A partially supervised physical activity program for adult and adolescent survivors of childhood cancer (SURfit): study design of a randomized controlled trial [NCT02730767]

Corina S Rueegg, Susi Kriemler, Simeon J Zuercher, Christina Schindera, Andrea Renner, Helge Hebestreit, Christian Meier, Prisca Eser, Nicolas X von der Weid, Corina S Rueegg, Susi Kriemler, Simeon J Zuercher, Christina Schindera, Andrea Renner, Helge Hebestreit, Christian Meier, Prisca Eser, Nicolas X von der Weid

Abstract

Background: Beyond survival of nowadays >80%, modern childhood cancer treatment strives to preserve long-term health and quality of life. However, the majority of today's survivors suffer from short- and long-term adverse effects such as cardiovascular and pulmonary diseases, obesity, osteoporosis, fatigue, depression, and reduced physical fitness and quality of life. Regular exercise can play a major role to mitigate or prevent such late-effects. Despite this, there are no data on the effects of regular exercise in childhood cancer survivors from randomized controlled trials (RCTs). Primary outcome of the current RCT is therefore the effect of a 12-months exercise program on a composite cardiovascular disease risk score in childhood cancer survivors. Secondary outcomes are single cardiovascular disease risk factors, glycaemic control, bone health, body composition, physical fitness, physical activity, quality of life, mental health, fatigue and adverse events (safety).

Methods: A total of 150 childhood cancer survivors aged ≥16 years and diagnosed ≥5 years prior to the study are recruited from Swiss paediatric oncology clinics. Following the baseline assessments patients are randomized 1:1 into an intervention and control group. Thereafter, they are seen at month 3, 6 and 12 for follow-up assessments. The intervention group is asked to add ≥2.5 h of intense physical activity/week, including 30 min of strength building and 2 h of aerobic exercises. In addition, they are told to reduce screen time by 25%. Regular consulting by physiotherapists, individual web-based activity diaries, and pedometer devices are used as motivational tools for the intervention group. The control group is asked to keep their physical activity levels constant.

Discussion: The results of this study will show whether a partially supervised exercise intervention can improve cardiovascular disease risk factors, bone health, body composition, physical activity and fitness, fatigue, mental health and quality of life in childhood cancer survivors. If the program will be effective, all relevant information of the SURfit physical activity intervention will be made available to interested clinics that treat and follow-up childhood cancer patients to promote exercise in their patients.

Trial registration: Prospectively registered in clinicaltrials.gov [ NCT02730767 ], registration date: 10.12.2015.

Keywords: Body composition; Bone health; Cardiovascular disease; Childhood cancer survivors; Exercise intervention; Late-effects; Physical activity; Physical fitness; Quality of life; Randomized controlled trial.

Conflict of interest statement

Ethics approval and consent to participate

The study was approved by the Swiss Ethics Committees on research involving humans (Ehtikkommision Nordwest- und Zentralschweiz [EKNZ]; reference number: EKNZ-2015-169). Informed Consent as documented by signature is obtained from each survivor prior to participation in the study.

Consent for publication

Not applicable (this manuscript does not contain data from any individual person).

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
SURfit study design. Shows the general design and procedure of the SURfit study. All visits of T0, T3, T6 and T12 are at the University Children’s Hospital Basel (UKBB) including a visit at the Bone Research Unit of the University Hospital Basel (USB) to perform the DXA and pQCT scans (T0a and T12a). After one year of trial, participants of the control intervention who wish to, can receive the same personalized exercise counselling with motivational tools but no personal follow-up coaching. Participants of the intervention group will hopefully continue their training without supervision of the study team but still having access to the motivational tools of the study. Abbreviations: DXA, dual x-ray absorptiometry; mt, months; oGTT, oral glucose tolerance test; pQCT, peripheral quantitative computed tomography; SCCR, Swiss Childhood Cancer Registry; T0a, initial baseline visit; T0b, second visit for baseline assessments; T3, assessment after 3 months; T6a and T6b, first and second visit of assessments after 6 months; T12a and T12b, first and second visit of assessments after 12 months

