Radák Z., Zhao Z., Koltai E., Ohno H., Atalay M. Oxygen consumption and usage during physical exercise: the balance between oxidative stress and ROS-dependent adaptive signaling. Antioxidants & Redox Signaling. 2013;18(10):1208–1246. doi: 10.1089/ars.2011.4498.
    1. Araneda O. F., García C., Lagos N., et al. Lung oxidative stress as related to exercise and altitude. Lipid peroxidation evidence in exhaled breath condensate: a possible predictor of acute mountain sickness. European Journal of Applied Physiology. 2005;95(5-6):383–390. doi: 10.1007/s00421-005-0047-y.
    1. Debevec T., Pialoux V., Mekjavic I. B., Eiken O., Mury P., Millet G. P. Moderate exercise blunts oxidative stress induced by normobaric hypoxic confinement. Medicine and Science in Sports and Exercise. 2014;46(1):33–41. doi: 10.1249/MSS.0b013e31829f87ef.
    1. Saunders P. U., Pyne D. B., Gore C. J. Endurance training at altitude. High Altitude Medicine & Biology. 2009;10(2):135–148. doi: 10.1089/ham.2008.1092.
    1. Friedmann-Bette B. Classical altitude training. Scandinavian Journal of Medicine & Science in Sports. 2008;18(supplement 1):11–20. doi: 10.1111/j.1600-0838.2008.00828.x.
    1. Pialoux V., Mounier R., Rock E., et al. Effects of the ‘live high-train low’ method on prooxidant/antioxidant balance on elite athletes. European Journal of Clinical Nutrition. 2009;63(6):756–762. doi: 10.1038/ejcn.2008.30.
    1. Pialoux V., Mounier R., Rock E., et al. Effects of acute hypoxic exposure on prooxidant/antioxidant balance in elite endurance athletes. International Journal of Sports Medicine. 2009;30(2):87–93. doi: 10.1055/s-0028-1103284.
    1. Myer G. D., Jayanthi N., Difiori J. P., et al. Sport specialization, part I: does early sports specialization increase negative outcomes and reduce the opportunity for success in young athletes? Sports Health: A Multidisciplinary Approach. 2015;7(5):437–442. doi: 10.1177/1941738115598747.
    1. Tong T. K., Lin H., Lippi G., Nie J., Tian Y. Serum oxidant and antioxidant status in adolescents undergoing professional endurance sports training. Oxidative Medicine and Cellular Longevity. 2012;2012:7. doi: 10.1155/2012/741239.741239
    1. Tong T. K., Kong Z., Lin H., Lippi G., Zhang H., Nie J. Serum oxidant and antioxidant status following an all-out 21-km run in adolescent runners undergoing professional training—a one-year prospective trial. International Journal of Molecular Sciences. 2013;14(7):15167–15178. doi: 10.3390/ijms140715167.
    1. Miles M. V., Horn P. S., Tang P. H., et al. Age-related changes in plasma coenzyme Q10 concentrations and redox state in apparently healthy children and adults. Clinica Chimica Acta. 2004;347(1-2):139–144. doi: 10.1016/j.cccn.2004.04.003.
    1. Riddell M. C. The endocrine response and substrate utilization during exercise in children and adolescents. Journal of Applied Physiology. 2008;105(2):725–733. doi: 10.1152/japplphysiol.00031.2008.
    1. Zanconato S., Buchthal S., Barstow T. J., Cooper D. M. 31P-magnetic resonance spectroscopy of leg muscle metabolism during exercise in children and adults. Journal of Applied Physiology. 1993;74(5):2214–2218.
    1. Foster C., Florhaug J. A., Franklin J., et al. A new approach to monitoring exercise training. Journal of Strength and Conditioning Research. 2001;15(1):109–115. doi: 10.1519/00124278-200102000-00019.
    1. Gougoura S., Nikolaidis M. G., Kostaropoulos I. A., Jamurtas A. Z., Koukoulis G., Kouretas D. Increased oxidative stress indices in the blood of child swimmers. European Journal of Applied Physiology. 2007;100(2):235–239. doi: 10.1007/s00421-007-0423-x.
    1. Del Rio D., Stewart A. J., Pellegrini N. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutrition, Metabolism and Cardiovascular Diseases. 2005;15(4):316–328. doi: 10.1016/j.numecd.2005.05.003.
    1. Anderson M. E. Determination of glutathione and glutathione disulfide in biological samples. Methods in Enzymology. 1985;113:548–555. doi: 10.1016/S0076-6879(85)13073-9.
    1. Hafeman D. G., Sunde R. A., Hoekstra W. G. Effect of dietary selenium on erythrocyte and liver glutathione peroxidase in the rat. The Journal of Nutrition. 1974;104(5):580–587.
    1. Benzie I. F. F., Strain J. J. Methods in Enzymology. chapter 2. Vol. 299. Elsevier; 1999. Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration; pp. 15–27.
    1. Vij A. G., Dutta R., Satija N. K. Acclimatization to oxidative stress at high altitude. High Altitude Medicine & Biology. 2005;6(4):301–310. doi: 10.1089/ham.2005.6.301.
