Pre-Trial EEG-Based Single-Trial Motor Performance Prediction to Enhance Neuroergonomics for a Hand Force Task

Andreas Meinel, Sebastián Castaño-Candamil, Janine Reis, Michael Tangermann, Andreas Meinel, Sebastián Castaño-Candamil, Janine Reis, Michael Tangermann

Abstract

We propose a framework for building electrophysiological predictors of single-trial motor performance variations, exemplified for SVIPT, a sequential isometric force control task suitable for hand motor rehabilitation after stroke. Electroencephalogram (EEG) data of 20 subjects with mean age of 53 years was recorded prior to and during 400 trials of SVIPT. They were executed within a single session with the non-dominant left hand, while receiving continuous visual feedback of the produced force trajectories. The behavioral data showed strong trial-by-trial performance variations for five clinically relevant metrics, which accounted for reaction time as well as for the smoothness and precision of the produced force trajectory. 18 out of 20 tested subjects remained after preprocessing and entered offline analysis. Source Power Comodulation (SPoC) was applied on EEG data of a short time interval prior to the start of each SVIPT trial. For 11 subjects, SPoC revealed robust oscillatory EEG subspace components, whose bandpower activity are predictive for the performance of the upcoming trial. Since SPoC may overfit to non-informative subspaces, we propose to apply three selection criteria accounting for the meaningfulness of the features. Across all subjects, the obtained components were spread along the frequency spectrum and showed a variety of spatial activity patterns. Those containing the highest level of predictive information resided in and close to the alpha band. Their spatial patterns resemble topologies reported for visual attention processes as well as those of imagined or executed hand motor tasks. In summary, we identified subject-specific single predictors that explain up to 36% of the performance fluctuations and may serve for enhancing neuroergonomics of motor rehabilitation scenarios.

Keywords: EEG; hand motor rehabilitation; isometric force modulation; oscillatory subspace; single-trial performance prediction; spatial filtering; trial-by-trial variability; visuomotor integration.

Figures

Figure 1
Figure 1
Schematic setup of the EEG-tracked SVIPT. The subject applies force to a sensor using a pinch grasp. Force is transduced into positions of a horizontally moving cursor. EEG activity is recorded before, during and after repeated trials.
Figure 2
Figure 2
Frequency parameter configurations characterized by the frequency f0 and the corresponding band width Δf. In total, 55 configurations were used for computing SPoC filters. The omitted points (gray area) correspond to the power line frequency range.
Figure 3
Figure 3
Examples of trial-wise variations of different performance metrics over a full session, and their distributions. (A–C) are taken from data of subject S9, while (D–F) are from S13.
Figure 4
Figure 4
Contrasting the predictive outcome of all 3600 tested parameter configurations for linear regression (LinReg) and over 12,000 configurations for SPoC. In (A), the overall correlation Rall between predicted and estimated target variable values is depicted. (B) Shows the performance separability z-AUC. Gray lines indicate the median, boxes enclose the 25th to 75th percentile. The whisker length is set to two inter-quartile ranges.
Figure 5
Figure 5
Characterization of exemplary predictive SPoC features. Each component is characterized line-wise labeled by the used performance metric and the rank according to the full-session filters. (A) Power spectrum of the component applied on non-bandpass filtered full data. The frequency band where the component has been trained is marked by the dashed lines. Note that for the component of S8 a broader frequency range is visualized compared to the other examples. (B) Spatial activity pattern. (C) Filter weights visualized. (D) Scatter plot between true labels ztrue and the predicted ones zest, color coded by the fold of the chronological cross-validation. (E) To illustrate the separability of the prediction, the distribution of ztrue values has been split using the corresponding trials of the upper and lower quartiles of zest, which resulted in Qlow, est and Qhigh, est. As a reference, the extreme quartiles Qlow and Qhigh of ztrue are also given (dashed curves). In addition, the z-AUC value based on the 50th percentile split is reported.
Figure 6
Figure 6
Stressing the stability of two exemplary SPoC components for two different parameter configurations (A,B). While stepwise decreasing the SNR ratio (indicated by the red arrow), z-AUC-values (solid lines) describing the separability of the prediction are plotted together with standard deviations (dashed lines). The area under the z-AUC curve—further on called AAUCSNR—describes the stability of the component under the challenge of added noise. (C) Shows the histogram of all AAUCSNR scores evaluated for the considered parameter configurations.