References

    1. Gatta G, Corazziari I, Magnani C, Peris-Bonet R, Roazzi P, Stiller C. Childhood cancer survival in Europe. Ann Onc. 2003;14(5):119–127.
    1. Gatta G, Zigon G, Capocaccia R, Coebergh JW, Desandes E, Kaatsch P, Pastore G, Peris-Bonet R, Stiller CA. Survival of European children and young adults with cancer diagnosed 1995-2002. Eur J Cancer. 2009;45(6):992–1005.
    1. Mitter V, Michel G, Strippoli M-PF, Rueegg CS, Rebholz CE, Feller M, Hau E, Reck M, Niggli F, Hengartner H, et al. The Swiss childhood cancer registry. Annual report 2009/2010. Bern: Institute of Social and Preventive Medicine, University of Bern; 2011.
    1. Alvarez JA, Scully RE, Miller TL, Armstrong FD, Constine LS, Friedman DL, Lipshultz SE. Long-term effects of treatments for childhood cancers. Curr Opin Pediatr. 2007;19(1):23–31.
    1. Berkman AM, Lakoski SG. A Review of cardiorespiratory fitness in adolescent and young adult survivors of childhood cancer: factors that affect its decline and opportunities for intervention. J Adolesc Young Adult Oncol. 2016;5(1):8–15.
    1. Ness KK, Armstrong GT, Kundu M, Wilson CL, Tchkonia T, Kirkland JL. Frailty in childhood cancer survivors. Cancer. 2015;121(10):1540–1547.
    1. Hudson MM, Ness KK, Gurney JG, et al. CLinical ascertainment of health outcomes among adults treated for childhood cancer. JAMA. 2013;309(22):2371–2381.
    1. Meadows AT. Pediatric cancer survivorship: research and clinical care. J Clin Oncol. 2006;24(32):5160–5165.
    1. Leon AS, Connett J, Jacobs DRJ, Rauramaa R. Leisure-time physical activity levels and the risk of coronary heart disease and death. The multiple risk factor intervention trial. JAMA. 1987;258:2388–2395.
    1. Paffenbarger RS, Hyde RT, Wing AL, Lee I-M, Jung DL, Kampert JB. The Association of Changes in physical-activity level and other lifestyle characteristics with mortality among men. N Engl J Med. 1993;328(8):538–545.
    1. Warburton D, Charlesworth S, Ivey A, Nettlefold L, Bredin S. A systematic review of the evidence for Canada’s physical activity guidelines for adults. Int J Behav Nutr Phys Act. 2010;7(1):39.
    1. Reimers CD, Knapp G, Reimers AK. Exercise as stroke prophylaxis. Dtsch Arztebl Int. 2009;106(44):715–721.
    1. Kushi LH, Doyle C, McCullough M, Rock CL, Demark-Wahnefried W, Bandera EV, Gapstur S, Patel AV, Andrews K, Gansler T, et al. American Cancer Society guidelines on nutrition and physical activity for cancer prevention. CA Cancer J Clin. 2012;62(1):30–67.
    1. Deusinger SS. Exercise intervention for management of obesity. Pediatr Blood Cancer. 2012;58(1):135–139.
    1. Kelley GA, Kelley KS. Aerobic exercise and lipids and lipoproteins in men: a meta-analysis of randomized controlled trials. J Mens Health Gend. 2006;3(1):61–70.
    1. Pedersen BK, Saltin B. Evidence for prescribing exercise as therapy in chronic disease. Scand J Med Sci Sports. 2006;1:3–63.
    1. Walker KZ, O'Dea K, Gomez M, Girgis S, Colagiuri R. Diet and exercise in the prevention of diabetes. J Hum Nutr Diet. 2010;23(4):344–352.
    1. Wolff I, van Croonenborg JJ, Kemper HCG, Kostense PJ, Twisk JW. The effect of exercise training programs on bone mass: a meta-analysis of published controlled trials in pre- and postmenopausal women. Osteoporos Int. 1999;9:1–12.
    1. Gomez-Cabello A, Ara I, Gonzalez-Aguero A, Casajus JA, Vicente-Rodriguez G. Effects of training on bone mass in older adults: a systematic review. Sports Med. 2012;42(4):301–325.
    1. Nikander R, Sievanen H, Heinonen A, Daly RM, Uusi-Rasi K, Kannus P. Targeted exercise against osteoporosis: a systematic review and meta-analysis for optimising bone strength throughout life. BMC Med. 2010;8:47.
    1. Specker B, Thiex NW, Sudhagoni RG. Does exercise influence pediatric bone? A systematic review. Clin Orthop Relat Res. 2015;473(11):3658–3672.
    1. Burton C, McKinstry B, Szentagotai Tatar A, Serrano-Blanco A, Pagliari C, Wolters M. Activity monitoring in patients with depression: a systematic review. J Affect Disord. 2012;4:4.
    1. Rimer J, Dwan K, Lawlor DA, Greig CA, McMurdo M, Morley W, Mead GE. Exercise for depression. Cochrane Database Syst Rev. 2012;11:7.
