Pharmacogenetic meta-analysis of genome-wide association studies of LDL cholesterol response to statins

Iris Postmus, Stella Trompet, Harshal A Deshmukh, Michael R Barnes, Xiaohui Li, Helen R Warren, Daniel I Chasman, Kaixin Zhou, Benoit J Arsenault, Louise A Donnelly, Kerri L Wiggins, Christy L Avery, Paula Griffin, QiPing Feng, Kent D Taylor, Guo Li, Daniel S Evans, Albert V Smith, Catherine E de Keyser, Andrew D Johnson, Anton J M de Craen, David J Stott, Brendan M Buckley, Ian Ford, Rudi G J Westendorp, P Eline Slagboom, Naveed Sattar, Patricia B Munroe, Peter Sever, Neil Poulter, Alice Stanton, Denis C Shields, Eoin O'Brien, Sue Shaw-Hawkins, Y-D Ida Chen, Deborah A Nickerson, Joshua D Smith, Marie Pierre Dubé, S Matthijs Boekholdt, G Kees Hovingh, John J P Kastelein, Paul M McKeigue, John Betteridge, Andrew Neil, Paul N Durrington, Alex Doney, Fiona Carr, Andrew Morris, Mark I McCarthy, Leif Groop, Emma Ahlqvist, Welcome Trust Case Control Consortium, Joshua C Bis, Kenneth Rice, Nicholas L Smith, Thomas Lumley, Eric A Whitsel, Til Stürmer, Eric Boerwinkle, Julius S Ngwa, Christopher J O'Donnell, Ramachandran S Vasan, Wei-Qi Wei, Russell A Wilke, Ching-Ti Liu, Fangui Sun, Xiuqing Guo, Susan R Heckbert, Wendy Post, Nona Sotoodehnia, Alice M Arnold, Jeanette M Stafford, Jingzhong Ding, David M Herrington, Stephen B Kritchevsky, Gudny Eiriksdottir, Leonore J Launer, Tamara B Harris, Audrey Y Chu, Franco Giulianini, Jean G MacFadyen, Bryan J Barratt, Fredrik Nyberg, Bruno H Stricker, André G Uitterlinden, Albert Hofman, Fernando Rivadeneira, Valur Emilsson, Oscar H Franco, Paul M Ridker, Vilmundur Gudnason, Yongmei Liu, Joshua C Denny, Christie M Ballantyne, Jerome I Rotter, L Adrienne Cupples, Bruce M Psaty, Colin N A Palmer, Jean-Claude Tardif, Helen M Colhoun, Graham Hitman, Ronald M Krauss, J Wouter Jukema, Mark J Caulfield, Peter Donnelly, Ines Barroso, Jenefer M Blackwell, Elvira Bramon, Matthew A Brown, Juan P Casas, Aiden Corvin, Panos Deloukas, Audrey Duncanson, Janusz Jankowski, Hugh S Markus, Christopher G Mathew, Colin N A Palmer, Robert Plomin, Anna Rautanen, Stephen J Sawcer, Richard C Trembath, Ananth C Viswanathan, Nicholas W Wood, Chris C A Spencer, Gavin Band, Céline Bellenguez, Colin Freeman, Garrett Hellenthal, Eleni Giannoulatou, Matti Pirinen, Richard Pearson, Amy Strange, Zhan Su, Damjan Vukcevic, Peter Donnelly, Cordelia Langford, Sarah E Hunt, Sarah Edkins, Rhian Gwilliam, Hannah Blackburn, Suzannah J Bumpstead, Serge Dronov, Matthew Gillman, Emma Gray, Naomi Hammond, Alagurevathi Jayakumar, Owen T McCann, Jennifer Liddle, Simon C Potter, Radhi Ravindrarajah, Michelle Ricketts, Matthew Waller, Paul Weston, Sara Widaa, Pamela Whittaker, Ines Barroso, Panos Deloukas, Christopher G Mathew, Jenefer M Blackwell, Matthew A