Figure 7
Figure 7
Characterizing the space of SPoC components by several metrics, which describe their stability and predictive information. The SNR-challenged AAUCSNR is given as a function of the performance separability z-AUC (A), in relation to the homogeneity of the correlation sign Hfolds(B), and dependent on the overall correlation Rall(C). Red data points describe the selected SPoC components after applying thresholds (dashed red lines).
Figure 8
Figure 8
Relation between separability metric z-AUC and the overall correlation Rall for all SPoC configurations (blue dots) and the selected ones (red dots). The dashed red line indicates the threshold z-AUCmin applied to select most informative components. The red bars indicate the distribution of Rall values for the selected components.
Figure 9
Figure 9
Histograms of different parameters solely for the selected SPoC components. (A) Shows the assignment over the 18 subjects. (B) Gives the allocation over data set sizes Ne (with a lower limit of 150 trials). (C) Visualizes the distribution across frequency bands. (D) Depicts the spread of components over the five utilized motor performance metrics, while (E) shows the split according to their SPoC rank positions.
Figure 10
Figure 10
Overview over typical activity patterns resulting from the selected components, grouped in three categories: G1 consists of components with neural origin, G2 comprises artifact-related subspaces and G3 captures non-informative components. Details on their parameter configurations are given in Table 1.
Figure 11
Figure 11
Relation between SPoC rank stability and pattern homogeneity over five cross-validation folds (chronological order). (A) Stationary case: component is first-ranked across all five folds (data of subject S9, f = [9.4, 11] Hz, RT). (B) Rank switching: Two almost stable components switch rank positions between folds (S5, f = [27.5, 30.3] Hz, RT). Lines connect the corresponding topologies. (C) Intensity variation: intensity of first-ranked component decreases over time folds (S13, f = [13.6, 15.3] Hz, CPL).
Figure 12
Figure 12
Influence of the frequency band upon the rank stability. While stable at f0 = 9.4 Hz, a component develops rank instability with slight increase/decrease of its frequency band (data of subject S9).
Figure 13
Figure 13
The identification of session trends vs. single-trial variations of performance is possible by localizing a predictor's characteristic with respect to two selection criteria. The scatter plot visualizes AAUCSNR as a function of the mean correlation value across folds Rfolds for all configurations (light blue) and the selected ones only (red). Two classes of predictors can be identified: single-trial predictors showing a high Rfolds value while session-trend predictors show a very low Rfolds value.

References

    1. Abe M. O., Sternad D. (2013). Directionality in distribution and temporal structure of variability in skill acquisition. Front. Hum. Neurosci. 7:225. 10.3389/fnhum.2013.00225
    1. Allison B. Z., Brunner C., Altstätter C., Wagner I. C., Grissmann S., Neuper C. (2012). A hybrid ERD/SSVEP BCI for continuous simultaneous two dimensional cursor control. J. Neurosci. Methods 209, 299–307. 10.1016/j.jneumeth.2012.06.022
    1. Ang K. K., Guan C. (2013). Brain-computer interface in stroke rehabilitation. J. Comput. Sci. Eng. 7, 139–146. 10.5626/JCSE.2013.7.2.139
    1. Blankertz B., Dornhege G., Krauledat M., Müller K.-R., Curio G. (2007). The non-invasive berlin brain–computer interface: fast acquisition of effective performance in untrained subjects. Neuroimage 37, 539–550. 10.1016/j.neuroimage.2007.01.051
    1. Bradberry T. J., Rong F., Contreras-Vidal J. L. (2009). Decoding center-out hand velocity from MEG signals during visuomotor adaptation. Neuroimage 47, 1691–1700. 10.1016/j.neuroimage.2009.06.023
    1. Busch N. A., Dubois J., VanRullen R. (2009). The phase of ongoing EEG oscillations predicts visual perception. J. Neurosci. 29, 7869–7876. 10.1523/JNEUROSCI.0113-09.2009
    1. Camus M., Ragert P., Vandermeeren Y., Cohen L. G. (2009). Mechanisms controlling motor output to a transfer hand after learning a sequential pinch force skill with the opposite hand. Clin. Neurophysiol. 120, 1859–1865. 10.1016/j.clinph.2009.08.013
    1. Castaño-Candamil S., Höhne J., Martínez-Vargas J.-D., An X.-W., Castellanos-Domínguez G., et al. . (2015b). Solving the EEG inverse problem based on space-time-frequency structured sparsity constraints. Neuroimage 118, 598–612. 10.1016/j.neuroimage.2015.05.052
    1. Castaño-Candamil S., Meinel A., Dähne S., Tangermann M. (2015a). Probing meaningfulness of oscillatory EEG components with bootstrapping, label noise and reduced training sets, in Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE, (Milan: IEEE; ), 5159–5162.