    1. Jedrziewski MK, Lee VM, Trojanowski JQ. Physical activity and cognitive health. Alzheimers Dement. 2007;3(2):98–108.
    1. Larson EB, Wang L, Bowen JD, McCormick WC, Teri L, Crane P, Kukull W. Exercise is associated with reduced risk for incident dementia among persons 65 years of age and older. Ann Intern Med. 2006;144(2):73–81.
    1. Blaauwbroek R, Bouma M, Tuinier W, Groenier K, de Greef M, Meyboom- de Jong B, Kamps W, Postma A. The effect of exercise counselling with feedback from a pedometer on fatigue in adult survivors of childhood cancer: a pilot study. Support Care Cancer. 2009;17(8):1041–1048.
    1. Järvelä LS, Kemppainen J, Niinikoski H, Hannukainen JC, Lähteenmäki PM, Kapanen J, Arola M, Heinonen OJ. Effects of a home-based exercise program on metabolic risk factors and fitness in long-term survivors of childhood acute lymphoblastic leukemia. Pediatr Blood Cancer. 2012;59(1):155–160.
    1. Miller WR, Rollnick S. The effectiveness and ineffectiveness of complex behavioral interventions: impact of treatment fidelity. Contemp Clin Trials. 2014;37(2):234–241.
    1. Morgan F, Battersby A, Weightman AL, Searchfield L, Turley R, Morgan H, Jagroo J, Ellis S. Adherence to exercise referral schemes by participants - what do providers and commissioners need to know? A systematic review of barriers and facilitators. BMC Public Health. 2016;16:227.
    1. Chan A, Tetzlaff JM, Altman DG, et al. Spirit 2013 statement: defining standard protocol items for clinical trials. Ann Intern Med. 2013;158(3):200–207.
    1. Klakk H, Andersen LB, Heidemann M, Moller NC, Wedderkopp N. Six physical education lessons a week can reduce cardiovascular risk in school children aged 6-13 years: a longitudinal study. Scand J Public Health. 2014;42(2):128–136.
    1. Andersen LB, Lauersen JB, Brond JC, Anderssen SA, Sardinha LB, Steene-Johannessen J, McMurray RG, Barros MV, Kriemler S, Moller NC, et al. A new approach to define and diagnose cardiometabolic disorder in children. J Diabetes Res. 2015;2015:539835.
    1. Kelly AS, Steinberger J, Jacobs DR, Hong CP, Moran A, Sinaiko AR. Predicting cardiovascular risk in young adulthood from the metabolic syndrome, its component risk factors, and a cluster score in childhood. Int J Pediatr Obes. 2011;6(2–2):e283–e289.
    1. Kriemler S, Zahner L, Schindler C, Meyer U, Hartmann T, Hebestreit H, Brunner-La Rocca HP, van Mechelen W, Puder JJ. Effect of school based physical activity programme (KISS) on fitness and adiposity in primary schoolchildren: cluster randomised controlled trial. BMJ. 2010;340:c785.
    1. Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, Fruchart JC, James WP, Loria CM, Smith SC., Jr Harmonizing the metabolic syndrome: a joint interim statement of the international diabetes federation task force on epidemiology and prevention; National Heart, Lung, and Blood Institute; American Heart Association; world heart federation; international atherosclerosis society; and International Association for the Study of obesity. Circulation. 2009;120(16):1640–1645.
    1. Eckel RH, Alberti KG, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet. 2010;375(9710):181–183.
    1. Eisenmann JC. On the use of a continuous metabolic syndrome score in pediatric research. Cardiovasc Diabetol. 2008;7:17.
    1. Eisenmann JC, Laurson KR, DuBose KD, Smith BK, Donnelly JE. Construct validity of a continuous metabolic syndrome score in children. Diabetol Metab Syndr. 2010;2:8.
    1. Gurka MJ, Ice CL, Sun SS, Deboer MD. A confirmatory factor analysis of the metabolic syndrome in adolescents: an examination of sex and racial/ethnic differences. Cardiovasc Diabetol. 2012;11:128.
    1. Michel G, von der Weid N, Zwahlen M, Redmond S, Strippoli MP, Kuehni C. Incidence of childhood cancer in Switzerland: the Swiss childhood cancer registry. Pediatr Blood Cancer. 2008;50(1):46–51.
    1. Michel G, von der Weid NX, Zwahlen M, Adam M, Rebholz CE, Kuehni CE. The Swiss childhood cancer registry: rationale, organisation and results for the years 2001–2005. Swiss Med Wkly. 2007;137:502–509.
    1. Steliarova-Foucher E, Stiller C, Lacour B, Kaatsch P. International classification of childhood cancer, third edition. Cancer. 2005;103(7):1457–1467.
