Effect of the Cardio First Angel™ device on CPR indices: a randomized controlled clinical trial

Amir Vahedian-Azimi, Mohammadreza Hajiesmaeili, Ali Amirsavadkouhi, Hamidreza Jamaati, Morteza Izadi, Seyed J Madani, Seyed M R Hashemian, Andrew C Miller, Amir Vahedian-Azimi, Mohammadreza Hajiesmaeili, Ali Amirsavadkouhi, Hamidreza Jamaati, Morteza Izadi, Seyed J Madani, Seyed M R Hashemian, Andrew C Miller

Abstract

Background: A number of cardiopulmonary resuscitation (CPR) adjunct devices have been developed to improve the consistency and quality of manual chest compressions. We investigated whether a CPR feedback device would improve CPR quality and consistency, as well as patient survival.

Methods: We conducted a randomized controlled study of patients undergoing CPR for cardiac arrest in the mixed medical-surgical intensive care units of four academic teaching hospitals. Patients were randomized to receive either standard manual CPR or CPR using the Cardio First Angel™ CPR feedback device. Recorded variables included guideline adherence, CPR quality, return of spontaneous circulation (ROSC) rates, and CPR-associated morbidity.

Results: A total of 229 subjects were randomized; 149 were excluded; and 80 were included. Patient demographics were similar. Adherence to published CPR guidelines and CPR quality was significantly improved in the intervention group (p < 0.0001), as were ROSC rates (72 % vs. 35 %; p = 0.001). A significant decrease was observed in rib fractures (57 % vs. 85 %; p = 0.02), but not sternum fractures (5 % vs. 17 %; p = 0.15).

Conclusions: Use of the Cardio First Angel™ CPR feedback device improved adherence to published CPR guidelines and CPR quality, and it was associated with increased rates of ROSC. A decrease in rib but not sternum fractures was observed with device use. Further independent prospective validation is warranted to determine if these results are reproducible in other acute care settings.

Trial registration: ClinicalTrials.gov identifier: NCT02394977 . Registered on 5 Mar 2015.

Keywords: CPR outcomes; Cardiac arrest; Cardio First Angel; Cardiopulmonary resuscitation.

Figures

Fig. 1
Fig. 1
Flowchart of patient enrollment. CFA Cardio First Angel™, CPR cardiopulmonary resuscitation, ICU intensive care unit
Fig. 2
Fig. 2
Illustration of proper positioning of the Cardio First Angel™ device. a The device is positioned over the lower one-third of the sternum. The rescuer-side portion consists of a red, round push-button that displays a pictogram illustrating proper device use. b The push-button fits in the palm of the rescuer’s hand as it would lie on the sternum during manual cardiopulmonary resuscitation (CPR). c The rescuer should maintain straight arms and back and flex at the waist as in standard manual CPR