    1. Castaño-Candamil S., Meinel A., Reis J., Tangermann M. (2015c). P186. correlates to influence user performance in a hand motor rehabilitation task. Clin. Neurophysiol. 126, e166–e167. 10.1016/j.clinph.2015.04.282
    1. Chaisanguanthum K. S., Shen H. H., Sabes P. N. (2014). Motor variability arises from a slow random walk in neural state. J. Neurosci. 34, 12071–12080. 10.1523/JNEUROSCI.3001-13.2014
    1. Churchland M. M., Byron M. Y., Ryu S. I., Santhanam G., Shenoy K. V. (2006). Neural variability in premotor cortex provides a signature of motor preparation. J. Neurosci. 26, 3697–3712. 10.1523/JNEUROSCI.3762-05.2006
    1. Cohen R., Sternad D. (2009). Variability in motor learning: relocating, channeling and reducing noise. Exp. Brain Res. 193, 69–83. 10.1007/s00221-008-1596-1
    1. Coupar F., Pollock A., Van Wijck F., Morris J., Langhorne P. (2010). Simultaneous bilateral training for improving arm function after stroke. Cochrane Database Syst. Rev. 4:CD006432. 10.1002/14651858.CD006432.pub2
    1. Dähne S., Meinecke F. C., Haufe S., Höhne J., Tangermann M., Müller K.-R., et al. . (2014). SPoC: a novel framework for relating the amplitude of neuronal oscillations to behaviorally relevant parameters. Neuroimage 86, 111–122. 10.1016/j.neuroimage.2013.07.079
    1. Daly I., Scherer R., Billinger M., Muller-Putz G. (2015). FORCe: Fully online and automated artifact removal for brain-computer interfacing. IEEE Trans. Neural Syst. Rehabil. Eng. 23, 725–736. 10.1109/TNSRE.2014.2346621
    1. Dobkin B. H. (2004). Strategies for stroke rehabilitation. Lancet Neurol. 3, 528–536. 10.1016/S1474-4422(04)00851-8
    1. Faisal A. A., Selen L. P., Wolpert D. M. (2008). Noise in the nervous system. Nat. Rev. Neurosci. 9, 292–303. 10.1038/nrn2258
    1. Fawcett T. (2006). An introduction to ROC analysis. Pattern Recogn. Lett. 27, 861–874. 10.1016/j.patrec.2005.10.010
    1. French B., Thomas L. H., Leathley M. J., Sutton C. J., McAdam J., Forster A., et al. . (2007). Repetitive task training for improving functional ability after stroke. Cochrane Database Syst. Rev. 4:CD006073. 10.1002/14651858.CD006073.pub2
    1. Fritsch B., Reis J., Martinowich K., Schambra H. M., Ji Y., Cohen L. G., et al. . (2010). Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron 66, 198–204. 10.1016/j.neuron.2010.03.035
    1. Gonzalez Andino S. L., Michel C. M., Thut G., Landis T., Grave de Peralta R. (2005). Prediction of response speed by anticipatory high-frequency (gamma band) oscillations in the human brain. Hum. Brain Mapp. 24, 50–58. 10.1002/hbm.20056
    1. Grech R., Cassar T., Muscat J., Camilleri K., Fabri S., Zervakis M., et al. . (2008). Review on solving the inverse problem in EEG source analysis. J. Neuroengineering Rehabil. 5, 792–800. 10.1186/1743-0003-5-25
    1. Grosse-Wentrup M., Harmeling S., Zander T., Hill J., Scholkopf B. (2013). How to test the quality of reconstructed sources in independent component analysis (ICA) of EEG/MEG data, in International Workshop on Pattern Recognition in Neuroimaging (PRNI) (IEEE), 102–105. 10.1109/PRNI.2013.35
    1. Hadjiosif A. M., Smith M. A. (2015). Flexible control of safety margins for action based on environmental variability. J. Neurosci. 35, 9106–9121. 10.1523/JNEUROSCI.1883-14.2015
    1. Hammer E. M., Halder S., Blankertz B., Sannelli C., Dickhaus T., Kleih S., et al. . (2012). Psychological predictors of SMR-BCI performance. Biol. Psychol. 89, 80–86. 10.1016/j.biopsycho.2011.09.006