Brown, Aiden Corvin, Mark I McCarthy, Chris C A Spencer, Iris Postmus, Stella Trompet, Harshal A Deshmukh, Michael R Barnes, Xiaohui Li, Helen R Warren, Daniel I Chasman, Kaixin Zhou, Benoit J Arsenault, Louise A Donnelly, Kerri L Wiggins, Christy L Avery, Paula Griffin, QiPing Feng, Kent D Taylor, Guo Li, Daniel S Evans, Albert V Smith, Catherine E de Keyser, Andrew D Johnson, Anton J M de Craen, David J Stott, Brendan M Buckley, Ian Ford, Rudi G J Westendorp, P Eline Slagboom, Naveed Sattar, Patricia B Munroe, Peter Sever, Neil Poulter, Alice Stanton, Denis C Shields, Eoin O'Brien, Sue Shaw-Hawkins, Y-D Ida Chen, Deborah A Nickerson, Joshua D Smith, Marie Pierre Dubé, S Matthijs Boekholdt, G Kees Hovingh, John J P Kastelein, Paul M McKeigue, John Betteridge, Andrew Neil, Paul N Durrington, Alex Doney, Fiona Carr, Andrew Morris, Mark I McCarthy, Leif Groop, Emma Ahlqvist, Welcome Trust Case Control Consortium, Joshua C Bis, Kenneth Rice, Nicholas L Smith, Thomas Lumley, Eric A Whitsel, Til Stürmer, Eric Boerwinkle, Julius S Ngwa, Christopher J O'Donnell, Ramachandran S Vasan, Wei-Qi Wei, Russell A Wilke, Ching-Ti Liu, Fangui Sun, Xiuqing Guo, Susan R Heckbert, Wendy Post, Nona Sotoodehnia, Alice M Arnold, Jeanette M Stafford, Jingzhong Ding, David M Herrington, Stephen B Kritchevsky, Gudny Eiriksdottir, Leonore J Launer, Tamara B Harris, Audrey Y Chu, Franco Giulianini, Jean G MacFadyen, Bryan J Barratt, Fredrik Nyberg, Bruno H Stricker, André G Uitterlinden, Albert Hofman, Fernando Rivadeneira, Valur Emilsson, Oscar H Franco, Paul M Ridker, Vilmundur Gudnason, Yongmei Liu, Joshua C Denny, Christie M Ballantyne, Jerome I Rotter, L Adrienne Cupples, Bruce M Psaty, Colin N A Palmer, Jean-Claude Tardif, Helen M Colhoun, Graham Hitman, Ronald M Krauss, J Wouter Jukema, Mark J Caulfield, Peter Donnelly, Ines Barroso, Jenefer M Blackwell, Elvira Bramon, Matthew A Brown, Juan P Casas, Aiden Corvin, Panos Deloukas, Audrey Duncanson, Janusz Jankowski, Hugh S Markus, Christopher G Mathew, Colin N A Palmer, Robert Plomin, Anna Rautanen, Stephen J Sawcer, Richard C Trembath, Ananth C Viswanathan, Nicholas W Wood, Chris C A Spencer, Gavin Band, Céline Bellenguez, Colin Freeman, Garrett Hellenthal, Eleni Giannoulatou, Matti Pirinen, Richard Pearson, Amy Strange, Zhan Su, Damjan Vukcevic, Peter Donnelly, Cordelia Langford, Sarah E Hunt, Sarah Edkins, Rhian Gwilliam, Hannah Blackburn, Suzannah J Bumpstead, Serge Dronov, Matthew Gillman, Emma Gray, Naomi Hammond, Alagurevathi Jayakumar, Owen T McCann, Jennifer Liddle, Simon C Potter, Radhi Ravindrarajah, Michelle Ricketts, Matthew Waller, Paul Weston, Sara Widaa, Pamela Whittaker, Ines Barroso, Panos Deloukas, Christopher G Mathew, Jenefer M Blackwell, Matthew A Brown, Aiden Corvin, Mark I McCarthy, Chris C A Spencer