    1. Pocock SJ, Simon R. Sequential treatment assignment with balancing for prognostic factors in the controlled clinical trial. Biometrics. 1975;31(1):103–115.
    1. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)−a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42(2):377–381.
    1. Pickering TG, Hall JE, Appel LJ, Falkner BE, Graves JW, Hill MN, Jones DH, Kurtz T, Sheps SG, Roccella EJ. Recommendations for blood pressure measurement in humans: an AHA scientific statement from the Council on High Blood Pressure Research Professional and Public Education Subcommittee. J Clin Hypertens (Greenwich) 2005;7(2):102–109.
    1. Seidell JC, Perusse L, Despres JP, Bouchard C. Waist and hip circumferences have independent and opposite effects on cardiovascular disease risk factors: the Quebec family study. Am J Clin Nutr. 2001;74(3):315–321.
    1. ACSM’s Guidelines for Exercise Testing and Prescription. In. Edited by Medicine ACoS, 6 edn. Philadelphia: Lippincott Williams & Wilkins; 2000.
    1. Durnin JV, Rahaman MM: The assessment of the amount of fat in the human body from measurements of skinfold thickness. 1967. Br J Nutr 2003, 89(1):147–155.
    1. Durnin JV, Womersley J. Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. Br J Nutr. 1974;32(1):77–97.
    1. Plank LD. Dual-energy X- Ray absorptiometry and body composition. Curr Opin Clin Nutr Metab Care. 2005;8(3):305–309.
    1. Seabolt LA, Welch EB, Silver HJ. Imaging methods for analyzing body composition in human obesity and cardiometabolic disease. Ann N Y Acad Sci. 2015;1353:41–59.
    1. Tothill P, Avenell A, Love J, Reid DM. Comparisons between Hologic, lunar and Norland dual-energy X-ray absorptiometers and other techniques used for whole-body soft tissue measurements. Eur J Clin Nutr. 1994;48(11):781–794.
    1. Frank-Wilson AW, Johnston JD, Olszynski WP, Kontulainen SA. Measurement of muscle and fat in postmenopausal women: precision of previously reported pQCT imaging methods. Bone. 2015;75:49–54.
    1. Wong AK, Hummel K, Moore C, Beattie KA, Shaker S, Craven BC, Adachi JD, Papaioannou A, Giangregorio L. Improving reliability of pQCT-derived muscle area and density measures using a watershed algorithm for muscle and fat segmentation. J Clin Densitom. 2015;18(1):93–101.
    1. Swinford RR, Warden SJ. Factors affecting short-term precision of musculoskeletal measures using peripheral quantitative computed tomography (pQCT) Osteoporos Int. 2010;21(11):1863–1870.
    1. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–419.
    1. Bergman RN, Ider YZ, Bowden CR, Cobelli C. Quantitative estimation of insulin sensitivity. Am J Phys. 1979;236(6):E667–E677.
    1. Borai A, Livingstone C, Kaddam I, Ferns G. Selection of the appropriate method for the assessment of insulin resistance. BMC Med Res Methodol. 2011;11:158.
    1. Yeckel CW, Weiss R, Dziura J, Taksali SE, Dufour S, Burgert TS, Tamborlane WV, Caprio S: Validation of insulin sensitivity indices from oral glucose tolerance test parameters in obese children and adolescents 2004, 89(3):1096–1101.
    1. Schousboe JT, Shepherd JA, Bilezikian JP, Baim S. Executive summary of the 2013 International Society for Clinical Densitometry Position Development Conference on bone densitometry. J Clin Densitom. 2013;16(4):455–466.
    1. Keel C, Kraenzlin ME, Kraenzlin CA, Muller B, Meier C. Impact of bisphosphonate wash-out prior to teriparatide therapy in clinical practice. J Bone Miner Metab. 2010;28(1):68–76.
    1. Patsch JM, Burghardt AJ, Yap SP, Baum T, Schwartz AV, Joseph GB, Link TM. Increased cortical porosity in type 2 diabetic postmenopausal women with fragility fractures. J Bone Miner Res. 2013;28(2):313–324.
    1. Leslie WD, Aubry-Rozier B, Lamy O, Hans D. Manitoba bone density P: TBS (trabecular bone score) and diabetes-related fracture risk. J Clin Endocrinol Metab. 2013;98(2):602–609.
    1. Schousboe JT, Vokes T, Broy SB, Ferrar L, McKiernan F, Roux C, Binkley N. Vertebral fracture assessment: the 2007 ISCD official positions. J Clin Densitom. 2008;11(1):92–108.