    1. Hammon P. S., Makeig S., Poizner H., Todorov E., Sa V. D. (2008). Predicting reaching targets from human EEG. Signal Proces. Mag. IEEE 25, 69–77. 10.1109/MSP.2008.4408443
    1. Hanslmayr S., Aslan A., Staudigl T., Klimesch W., Herrmann C. S., Bäuml K.-H. (2007). Prestimulus oscillations predict visual perception performance between and within subjects. NeuroImage 37, 1465–1473. 10.1016/j.neuroimage.2007.07.011
    1. Haufe S., Meinecke F., Görgen K., Dähne S., Haynes J.-D., Blankertz B., et al. . (2014). On the interpretation of weight vectors of linear models in multivariate neuroimaging. NeuroImage 87, 96–110. 10.1016/j.neuroimage.2013.10.067
    1. Hoogenboom N., Schoffelen J.-M., Oostenveld R., Fries P. (2010). Visually induced gamma-band activity predicts speed of change detection in humans. NeuroImage 51, 1162–1167. 10.1016/j.neuroimage.2010.03.041
    1. Horschig J. M., Jensen O., van Schouwenburg M. R., Cools R., Bonnefond M. (2014a). Alpha activity reflects individual abilities to adapt to the environment. NeuroImage 89, 235–243. 10.1016/j.neuroimage.2013.12.018
    1. Horschig J. M., Oosterheert W., Oostenveld R., Jensen O. (2014b). Modulation of posterior alpha activity by spatial attention allows for controlling a continuous brain–computer interface. Brain Topogr. 28, 852–864. 10.1007/s10548-014-0401-7
    1. Horschig J. M., Zumer J. M., Bahramisharif A. (2014c). Hypothesis-driven methods to augment human cognition by optimizing cortical oscillations. Front. Syst. Neurosci. 8:119. 10.3389/fnsys.2014.00119
    1. Hsu S.-H., Mullen T., Jung T.-P., Cauwenberghs G. (2015). Validating online recursive independent component analysis on EEG data, in Neural Engineering (NER), 2015 7th International IEEE/EMBS Conference on, (Montpellier: IEEE; ), 918–921. 10.1109/NER.2015.7146775
    1. Jensen O., Bahramisharif A., Oostenveld R., Klanke S., Hadjipapas A., Okazaki Y. O., et al. . (2011). Using brain–computer interfaces and brain-state dependent stimulation as tools in cognitive neuroscience. Front. Psychol. 2:100. 10.3389/fpsyg.2011.00100
    1. Jerbi K., Vidal J., Mattout J., Maby E., Lecaignard F., Ossandon T., et al. (2011). Inferring hand movement kinematics from meg, EEG and intracranial EEG: from brain-machine interfaces to motor rehabilitation. IRBM 32, 8–18. 10.1016/j.irbm.2010.12.004
    1. Kindermans P.-J., Tangermann M., Müller K.-R., Schrauwen B. (2014). Integrating dynamic stopping, transfer learning and language models in an adaptive zero-training erp speller. J. Neural Eng. 11:035005. 10.1088/1741-2560/11/3/035005
    1. Krauledat M., Tangermann M., Blankertz B., Müller K.-R. (2008). Towards zero training for brain-computer interfacing. PLoS ONE 3:e2967. 10.1371/journal.pone.0002967
    1. Kwakkel G., Kollen B. J., Krebs H. I. (2008). Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabil. Neural Rep. 22, 111–121. 10.1177/1545968307305457
    1. Lage G. M., Ugrinowitsch H., Apolinário-Souza T., Vieira M. M., Albuquerque M. R., Benda R. N. (2015). Repetition and variation in motor practice: a review of neural correlates. Neurosci. Biobehav. Rev. 57, 132–141. 10.1016/j.neubiorev.2015.08.012
    1. Langhorne P., Bernhardt J., Kwakkel G. (2011). Stroke rehabilitation. Lancet 377, 1693–1702. 10.1016/S0140-6736(11)60325-5
    1. Lemm S., Blankertz B., Dickhaus T., Müller K.-R. (2011). Introduction to machine learning for brain imaging. NeuroImage 56, 387–399. 10.1016/j.neuroimage.2010.11.004