References

    1. Valenzuela TD, Kern KB, Clark LL, Berg RA, Berg MD, Berg DD, et al. Interruptions of chest compressions during emergency medical systems resuscitation. Circulation. 2005;112(9):1259–1265. doi: 10.1161/CIRCULATIONAHA.105.537282.
    1. Allan KS, Wong N, Aves T, Dorian P. The benefits of a simplified method for CPR training of medical professionals: a randomized controlled study. Resuscitation. 2013;84(8):1119–1124. doi: 10.1016/j.resuscitation.2013.03.005.
    1. Ewy GA. Cardiac arrest—guideline changes urgently needed. Lancet. 2007;369(9565):882–884. doi: 10.1016/S0140-6736(07)60422-X.
    1. Roosa JR, Vadeboncoeur TF, Dommer PB, Panchal AR, Venuti M, Smith G, et al. CPR variability during ground ambulance transport of patients in cardiac arrest. Resuscitation. 2013;84(5):592–595. doi: 10.1016/j.resuscitation.2012.07.042.
    1. Glatz AC, Nishisaki A, Niles DE, Hanna BD, Eilevstjonn J, Diaz LK, et al. Sternal wall pressure comparable to leaning during CPR impacts intrathoracic pressure and haemodynamics in anaesthetized children during cardiac catheterization. Resuscitation. 2013;84(12):1674–1679. doi: 10.1016/j.resuscitation.2013.07.010.
    1. Christenson J, Andrusiek D, Everson-Stewart S, Kudenchuk P, Hostler D, Powell J, et al. Chest compression fraction determines survival in patients with out-of-hospital ventricular fibrillation. Circulation. 2009;120(13):1241–1247. doi: 10.1161/CIRCULATIONAHA.109.852202.
    1. Idris AH, Guffey D, Aufderheide TP, Brown S, Morrison LJ, Nichols P, et al. Relationship between chest compression rates and outcomes from cardiac arrest. Circulation. 2012;125(24):3004–3012. doi: 10.1161/CIRCULATIONAHA.111.059535.
    1. Miller AC, Rosati SF, Suffredini AF, Schrump DS. A systematic review and pooled analysis of CPR-associated cardiovascular and thoracic injuries. Resuscitation. 2014;85(6):724–731. doi: 10.1016/j.resuscitation.2014.01.028.
    1. Sayre MR, Koster RW, Botha M, Cave DM, Cudnik MT, Handley AJ, et al. Part 5: Adult basic life support. 2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations [published correction appears in Circulation. 2013;128(19):e393] Circulation. 2010;122(16 Suppl 2):S298–S324. doi: 10.1161/CIRCULATIONAHA.110.970996.
    1. Nolan JP, Perkins GD, Soar J. Chest compression rate: where is the sweet spot? Circulation. 2012;125(24):2968–2970. doi: 10.1161/CIRCULATIONAHA.112.112722.
    1. Kovacs A, Vadeboncoeur TF, Stolz U, Spaite DW, Irisawa T, Silver A, Bobrow BJ. Chest compression release velocity: Association with survival and favorable neurologic outcome after out-of-hospital cardiac arrest. Resuscitation. 2015;92:107–14. doi: 10.1016/j.resuscitation.2015.04.026.
    1. Smekal D, Lindgren E, Sandler H, Johansson J, Rubertsson S. CPR-related injuries after manual or mechanical chest compressions with the LUCAS™ device: a multicentre study of victims after unsuccessful resuscitation. Resuscitation. 2014;85(12):1708–1712. doi: 10.1016/j.resuscitation.2014.09.017.
    1. Ayala U, Eftestøl T, Alonso E, Irusta U, Aramendi E, Wali S, et al. Automatic detection of chest compressions for the assessment of CPR-quality parameters. Resuscitation. 2014;85(7):957–963. doi: 10.1016/j.resuscitation.2014.04.007.
    1. Gruber J, Stumpf D, Zapletal B, Neuhold S, Fischer H. Real-time feedback systems in CPR. Trends Anaesth Crit Care. 2012;2(6):287–294. doi: 10.1016/j.tacc.2012.09.004.
    1. Stiell IG, Brown SP, Christenson J, Cheskes S, Nichol G, Powell J, et al. What is the role of chest compression depth during out-of-hospital cardiac arrest resuscitation? Crit Care Med. 2012;40(4):1192–1198. doi: 10.1097/CCM.0b013e31823bc8bb.
    1. Cheskes S, Schmicker RH, Christenson J, Salcido DD, Rea T, Powell J, et al. Perishock pause: an independent predictor of survival from out-of-hospital shockable cardiac arrest. Circulation. 2011;124(1):58–66. doi: 10.1161/CIRCULATIONAHA.110.010736.
    1. Fried DA, Leary M, Smith DA, Sutton RM, Niles D, Herzberg DL, et al. The prevalence of chest compression leaning during in-hospital cardiopulmonary resuscitation. Resuscitation. 2011;82(8):1019–1024. doi: 10.1016/j.resuscitation.2011.02.032.