    1. Genant HK, CY W, van Kuijk C, Nevitt MC. Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res. 1993;8(9):1137–1148.
    1. Daly RM, Ducher G, Hill B, Telford RM, Eser P, Naughton G, Seibel MJ, Telford RD. Effects of a specialist-led, school physical education program on bone mass, structure, and strength in primary school children: a 4-year cluster randomized controlled trial. J Bone Miner Res. 2016;31(2):289–298.
    1. Eser P, Hill B, Ducher G, Bass S. Skeletal benefits after long-term retirement in former elite female gymnasts. J Bone Miner Res. 2009;24(12):1981–1988.
    1. Fonseca A, Gordon CL, Barr RD. Peripheral quantitative computed tomography (pQCT) to assess bone health in children, adolescents, and young adults: a review of normative data. J Pediatr Hematol Oncol. 2013;35(8):581–589.
    1. Rauch F, Schoenau E. Peripheral quantitative computed tomography of the proximal radius in young subjects--new reference data and interpretation of results. J Musculoskelet Neuronal Interact. 2008;8(3):217–226.
    1. Augat P, Gordon C, Lang T, Iida H, Genant H. Accuracy of cortical and trabecular bone measurements with peripheral quantitative computed tomography (pQCT) Phys Med Biol. 1998;43(10):2873–2883.
    1. Winterhalder L, Eser P, Widmer J, Villiger PM, Aeberli D. Changes in volumetric BMD of radius and tibia upon antidepressant drug administration in young depressive patients. J Musculoskelet Neuronal Interact. 2012;12(4):224–229.
    1. Michelsen J, Wallaschofski H, Friedrich N, Spielhagen C, Rettig R, Ittermann T, Nauck M, Hannemann A. Reference intervals for serum concentrations of three bone turnover markers for men and women. Bone. 2013;57(2):399–404.
    1. Cavalier E, Souberbielle JC, Gadisseur R, Dubois B, Krzesinski JM, Delanaye P. Inter-method variability in bone alkaline phosphatase measurement: clinical impact on the management of dialysis patients. Clin Biochem. 2014;47(13–14):1227–1230.
    1. Janssen MJ, Wielders JP, Bekker CC, Boesten LS, Buijs MM, Heijboer AC, van der Horst FA, Loupatty FJ, van den Ouweland JM. Multicenter comparison study of current methods to measure 25-hydroxyvitamin D in serum. Steroids. 2012;77(13):1366–1372.
    1. Koivula MK, Turpeinen U, Laitinen P, Risteli J. Comparison of automated 25-OH vitamin D immunoassays with liquid chromatography isotope dilution tandem mass spectrometry. Clin Lab. 2012;58(11–12):1253–1261.
    1. Garnero P, Borel O, Delmas PD. Evaluation of a fully automated serum assay for C-terminal cross- linking telopeptide of type I collagen in osteoporosis. Clin Chem. 2001;47(4):694–702.
    1. Schmidt-Gayk H, Spanuth E, Kotting J, Bartl R, Felsenberg D, Pfeilschifter J, Raue F, Roth HJ. Performance evaluation of automated assays for beta-CrossLaps, N-MID-osteocalcin and intact parathyroid hormone (BIOROSE multicenter study) Clin Chem Lab Med. 2004;42(1):90–95.
    1. Gundberg CM, Nieman SD, Abrams S, Rosen H. Vitamin K Status and bone health: an analysis of methods for determination of undercarboxylated osteocalcin. J Clin Endocrinol Metab. 1998;83(9):3258–3266.
    1. Yeap BB, Alfonso H, Chubb SA, Gauci R, Byrnes E, Beilby JP, Ebeling PR, Handelsman DJ, Allan CA, Grossmann M, et al. Higher serum undercarboxylated osteocalcin and other bone turnover markers are associated with reduced diabetes risk and lower estradiol concentrations in older men. J Clin Endocrinol Metab. 2015;100(1):63–71.
    1. Beastall GH, Ferguson KM, O'Reilly DS, Seth J, Sheridan B. Assays for follicle stimulating hormone and luteinising hormone: guidelines for the provision of a clinical biochemistry service. Ann Clin Biochem. 1987;24(Pt 3):246–262.
    1. Muller C, Wallaschofski H, Brabant G, Wahnschaffe U, Samietz S, Nauck M, Friedrich N. The association between IGF-I/IGFBP-3 and subclinical end points: epidemiology faces the limits. J Clin Endocrinol Metab. 2014;99(8):2804–2812.
    1. Morin P, Herrmann F, Ammann P, Uebelhart B, Rizzoli R. A rapid self-administered food frequency questionnaire for the evaluation of dietary protein intake. Clin Nutr. 2005;24(5):768–774.
    1. Bolek-Berquist J, Elliott ME, Gangnon RE, Gemar D, Engelke J, Lawrence SJ, Hansen KE. Use of a questionnaire to assess vitamin D status in young adults. Public Health Nutr. 2009;12(2):236–243.