Abstract

Statins effectively lower LDL cholesterol levels in large studies and the observed interindividual response variability may be partially explained by genetic variation. Here we perform a pharmacogenetic meta-analysis of genome-wide association studies (GWAS) in studies addressing the LDL cholesterol response to statins, including up to 18,596 statin-treated subjects. We validate the most promising signals in a further 22,318 statin recipients and identify two loci, SORT1/CELSR2/PSRC1 and SLCO1B1, not previously identified in GWAS. Moreover, we confirm the previously described associations with APOE and LPA. Our findings advance the understanding of the pharmacogenetic architecture of statin response.

Conflict of interest statement

B.M.P. serves on the Data and Safety Monitoring Board of a clinical trial funded by the device manufacturer (Zoll LifeCor). N.P. and A.S. received funding from Pfizer for the extended follow-up of the ASCOT UK participants. D.I.C. and P.M.R. received research support for independent genetic analysis in JUPITER from AstraZeneca. F.N. and B.J.B. have employment, stock and stock options in AstraZeneca, a for-profit company engaged in the discovery, development, manufacture and marketing of proprietary therapeutics such as rosuvastatin, but do not consider that this creates any conflict of interest with the subject-matter of this publication. R.M.K. serves on the Merck Global Atherosclerosis Advisory Board. The remaining authors declare no competing financial interests.

Figures

Figure 1. Results of the GWAS meta-analysis.
Figure 1. Results of the GWAS meta-analysis.
Manhattan plot presenting the −log10P values from the combined meta-analysis (n=40,914) on LDL-C response after statin treatment. P values were generated using linear regression analysis.
Figure 2. Regional association plots of the…
Figure 2. Regional association plots of the genome-wide significant associations with LDL-C response after statin treatment.
The plots show the genome-wide significant associated loci in the combined meta-analysis (n=40,914), the APOE locus (a), the LPA locus (b), the SORT1/CELSR2/PSRC1 locus (c) and the SLCO1B1 locus (d) (generated using LocusZoom ( http://genome.sph.umich.edu/wiki/LocusZoom)). The colour of the SNPs is based on the LD with the lead SNP (shown in purple). The RefSeq genes in the region are shown in the lower panel. P values were generated using linear regression analysis.