    1. Lew E. Y., Chavarriaga R., Silvoni S., Millán J. D. R. (2014). Single trial prediction of self-paced reaching directions from EEG signals. Front. Neurosci. 8:222. 10.3389/fnins.2014.00222
    1. Lodha N., Naik S. K., Coombes S. A., Cauraugh J. H. (2010). Force control and degree of motor impairments in chronic stroke. Clin. Neurophysiol. 121, 1952–1961. 10.1016/j.clinph.2010.04.005
    1. Logar V., Škrjanc I., Belič A., Karba R., Brežan S., Koritnik B., et al. . (2008). Gripping-force identification using EEG and phase-demodulation approach. Neurosci. Res. 60, 389–396. 10.1016/j.neures.2007.12.009
    1. Maeder C. L., Sannelli C., Haufe S., Blankertz B. (2012). Pre-stimulus sensorimotor rhythms influence brain–computer interface classification performance. Neural Syst. Rehabil. Eng. IEEE Trans. 20, 653–662. 10.1109/TNSRE.2012.2205707
    1. Makeig S., Kothe C., Mullen T., Bigdely-Shamlo N., Zhang Z., Kreutz-Delgado K. (2012). Evolving signal processing for brain–computer interfaces. Proc. IEEE 100, 1567–1584. 10.1109/JPROC.2012.2185009
    1. Meinel A., Castaño-Candamil J. S., Dähne S., Reis J., Tangermann M. (2015). EEG band power predicts single-trial reaction time in a hand motor task, in Proceedings of International IEEE Conference on Neural Engineering (NER), (Montpellier: IEEE; ), 182–185. 10.1109/ner.2015.7146590
    1. Meyer T., Peters J., Zander T. O., Schölkopf B., Grosse-Wentrup M. (2014). Predicting motor learning performance from electroencephalographic data. J. NeuroEng. Rehabil. 11, 24. 10.1186/1743-0003-11-24
    1. Millán J. D. R., Rupp R., Müller-Putz G. R., Murray-Smith R., Giugliemma C., et al. . (2010). Combining brain–computer interfaces and assistive technologies: state-of-the-art and challenges. Front. Neurosci. 4:161. 10.3389/fnins.2010.00161
    1. Müller K.-R., Tangermann M., Dornhege G., Krauledat M., Curio G., Blankertz B. (2008). Machine learning for real-time single-trial EEG-analysis: from brain–computer interfacing to mental state monitoring. J. Neurosci. Methods 167, 82–90. 10.1016/j.jneumeth.2007.09.022
    1. Müller-Putz G. R., Leeb R., Tangermann M., Höhne J., Kübler A., Cincotti F., et al. (2015). Towards non-invasive hybrid brain-computer interfaces: framework, practice, clinical application and beyond. Proc. IEEE 103, 926–943. 10.1109/JPROC.2015.2411333
    1. Osu R., Morishige K.-i., Nakanishi J., Miyamoto H., Kawato M. (2015). Practice reduces task relevant variance modulation and forms nominal trajectory. Sci. Rep. 5:17659. 10.1038/srep17659
    1. Ovbiagele B., Nguyen-Huynh M. N. (2011). Stroke epidemiology: advancing our understanding of disease mechanism and therapy. Neurotherapeutics 8, 319–329. 10.1007/s13311-011-0053-1
    1. Pichiorri F., Morone G., Petti M., Toppi J., Pisotta I., Molinari M., et al. . (2015). Brain–computer interface boosts motor imagery practice during stroke recovery. Ann. Neurol. 77, 851–865. 10.1002/ana.24390
    1. Pistohl T., Ball T., Schulze-Bonhage A., Aertsen A., Mehring C. (2008). Prediction of arm movement trajectories from ecog-recordings in humans. J. Neurosci. Methods 167, 105–114. 10.1016/j.jneumeth.2007.10.001
    1. Ramos-Murguialday A., Broetz D., Rea M., Läer L., Yilmaz Ö., Brasil F. L., et al. . (2013). Brain–machine interface in chronic stroke rehabilitation: a controlled study. Ann. Neurol. 74, 100–108. 10.1002/ana.23879
    1. Ramoser H., Muller-Gerking J., Pfurtscheller G. (2000). Optimal spatial filtering of single trial EEG during imagined hand movement. Rehabil. Eng. IEEE Trans. 8, 441–446. 10.1109/86.895946