    1. Godfrey S. Exercise tests in assessing children with lung or heart disease. Thorax. 1970;25:258.
    1. Paridon SM, Alpert BS, Boas SR, Cabrera ME, Caldarera LL, Daniels SR, Kimball TR, Knilans TK, Nixon PA, Rhodes J, et al. Clinical stress testing in the pediatric age group: a statement from the American Heart Association Council on cardiovascular disease in the young, committee on atherosclerosis, hypertension, and obesity in youth. Circulation. 2006;113(15):1905–1920.
    1. Weisman IM, Marciniuk D, Martinez FJ, Sciurba F, Sue D, Myers J. ATS/ACCP Statement on cardiopulmonary exercise testing. Am J Respir Crit Care Med. 2003;167(2):211–77.
    1. Balady GJ, Berra K, Golding L, Gordon N, Mahler D, Myers J, Sheldahl L: American College of Sports Medicine's guidelines for exercise testing and prescription, Sixth edn. Baltimore: Lippincott Williams & Wilkins; 2000.
    1. Grant S, Aitchison T, Henderson E, Christie J, Zare S, McMurray J, Dargie H. A comparison of the reproducibility and the sensitivity to change of visual analogue scales, borg scales, and likert scales in normal subjects during submaximal exercise*. Chest. 1999;116(5):1208–1217.
    1. Borg G. Perceived exertion as an indicator of somatic stress. Scand J Rehabil Med. 1970;2(2):92–98.
    1. Daanen HA, Lamberts RP, Kallen VL, Jin A, Van Meeteren NL. A systematic review on heart-rate recovery to monitor changes in training status in athletes. Int J Sports Physiol Perform. 2012;7(3):251–260.
    1. Strassmann A, Steurer-Stey C, Dalla Lana K, Zoller M, Turk A, Suter P, Puhan M. Population-based reference values for the 1-min sit-to-stand test. Int J Public Health. 2013;58:949–953.
    1. Puhan MA, Siebeling L, Zoller M, Muggensturm P, ter Riet G. Simple functional performance tests and mortality in COPD. Eur Respir J. 2013;42(4):956–963.
    1. Bohannon RW, Magasi SR, Bubela DJ, Wang Y-C, Gershon RC. Grip and knee extension muscle strength reflect a common construct among adults. Muscle Nerve. 2012;46(4):555–558.
    1. Jones CJ, Rikli RE, Beam WC. A 30-s chair-stand test as a measure of lower body strength in community-residing older adults. Res Q Exerc Sport. 1999;70(2):113–119.
    1. Ozalevli S, Ozden A, Itil O, Akkoclu A. Comparison of the sit-to-stand test with 6 min walk test in patients with chronic obstructive pulmonary disease. Respir Med. 2007;101(2):286–293.
    1. Bohannon RW, Bubela DJ, Magasi SR, Wang Y-C, Gershon RC. Sit-to-stand test: performance and determinants across the age-span. Isokinet Exerc Sci. 2010;18(4):235–240.
    1. Roberts HC, Denison HJ, Martin HJ, Patel HP, Syddall H, Cooper C, Sayer AA. A review of the measurement of grip strength in clinical and epidemiological studies: towards a standardised approach. Age Ageing. 2011;40(4):423–429.
    1. Fess EE. Grip strength. 2. Chicago: American Society of Hand Therapists; 1992.
    1. Watanabe T, Owashi K, Kanauchi Y, Mura N, Takahara M, Ogino T. The short-term reliability of grip strength measurement and the effects of posture and grip span. J Hand Surg. 2005;30(3):603–609.
    1. Steeves JA, Tyo BM, Connolly CP, Gregory DA, Stark NA, Bassett DR. Validity and reliability of the Omron HJ-303 tri-axial accelerometer-based pedometer. J Phys Act Health. 2011;8(7):1014–1020.
    1. Troiano RP, Berrigan D, Dodd KW, Masse LC, Tilert T, McDowell M. Physical Activity in the United States Measured by Accelerometer. Med Sci Sports Exerc. 2008;40(1):181–8.
    1. Kozey SL, Lyden K, Howe CA, Staudenmayer JW, Freedson PS. Accelerometer output and MET values of common physical activities. Med Sci Sports Exerc. 2010;42(9):1776–1784.
    1. Rowlands AV, Stiles VH. Accelerometer counts and raw acceleration output in relation to mechanical loading. J Biomech. 2012;45(3):448–54.
    1. Metzger JS, Catellier DJ, Evenson KR, Treuth MS, Rosamond WD, Siega-Riz AM. Patterns of objectively measured physical activity in the United States. Med Sci Sports Exerc. 2008;40(4):630–638.
    1. Vainionpaa A, Korpelainen R, Vihriala E, Rinta-Paavola A, Leppaluoto J, Jamsa T. Intensity of exercise is associated with bone density change in premenopausal women. Osteoporos Int. 2006;17(3):455–463.