References

    1. Davidson M. H. & Toth P. P. Comparative effects of lipid-lowering therapies. Prog. Cardiovasc. Dis. 47, 73–104 (2004).
    1. Baigent C. et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet 376, 1670–1681 (2010).
    1. Mangravite L. M., Thorn C. F. & Krauss R. M. Clinical implications of pharmacogenomics of statin treatment. Pharmacogenomics J. 6, 360–374 (2006).
    1. Postmus I. et al. Pharmacogenetics of statins: achievements, whole-genome analyses and future perspectives. Pharmacogenomics 13, 831–840 (2012).
    1. Chasman D. I. et al. Pharmacogenetic study of statin therapy and cholesterol reduction. JAMA 291, 2821–2827 (2004).
    1. Hopewell J. C. et al. Impact of common genetic variation on response to simvastatin therapy among 18 705 participants in the Heart Protection Study. Eur. Heart J. 34, 982–992 (2013).
    1. Chasman D. I. et al. Genetic determinants of statin-induced low-density lipoprotein cholesterol reduction: the Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin (JUPITER) trial. Circ. Cardiovasc. Genet. 5, 257–264 (2012).
    1. Deshmukh H. A. et al. Genome-wide association study of genetic determinants of LDL-c response to atorvastatin therapy: importance of Lp(a). J. Lipid Res. 53, 1000–1011 (2012).
    1. Barber M. J. et al. Genome-wide association of lipid-lowering response to statins in combined study populations. PLoS ONE 5, e9763 (2010).
    1. Thompson J. F. et al. Comprehensive whole-genome and candidate gene analysis for response to statin therapy in the Treating to New Targets (TNT) cohort. Circ. Cardiovasc. Genet. 2, 173–181 (2009).
    1. Hindorff L. A. et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl Acad. Sci. USA 106, 9362–9367 (2009).
    1. Lamb J. et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313, 1929–1935 (2006).
    1. Brennan R. J., Nikolskya T. & Bureeva S. Network and pathway analysis of compound-protein interactions. Methods Mol. Biol. 575, 225–247 (2009).
    1. Ken-Dror G., Talmud P. J., Humphries S. E. & Drenos F. APOE/C1/C4/C2 gene cluster genotypes, haplotypes and lipid levels in prospective coronary heart disease risk among UK healthy men. Mol. Med. 16, 389–399 (2010).
    1. Lanktree M. B., Anand S. S., Yusuf S. & Hegele R. A. Comprehensive analysis of genomic variation in the LPA locus and its relationship to plasma lipoprotein(a) in South Asians, Chinese, and European Caucasians. Circ. Cardiovasc. Genet. 3, 39–46 (2010).
    1. Qi Q., Workalemahu T., Zhang C., Hu F. B. & Qi L. Genetic variants, plasma lipoprotein(a) levels, and risk of cardiovascular morbidity and mortality among two prospective cohorts of type 2 diabetes. Eur. Heart J. 33, 325–334 (2012).
    1. Scanu A. M. & Hinman J. Issues concerning the monitoring of statin therapy in hypercholesterolemic subjects with high plasma lipoprotein(a) levels. Lipids 37, 439–444 (2002).
    1. Musunuru K. et al. From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature 466, 714–719 (2010).
    1. Strong A. et al. Hepatic sortilin regulates both apolipoprotein B secretion and LDL catabolism. J. Clin. Invest. 122, 2807–2816 (2012).
    1. Campos H., Arnold K. S., Balestra M. E., Innerarity T. L. & Krauss R. M. Differences in receptor binding of LDL subfractions. Arterioscler. Thromb. Vasc. Biol. 16, 794–801 (1996).
    1. Williams P. T., Zhao X. Q., Marcovina S. M., Brown B. G. & Krauss R. M. Levels of cholesterol in small LDL particles predict atherosclerosis progression and incident CHD in the HDL-Atherosclerosis Treatment Study (HATS). PLoS ONE 8, e56782 (2013).
    1. Choi Y. J. et al. Effects of the PPAR-delta agonist MBX-8025 on atherogenic dyslipidemia. Atherosclerosis 220, 470–476 (2012).
    1. Konig J., Seithel A., Gradhand U. & Fromm M. F. Pharmacogenomics of human OATP transporters. Naunyn Schmiedebergs Arch. Pharmacol. 372, 432–443 (2006).
    1. Wilke R. A. et al. The clinical pharmacogenomics implementation consortium: CPIC guideline for SLCO1B1 and simvastatin-induced myopathy. Clin. Pharmacol. Ther. 92, 112–117 (2012).
    1. Link E. et al. SLCO1B1 variants and statin-induced myopathy-a genomewide study. New Engl. J. Med. 359, 789–799 (2008).
    1. Donnelly L. A. et al. Common nonsynonymous substitutions in SLCO1B1 predispose to statin intolerance in routinely treated individuals with type 2 diabetes: a go-DARTS study. Clin. Pharmacol. Ther. 89, 210–216 (2011).
    1. Niemi M., Pasanen M. K. & Neuvonen P. J. Organic anion transporting polypeptide 1B1: a genetically polymorphic transporter of major importance for hepatic drug uptake. Pharmacol. Rev. 63, 157–181 (2011).
    1. Teslovich T. M. et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466, 707–713 (2010).
    1. Dreon D. M., Fernstrom H. A., Williams P. T. & Krauss R. M. Reduced LDL particle size in children consuming a very-low-fat diet is related to parental LDL-subclass patterns. Am. J. Clin. Nutr. 71, 1611–1616 (2000).
    1. Goring H. H. et al. Discovery of expression QTLs using large-scale transcriptional profiling in human lymphocytes. Nat. Genet. 39, 1208–1216 (2007).
    1. Idaghdour Y. et al. Geographical genomics of human leukocyte gene expression variation in southern Morocco. Nat. Genet. 42, 62–67 (2010).
    1. Heap G. A. et al. Complex nature of SNP genotype effects on gene expression in primary human leucocytes. BMC Med. Genomics 2, 1 (2009).
    1. Emilsson V. et al. Genetics of gene expression and its effect on disease. Nature 452, 423–428 (2008).