    1. Reis J., Schambra H. M., Cohen L. G., Buch E. R., Fritsch B., Zarahn E., et al. . (2009). Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proc. Natl. Acad. Sci. U.S.A. 106, 1590-1595. 10.1073/pnas.0805413106
    1. Sannelli C., Dickhaus T., Halder S., Hammer E. M., Müller K.-R., Blankertz B. (2010). On optimal channel configurations for SMR-based brain-computer interfaces. Brain Topogr. 23, 186–193. 10.1007/s10548-010-0135-0
    1. Schubert R., Haufe S., Blankenburg F., Villringer A., Curio G. (2009). Now you'll feel it, now you won't: EEG rhythms predict the effectiveness of perceptual masking. J. Cogn. Neurosci. 21, 2407–2419. 10.1162/jocn.2008.21174
    1. Tangermann M., Reis J., Meinel A. (2015). Commonalities of motor performance metrics are revealed by predictive oscillatory EEG components, in Proceedings of the 3rd International Congress on Neurotechnology, Electronics and Informatics (NEUROTECHNIX 2015) (Lisbon: ), 32–38. 10.5220/0005663100320038
    1. Timmermans A. A., Seelen H. A., Willmann R. D., Kingma H. (2009). Technology-assisted training of arm-hand skills in stroke: concepts on reacquisition of motor control and therapist guidelines for rehabilitation technology design. J. Neuroeng. Rehabil. 6:1. 10.1186/1743-0003-6-1
    1. Tonin L., Leeb R., Sobolewski A., del R Millán J. (2013). An online EEG BCI based on covert visuospatial attention in absence of exogenous stimulation. J. Neural Eng. 10:056007. 10.1088/1741-2560/10/5/056007
    1. van Beers R. J., van der Meer Y., Veerman R. M. (2013). What autocorrelation tells us about motor variability: insights from dart throwing. PLoS ONE 8:e64332. 10.1371/journal.pone.0064332
    1. van Dijk H., Schoffelen J.-M., Oostenveld R., Jensen O. (2008). Prestimulus oscillatory activity in the alpha band predicts visual discrimination ability. J. Neurosci. 28, 1816–1823. 10.1523/JNEUROSCI.1853-07.2008
    1. van Ede F., Köster M., Maris E. (2012). Beyond establishing involvement: Quantifying the contribution of anticipatory α-and β-band suppression to perceptual improvement with attention. J. Neurophysiol. 108, 2352–2362. 10.1152/jn.00347.2012
    1. Waldert S., Preissl H., Demandt E., Braun C., Birbaumer N., Aertsen A., et al. . (2008). Hand movement direction decoded from MEG and EEG. J. Neurosci. 28, 1000–1008. 10.1523/JNEUROSCI.5171-07.2008
    1. Winkler I., Brandl S., Horn F., Waldburger E., Allefeld C., Tangermann M. (2014). Robust artifactual independent component classification for bci practitioners. J. Neural Eng. 11:035013. 10.1088/1741-2560/11/3/035013
    1. Wolf S. L., Blanton S., Baer H., Breshears J., Butler A. J. (2002). Repetitive task practice: a critical review of constraint-induced movement therapy in stroke. Neurologist 8, 325. 10.1097/01.nrl.0000031014.85777.76
    1. Wu H. G., Miyamoto Y. R., Castro L. N. G., Ölveczky B. P., Smith M. A. (2014). Temporal structure of motor variability is dynamically regulated and predicts motor learning ability. Nat. Neurosci. 17, 312–321. 10.1038/nn.3616
    1. Yang L., Leung H., Plank M., Snider J., Poizner H. (2014). Alpha and beta band power changes predict reaction time and endpoint error during planning reaching movements, in Biomedical Engineering and Informatics (BMEI), 2014 7th International Conference on, (IEEE), 264–268.
    1. Zaepffel M., Trachel R., Kilavik B. E., Brochier T. (2013). Modulations of EEG beta power during planning and execution of grasping movements. PLoS ONE 8:e60060. 10.1371/journal.pone.0060060

Source: PubMed

3
S'abonner