    1. Sallis JF, Haskell WL, Wood PD, Fortmann SP, Rogers T, Blair SN, Paffenbarger RS., Jr Physical activity assessment methodology in the Five-City project. Am J Epidemiol. 1985;121(1):91–106.
    1. Ainsworth BE, Jacobs DR, Leon AS. Validity and reliability of self-reported physical activity status: the lipid research clinics questionnaire. Med Sci Sports Exerc. 1993;25:92–98.
    1. Sallis JF, Buono MJ, Roby JJ, Micale FG, Nelson JA. Seven-day recall and other physical activity self-reports in children and adolescents. Med Sci Sports Exerc. 1993;25:99–108.
    1. Ruf K, Fehn S, Bachmann M, Moeller A, Roth K, Kriemler S, Hebestreit H. Validation of activity questionnaires in patients with cystic fibrosis by Accelerometry and cycle Ergometry. BMC Med Res Methodol. 2012;12:43.
    1. Markland D, Hardy L. The exercise motivations inventory: preliminary development and validity of a measure of individuals' reasons for participation in regular physical exercise. Personal Individ Differ. 1993;15(3):289–296.
    1. Markland D, Ingledew DK. The measurement of exercise motives: factorial validity and invariance across gender of a revised exercise motivations inventory. Br J Health Psychol. 1997;2(4):361–376.
    1. Ainsworth BE, Jacobs DR, Jr, Leon AS. Validity and reliability of self-reported physical activity status: the lipid research clinics questionnaire. Med Sci Sports Exerc. 1993;25(1):92–98.
    1. Ellert U, Ballach B-M. The SF-36 in the Federal Health Survey-description of a current normal sample. Gesundheitswesen. 1999;61 Spec No.:S184–S190.
    1. Ware J, Kosinski M, Dewey J. How to score version 2 of the SF-36 health survey. Lincoln: QualyMetric Incorporated; 2000.
    1. Reulen RC, Zeegers MP, Jenkinson C, Lancashire ER, Winter DL, Jenney ME, Hawkins MM. The use of the SF-36 questionnaire in adult survivors of childhood cancer: evaluation of data quality, score reliability, and scaling assumptions. Health Qual Life Outcomes. 2006;4:77.
    1. Reulen RC, Winter DL, Lancashire ER, Zeegers MP, Jenney ME, Walters SJ, Jenkinson C, Hawkins MM. Health-status of adult survivors of childhood cancer: a large-scale population-based study from the British childhood cancer survivor study. Int J Cancer. 2007;121(3):633–640.
    1. Hudson MM, Mertens AC, Yasui Y, Hobbie W, Chen H, Gurney JG, Yeazel M, Recklitis CJ, Marina N, Robison LR, et al. Health status of adult long-term survivors of childhood cancer: a report from the childhood cancer survivor study. JAMA. 2003;290(12):1583–1592.
    1. Essig S, von der Weid NX, M-PF S, Rebholz CE, Michel G, Rueegg CS, Niggli FK, Kuehni CE, for the Swiss pediatric oncology G Health-related quality of life in long-term survivors of relapsed childhood acute lymphoblastic leukemia. PLoS One. 2012;7(5):e38015.
    1. Rueegg CS, Gianinazzi ME, Rischewski J, Beck Popovic M, Von der Weid NX, Michel G, Kuehni CE. Health-related quality of life in survivors of childhood cancer: the role of chronic health problems. J Cancer Surviv. 2013;7(4):511–522.
    1. Makowiec-Dabrowska T, Koszada-Wlodarczyk W. The CIS20R questionnaire and its suitability for prolonged fatigue studies. Med Pr. 2006;57(4):335–345.
    1. Vercoulen JH, Swanink CM, Fennis JF, Galama JM, van der Meer JW, Bleijenberg G. Dimensional assessment of chronic fatigue syndrome. J Psychosom Res. 1994;38(5):383–392.
    1. Beurskens A, Bultmann U, Kant I, Vercoulen J, Bleijenberg G, Swaen G. Fatigue among working people: validity of a questionnaire measure. Occup Environ Med. 2000;57(5):353–357.
    1. Bultmann U, de Vries M, Beurskens AJ, Bleijenberg G, Vercoulen JH, Kant I. Measurement of prolonged fatigue in the working population: determination of a cutoff point for the checklist individual strength. J Occup Health Psychol. 2000;5(4):411–416.
    1. Derogatis L: Brief symptom inventory (BSI), administraion, scoring, and procedure manual (third ed.). In. Minneapolis: Minneapolis National Computer Services; 1993.
    1. Franke G. BSI, brief symptom inventory, von L.R. Derogatis - Deutsches manual. Göttingen: Beltz Test Gesellschaft; 2000.