    1. Abella BS, Sandbo N, Vassilatos P, Alvarado JP, O’Hearn N, Wigder HN, et al. Chest compression rates during cardiopulmonary resuscitation are suboptimal: a prospective study during in-hospital cardiac arrest. Circulation. 2005;111(4):428–434. doi: 10.1161/01.CIR.0000153811.84257.59.
    1. Mottram AR, Page RL. Advances in resuscitation. Circulation. 2012;126(8):991–1002. doi: 10.1161/CIRCULATIONAHA.111.023895.
    1. Koster RW, Baubin MA, Bossaert LL, Caballero A, Cassan P, Castrén M, et al. European Resuscitation Council Guidelines for Resuscitation 2010 Section 2. Adult basic life support and use of automated external defibrillators. Resuscitation. 2010;81(10):1277–1292. doi: 10.1016/j.resuscitation.2010.08.009.
    1. Sugerman NT, Edelson DP, Leary M, Weidman EK, Herzberg DL, Vanden Hoek TL, et al. Rescuer fatigue during actual in-hospital cardiopulmonary resuscitation with audiovisual feedback: a prospective multicenter study. Resuscitation. 2009;80(9):981–984. doi: 10.1016/j.resuscitation.2009.06.002.
    1. Fischer H, Gruber J, Neuhold S, Frantal S, Hochbrugger E, Herkner H, et al. Effects and limitations of an AED with audiovisual feedback for cardiopulmonary resuscitation: a randomized manikin study. Resuscitation. 2011;82(7):902–907. doi: 10.1016/j.resuscitation.2011.02.023.
    1. Fischer H, Neuhold S, Zapletal B, Hochbrugger E, Koinig H, Steinlechner B, et al. A manually powered mechanical resuscitation device used by a single rescuer: a randomised controlled manikin study. Resuscitation. 2011;82(7):913–919. doi: 10.1016/j.resuscitation.2011.02.026.
    1. Segal N, Laurent F, Maman L, Plaisance P, Augustin P. Accuracy of a feedback device for cardiopulmonary resuscitation on a dental chair. Emerg Med J. 2012;29(11):890–893. doi: 10.1136/emermed-2011-200003.
    1. Buleon C, Parienti JJ, Halbout L, Arrot X, De Facq RH, Chelarescu D, et al. Improvement in chest compression quality using a feedback device (CPRmeter): a simulation randomized crossover study. Am J Emerg Med. 2013;31(10):1457–1461. doi: 10.1016/j.ajem.2013.07.029.
    1. Zapletal B, Greif R, Stumpf D, Nierscher FJ, Frantal S, Haugk M, et al. Comparing three CPR feedback devices and standard BLS in a single rescuer scenario: a randomised simulation study. Resuscitation. 2014;85(4):560–566. doi: 10.1016/j.resuscitation.2013.10.028.
    1. Yeung J, Meeks R, Edelson D, Gao F, Soar J, Perkins GD. The use of CPR feedback/prompt devices during training and CPR performance: a systematic review. Resuscitation. 2009;80(7):743–751. doi: 10.1016/j.resuscitation.2009.04.012.
    1. Skorning M, Beckers SK, Brokmann JC, Rörtgen D, Bergrath S, Veiser T, et al. New visual feedback device improves performance of chest compressions by professionals in simulated cardiac arrest. Resuscitation. 2010;81(1):53–58. doi: 10.1016/j.resuscitation.2009.10.005.
    1. Papalexopoulou K, Chalkias A, Dontas I, Pliatsika P, Giannakakos C, Papapanagiotou P, et al. Education and age affect skill acquisition and retention in lay rescuers after a European Resuscitation Council CPR/AED course. Heart Lung. 2014;43(1):66–71. doi: 10.1016/j.hrtlng.2013.09.008.
    1. Shuster M, Lim SH, Deakin CD, Kleinman ME, Koster RW, Morrison LJ, et al. Part 7: CPR techniques and devices: 2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Circulation. 2010;122(16 Suppl 2):S338–S344. doi: 10.1161/CIRCULATIONAHA.110.971036.
    1. Hazinski MF, Nolan JP, Billi JE, Böttiger BW, Bossaert L, de Caen AR, et al. Part 1: Executive summary: 2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Circulation. 2010;122(16 Suppl 2):S250–S275. doi: 10.1161/CIRCULATIONAHA.110.970897.
    1. Hopewell S, Altman DG, Moher D, Schulz KF. Endorsement of the CONSORT Statement by high impact factor medical journals: a survey of journal editors and journal ‘Instructions to Authors’. Trials. 2008;9:20. doi: 10.1186/1745-6215-9-20.
    1. Moher D, Schulz KF, Altman DG. The CONSORT statement: revised recommendations for improving the quality of reports of parallel group randomized trials. BMC Med Res Methodol. 2001;1(1):2. doi: 10.1186/1471-2288-1-2.