    1. Hellsten-Westing Y., Balsom P. D., Norman B., Sjodin B. The effect of high-intensity training on purine metabolism in man. Acta Physiologica Scandinavica. 1993;149(4):405–412. doi: 10.1111/j.1748-1716.1993.tb09636.x.
    1. Stathis C. G., Carey M. F., Hayes A., Garnham A. P., Snow R. J. Sprint training reduces urinary purine loss following intense exercise in humans. Applied Physiology, Nutrition and Metabolism. 2006;31(6):702–708. doi: 10.1139/H06-074.
    1. Altschuld R. A., Gamelin L. M., Kelley R. E., Lambert M. R., Apel L. E., Brierley G. P. Degradation and resynthesis of adenine nucleotides in adult rat heart myocytes. The Journal of Biological Chemistry. 1987;262(28):13527–13533.
    1. Radák Z., Lee K., Choi W., et al. Oxidative stress induced by intermittent exposure at a simulated altitude of 4000 m decreases mitochondrial superoxide dismutase content in soleus muscle of rats. European Journal of Applied Physiology and Occupational Physiology. 1994;69(5):392–395. doi: 10.1007/bf00865401.
    1. Jefferson J. A., Escudero E., Hurtado M.-E., et al. Hyperuricemia, hypertension, and proteinuria associated with high-altitude polycythemia. American Journal of Kidney Diseases. 2002;39(6):1135–1142. doi: 10.1053/ajkd.2002.33380.
    1. Glantzounis G. K., Tsimoyiannis E. C., Kappas A. M., Galaris D. A. Uric acid and oxidative stress. Current Pharmaceutical Design. 2005;11(32):4145–4151. doi: 10.2174/138161205774913255.
    1. Duarte J. A., Magalhães J. F., Monteiro L., Almeida-Dias A., Soares J. M. C., Appell H.-J. Exercise-induced signs of muscle overuse in children. International Journal of Sports Medicine. 1999;20(2):103–108. doi: 10.1055/s-2007-971101.
    1. Baker R. D., Baker S. S., LaRosa K., Whitney C., Newburger P. E. Selenium regulation of glutathione peroxidase in human hepatoma cell line Hep3B. Archives of Biochemistry and Biophysics. 1993;304(1):53–57. doi: 10.1006/abbi.1993.1320.
    1. Agostoni A., Gerli G. C., Beretta L., et al. Erythrocyte antioxidant enzymes and selenium serum levels in an andean population. Clinica Chimica Acta. 1983;133(2):153–157. doi: 10.1016/0009-8981(83)90400-X.
    1. Antunes F., Han D., Cadenas E. Relative contributions of heart mitochondria glutathione peroxidase and catalase to H2O2 detoxification in in vivo conditions. Free Radical Biology & Medicine. 2002;33(9):1260–1267. doi: 10.1016/s0891-5849(02)01016-x.
    1. Saito K., Saito T. Dynamics of trace elements and metal-dependent enzymes in stomach cancer patients. In: Ohigashi H., Osawa T., Terao J., Watanabe S., Yoshikawa T., editors. Food Factors for Cancer Prevention. Tokyo, Japan: Springer; 1997. pp. 383–388.
    1. Margonis K., Fatouros I. G., Jamurtas A. Z., et al. Oxidative stress biomarkers responses to physical overtraining: implications for diagnosis. Free Radical Biology & Medicine. 2007;43(6):901–910. doi: 10.1016/j.freeradbiomed.2007.05.022.
    1. Dotan Y., Lichtenberg D., Pinchuk I. Lipid peroxidation cannot be used as a universal criterion of oxidative stress. Progress in Lipid Research. 2004;43(3):200–227. doi: 10.1016/j.plipres.2003.10.001.
    1. Veskoukis A. S., Nikolaidis M. G., Kyparos A., Kouretas D. Blood reflects tissue oxidative stress depending on biomarker and tissue studied. Free Radical Biology & Medicine. 2009;47(10):1371–1374. doi: 10.1016/j.freeradbiomed.2009.07.014.
    1. Chung S.-C., Goldfarb A. H., Jamurtas A. Z., Hegde S. S., Lee J. Effect of exercise during the follicular and luteal phases on indices of oxidative stress in healthy women. Medicine & Science in Sports & Exercise. 1999;31(3):409–413. doi: 10.1097/00005768-199903000-00009.
    1. Marin D. P., Bolin A. P., De Cassia Macedo Dos Santos R., Curi R., Otton R. Testosterone suppresses oxidative stress in human neutrophils. Cell Biochemistry and Function. 2010;28(5):394–402. doi: 10.1002/cbf.1669.
    1. Zalavras A., Fatouros I. G., Deli C. K., et al. Age-related responses in circulating markers of redox status in healthy adolescents and adults during the course of a training macrocycle. Oxidative Medicine and Cellular Longevity. 2015;2015:17. doi: 10.1155/2015/283921.283921

Source: PubMed

3
S'abonner