    1. Schweizerische Gesundheitsbefragung . In: Erste Ergebnisse [Swiss health survey 2007, first results] Statistik Bf, editor. Neuchâtel: Bundesamt für Statistik; 2007.
    1. Germann U. Abschlussbericht zur Volkszählung 2000. Neuchâtel: Swiss Federal Statistical Office (SFSO); 2005.
    1. Bopp M, Spoerri A, Zwahlen M, Gutzwiller F, Paccaud F, Braun-Fahrlander C, Rougemont A, Egger M. Cohort profile: the Swiss National Cohort--a longitudinal study of 6.8 million people. Int J Epidemiol. 2009;38(2):379–384.
    1. Tanner JM (ed.). Growth at adolescence, 2 edn. Oxford: Blackwell; 1962.
    1. Ruf K, Winkler B, Hebestreit A, Gruber W, Hebestreit H. Risks associated with exercise testing and sports participation in cystic fibrosis. J Cyst Fibros. 2010;9(5):339–345.
    1. CTCAE: The Common Terminology Criteria for Adverse Events (CTCAE). .
    1. Armenian SH, Hudson MM, Mulder RL, Chen MH, Constine LS, Dwyer M, Nathan PC, Tissing WJE, Shankar S, Sieswerda E, et al. Recommendations for cardiomyopathy surveillance for survivors of childhood cancer: a report from the international late effects of childhood cancer guideline harmonization group. Lancet Oncol. 2015;16(3):e123–e136.
    1. Physical Activity Guidelines for Americans. In. Edited by Services UDoHaH. Washington: Office of Disease Prevention and Health Promotion (ODPHP); 2008.
    1. Engels JM, Diehr P. Imputation of missing longitudinal data: a comparison of methods. J Clin Epidemiol. 2003;56(10):968–976.
    1. Faude O, Kindermann W, Meyer T. Lactate threshold concepts: how valid are they? Sports Med. 2009;39(6):469–490.
    1. Oeffinger KC, Mertens AC, Sklar CA, Kawashima T, Hudson MM, Meadows AT, Friedman DL, Marina N, Hobbie W, Kadan-Lottick NS, et al. Chronic health conditions in adult survivors of childhood cancer. N Engl J Med. 2006;355(15):1572–1582.
    1. Boyle T, Keegel T, Bull F, Heyworth J, Fritschi L. Physical activity and risks of proximal and distal colon cancers: a systematic review and meta-analysis. J Natl Cancer Inst. 2012;
    1. Cerhan JR, Chiu BC, Wallace RB, Lemke JH, Lynch CF, Torner JC, Rubenstein LM. Physical activity, physical function, and the risk of breast cancer in a prospective study among elderly women. J Gerontol A Biol Sci Med Sci. 1998;53(4):M251–M256.
    1. Samad AK, Taylor RS, Marshall T, Chapman MA. A meta-analysis of the association of physical activity with reduced risk of colorectal cancer. Color Dis. 2005;7(3):204–213.
    1. Tardon A, Lee WJ, Delgado-Rodriguez M, Dosemeci M, Albanes D, Hoover R, Blair A. Leisure-time physical activity and lung cancer: a meta-analysis. Cancer Causes Control. 2005;16(4):389–397.
    1. Mishra SI, Scherer RW, Geigle PM, Berlanstein DR, Topaloglu O, Gotay CC, Snyder C. Exercise interventions on health-related quality of life for cancer survivors. Cochrane Database Syst Rev. 2012;15:8.
    1. Giovannucci EL. Physical activity as a standard cancer treatment. J Natl Cancer Inst. 2012;104(11):797–799.
    1. Brown JC, Huedo-Medina TB, Pescatello LS, Ryan SM, Pescatello SM, Moker E, LaCroix JM, Ferrer RA, Johnson BT. The efficacy of exercise in reducing depressive symptoms among cancer survivors: a meta-analysis. PLoS One. 2012;7(1):27.
    1. McMillan EM, Newhouse IJ. Exercise is an effective treatment modality for reducing cancer-related fatigue and improving physical capacity in cancer patients and survivors: a meta-analysis. Appl Physiol Nutr Metab. 2011;36(6):892–903.
    1. Speck R, Courneya K, Mâsse L, Duval S, Schmitz K. An update of controlled physical activity trials in cancer survivors: a systematic review and meta-analysis. J Cancer Surviv. 2010;4:87–100.
    1. Hamer M, Stamatakis E, Saxton J. The impact of physical activity on all-cause mortality in men and women after a cancer diagnosis. Cancer Causes Control. 2009;20(2):225–231.
    1. Courneya KS. Physical activity in cancer survivors: a field in motion. Psycho-Oncology. 2009;18(4):337–342.
    1. Albrecht TA, Taylor AG. Physical activity in patients with advanced-stage cancer: a systematic review of the literature. Clin J Oncol Nurs. 2012;16(3):293–300.

Source: PubMed

3
S'abonner