    1. Berg R, Sanders A, Milander M, Tellez D, Liu P, Beyda D. Efficacy of audio-prompted rate guidance in improving resuscitator performance of cardiopulmonary resuscitation on children. Acad Emerg Med. 1993;1(1):35–40.
    1. Kern KB, Sanders AB, Raife J, Milander MM, Otto CW, Ewy GA. A study of chest compression rates during cardiopulmonary resuscitation in humans: the importance of rate-directed chest compressions. Arch Intern Med. 1992;152(1):145. doi: 10.1001/archinte.1992.00400130153020.
    1. Lyngeraa TS, Hjortrup PB, Wulff NB, Aagaard T, Lippert A. Effect of feedback on delaying deterioration in quality of compressions during 2 minutes of continuous chest compressions: a randomized manikin study investigating performance with and without feedback. Scand J Trauma Resusc Emerg Med. 2012;20:16. doi: 10.1186/1757-7241-20-16.
    1. Noordergraaf GJ, Drinkwaard BW, van Berkom PF, van Hemert HP, Venema A, Scheffer GJ, et al. The quality of chest compressions by trained personnel: the effect of feedback, via the CPREzy, in a randomized controlled trial using a manikin model. Resuscitation. 2006;69(2):241–252. doi: 10.1016/j.resuscitation.2005.08.008.
    1. Beckers SK, Skorning MH, Fries M, Bickenbach J, Beuerlein S, Derwall M, et al. CPREzy™ improves performance of external chest compressions in simulated cardiac arrest. Resuscitation. 2007;72(1):100–107. doi: 10.1016/j.resuscitation.2006.05.020.
    1. Elding C, Baskett P, Hughes A. The study of the effectiveness of chest compressions using the CPR-plus. Resuscitation. 1998;36(3):169–173. doi: 10.1016/S0300-9572(98)00016-1.
    1. Peberdy MA, Silver A, Ornato JP. Effect of caregiver gender, age, and feedback prompts on chest compression rate and depth. Resuscitation. 2009;80(10):1169–1174. doi: 10.1016/j.resuscitation.2009.07.003.
    1. Kämäräinen A, Sainio M, Olkkola KT, Huhtala H, Tenhunen J, Hoppu S. Quality controlled manual chest compressions and cerebral oxygenation during in-hospital cardiac arrest. Resuscitation. 2012;83(1):138–142. doi: 10.1016/j.resuscitation.2011.09.011.
    1. Lukas RP, Sengelhoff C, Döpker S, Harding U, Mertens P, Osada N, et al. Chest compression quality: can feedback technology help? [in German] Anaesthesist. 2010;59(2):135–139. doi: 10.1007/s00101-009-1671-4.
    1. Perkins GD, Kocierz L, Smith SC, McCulloch RA, Davies RP. Compression feedback devices over estimate chest compression depth when performed on a bed. Resuscitation. 2009;80(1):79–82. doi: 10.1016/j.resuscitation.2008.08.011.
    1. Hellevuo H, Sainio M, Huhtala H, Olkkola KT, Tenhunen J, Hoppu S. The quality of manual chest compressions during transport – effect of the mattress assessed by dual accelerometers. Acta Anaesthesiol Scand. 2014;58(3):323–328. doi: 10.1111/aas.12245.
    1. Beesems SG, Koster RW. Accurate feedback of chest compression depth on a manikin on a soft surface with correction for total body displacement. Resuscitation. 2014;85(11):1439–1443. doi: 10.1016/j.resuscitation.2014.08.005.
    1. Perkins GD, Augre C, Rogers H, Allan M, Thickett DR. CPREzy™: an evaluation during simulated cardiac arrest on a hospital bed. Resuscitation. 2005;64(1):103–108. doi: 10.1016/j.resuscitation.2004.08.011.
    1. van Berkom PF, Noordergraaf GJ, Scheffer GJ, Noordergraaf A. Does use of the CPREzy™ involve more work than CPR without feedback? Resuscitation. 2008;78(1):66–70. doi: 10.1016/j.resuscitation.2008.01.024.
    1. Ameryoun A, Meskarpour-Amiri M, Dezfuli-Nejad ML, Khoddami-Vishteh H, Tofighi S. The assessment of inequality on geographical distribution of non-cardiac intensive care beds in Iran. Iran J Public Health. 2011;40(2):25–33.
    1. Meskarpour-Amiri M, Mehdizadeh P, Barouni M, Dopeykar N, Ramezanian M. Assessment the trend of inequality in the distribution of intensive care beds in Iran: using GINI index. Glob J Health Sci. 2014;6(6):28–36.
    1. Wallace DJ, Angus DC, Seymour CW, Barnato AE, Kahn JM. Critical care bed growth in the United States: a comparison of regional and national trends. Am J Respir Crit Care Med. 2015;191(4):410–416. doi: 10.1164/rccm.201409-1746OC.

Source: PubMed

3
S'abonner