    1. Fehrmann R. S. et al. Trans-eQTLs reveal that independent genetic variants associated with a complex phenotype converge on intermediate genes, with a major role for the HLA. PLoS Genet. 7, e1002197 (2011).
    1. Mehta D. et al. Impact of common regulatory single-nucleotide variants on gene expression profiles in whole blood. Eur. J. Hum. Genet. 21, 48–54 (2013).
    1. Sasayama D. et al. Identification of single nucleotide polymorphisms regulating peripheral blood mRNA expression with genome-wide significance: an eQTL study in the Japanese population. PLoS ONE 8, e54967 (2013).
    1. Dixon A. L. et al. A genome-wide association study of global gene expression. Nat. Genet. 39, 1202–1207 (2007).
    1. Liang L. et al. A cross-platform analysis of 14,177 expression quantitative trait loci derived from lymphoblastoid cell lines. Genome Res. 23, 716–726 (2013).
    1. Stranger B. E. et al. Population genomics of human gene expression. Nat. Genet. 39, 1217–1224 (2007).
    1. Kwan T. et al. Genome-wide analysis of transcript isoform variation in humans. Nat. Genet. 40, 225–231 (2008).
    1. Dimas A. S. et al. Common regulatory variation impacts gene expression in a cell type-dependent manner. Science 325, 1246–1250 (2009).
    1. Cusanovich D. A. et al. The combination of a genome-wide association study of lymphocyte count and analysis of gene expression data reveals novel asthma candidate genes. Hum. Mol. Genet. 21, 2111–2123 (2012).
    1. Grundberg E. et al. Mapping cis- and trans-regulatory effects across multiple tissues in twins. Nat. Genet. 44, 1084–1089 (2012).
    1. Fairfax B. P. et al. Genetics of gene expression in primary immune cells identifies cell type-specific master regulators and roles of HLA alleles. Nat. Genet. 44, 502–510 (2012).
    1. Murphy A. et al. Mapping of numerous disease-associated expression polymorphisms in primary peripheral blood CD4+ lymphocytes. Hum. Mol. Genet. 19, 4745–4757 (2010).
    1. Heinzen E. L. et al. Tissue-specific genetic control of splicing: implications for the study of complex traits. PLoS Biol. 6, e1 (2008).
    1. Zeller T. et al. Genetics and beyond-the transcriptome of human monocytes and disease susceptibility. PLoS ONE 5, e10693 (2010).
    1. Barreiro L. B. et al. Deciphering the genetic architecture of variation in the immune response to Mycobacterium tuberculosis infection. Proc. Natl Acad. Sci. USA 109, 1204–1209 (2012).
    1. Greenawalt D. M. et al. A survey of the genetics of stomach, liver, and adipose gene expression from a morbidly obese cohort. Genome Res. 21, 1008–1016 (2011).
    1. Kompass K. S. & Witte J. S. Co-regulatory expression quantitative trait loci mapping: method and application to endometrial cancer. BMC Med. Genomics 4, 6 (2011).
    1. Li Q. et al. Integrative eQTL-based analyses reveal the biology of breast cancer risk loci. Cell 152, 633–641 (2013).
    1. Webster J. A. et al. Genetic control of human brain transcript expression in Alzheimer disease. Am. J. Hum. Genet. 84, 445–458 (2009).
    1. Zou F. et al. Brain expression genome-wide association study (eGWAS) identifies human disease-associated variants. PLoS Genet. 8, e1002707 (2012).
    1. Colantuoni C. et al. Temporal dynamics and genetic control of transcription in the human prefrontal cortex. Nature 478, 519–523 (2011).
    1. Liu C. et al. Whole-genome association mapping of gene expression in the human prefrontal cortex. Mol. Psychiatry 15, 779–784 (2010).
    1. Gibbs J. R. et al. Abundant quantitative trait loci exist for DNA methylation and gene expression in human brain. PLoS Genet. 6, e1000952 (2010).
    1. Zhang B1. et al. Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer's disease. Cell 153, 707–720 (2013).
    1. Schadt E. E. et al. Mapping the genetic architecture of gene expression in human liver. PLoS Biol. 6, e107 (2008).
    1. Innocenti F. et al. Identification, replication, and functional fine-mapping of expression quantitative trait loci in primary human liver tissue. PLoS Genet. 7, e1002078 (2011).
    1. Grundberg E. et al. Population genomics in a disease targeted primary cell model. Genome Res. 19, 1942–1952 (2009).
    1. Kabakchiev B. & Silverberg M. S. Expression quantitative trait loci analysis identifies associations between genotype and gene expression in human intestine. Gastroenterology 144, 1488–1496 (2013).
    1. Hao K. et al. Lung eQTLs to help reveal the molecular underpinnings of asthma. PLoS Genet. 8, e1003029 (2012).
    1. Ding J. et al. Gene expression in skin and lymphoblastoid cells: Refined statistical method reveals extensive overlap in cis-eQTL signals. Am. J. Hum. Genet. 87, 779–789 (2010).
    1. Huang R. S. et al. Population differences in microRNA expression and biological implications. RNA Biol. 8, 692–701 (2011).
    1. Rantalainen M. et al. MicroRNA expression in abdominal and gluteal adipose tissue is associated with mRNA expression levels and partly genetically driven. PLoS ONE 6, e27338 (2011).
    1. Wang K., Li M. & Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164 (2010).
    1. Ward L. D. & Kellis M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 40, D930–D934 (2012).
    1. Boyle A. P. et al. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 22, 1790–1797 (2012).
    1. Dunham I. et al. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).
    1. Bernstein B. E. et al. The NIH Roadmap Epigenomics Mapping Consortium. Nat. Biotechnol. 28, 1045–1048 (2010).
    1. Colhoun H. M. et al. Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre randomised placebo-controlled trial. Lancet 364, 685–696 (2004).

Source: PubMed

3
S'abonner