Less-structured time in children's daily lives predicts self-directed executive functioning

Jane E Barker, Andrei D Semenov, Laura Michaelson, Lindsay S Provan, Hannah R Snyder, Yuko Munakata, Jane E Barker, Andrei D Semenov, Laura Michaelson, Lindsay S Provan, Hannah R Snyder, Yuko Munakata

Abstract

Executive functions (EFs) in childhood predict important life outcomes. Thus, there is great interest in attempts to improve EFs early in life. Many interventions are led by trained adults, including structured training activities in the lab, and less-structured activities implemented in schools. Such programs have yielded gains in children's externally-driven executive functioning, where they are instructed on what goal-directed actions to carry out and when. However, it is less clear how children's experiences relate to their development of self-directed executive functioning, where they must determine on their own what goal-directed actions to carry out and when. We hypothesized that time spent in less-structured activities would give children opportunities to practice self-directed executive functioning, and lead to benefits. To investigate this possibility, we collected information from parents about their 6-7 year-old children's daily, annual, and typical schedules. We categorized children's activities as "structured" or "less-structured" based on categorization schemes from prior studies on child leisure time use. We assessed children's self-directed executive functioning using a well-established verbal fluency task, in which children generate members of a category and can decide on their own when to switch from one subcategory to another. The more time that children spent in less-structured activities, the better their self-directed executive functioning. The opposite was true of structured activities, which predicted poorer self-directed executive functioning. These relationships were robust (holding across increasingly strict classifications of structured and less-structured time) and specific (time use did not predict externally-driven executive functioning). We discuss implications, caveats, and ways in which potential interpretations can be distinguished in future work, to advance an understanding of this fundamental aspect of growing up.

Keywords: cognitive development; leisure time; self-directed executive function; unstructured activities; verbal fluency.

Figures

Figure 1
Figure 1
Parent-reported child time use. (A) Activities in week prior to laboratory visit (green, less-structured; blue, structured; gray, other). (B) Typical less-structured activities (1, Never; 2, Less than once a month; 3, Once a month; 4, 2–3 times a month; 5, Once a week; 6, 2–3 times a week; 7, Daily). (C) Typical structured activities during a typical week (averaged across 4 seasons). Prior-week and typical measures of parent-reported child time use were correlated and combined into z-scored composite estimates of structured and less-structured time. For all figures, error bars indicate standard error of the mean.
Figure 2
Figure 2
Children's self-directed EF (as measured in Verbal Fluency) was predicted by more time spent in less-structured activities (A), and marginally predicted by less time spent in structured activities, although this relationship is not apparent because the figure does not capture how the effects of age, income, gender, and EVT were controlled for in all analyses (B). Outlying observations have been excluded [N = 3 in (A); N = 2 in (B)].
Figure 3
Figure 3
Children's externally-driven EF (as measured in AX-CPT and Flanker) was not predicted by their time spent in either less-structured activities (A,C) or structured activities (B,D). Outlying observations have been excluded [N = 1 in (A,B); N = 2 in (C,D)].

References

    1. Abwender D. A., Swan J. G., Bowerman J. T., Connolly S. W. (2001). Qualitative analysis of verbal fluency output: review and comparison of several scoring methods. Assessment 8, 323–338 10.1177/107319110100800308
    1. Agnew R., Petersen D. M. (1989). Leisure and delinquency. Soc. Probl. 36, 332–350 10.2307/800819
    1. Albertson K., Shore C. (2009). Holding in mind conflicting information: pretending, working memory, and executive control. J. Cogn. Dev. 9, 390–410 10.1080/15248370802678240
    1. Ardila A., Pineda D., Rosselli M. (2000). Correlation between intelligence test scores and executive function measures. Arch. Clin. Neuropsychol. 15, 31–36 10.1093/arclin/15.1.31
    1. Bavelier D., Green C. S., Dye M. W. G. (2010). Children, wired: for better and worse. Neuron 67, 692–701 10.1016/j.neuron.2010.08.035
    1. Bergman Nutley S., Söderqvist S., Bryde S., Thorell L. B., Humphreys K., Klingberg T. (2011). Gains in fluid intelligence after training non-verbal reasoning in 4-year-old children: a controlled, randomized study. Dev. Sci. 14, 591–601 10.1111/j.1467-7687.2010.01022.x
    1. Berns G. S., Blaine K., Prietula M. J., Pye B. E. (2013). Short- and long-term effects of a novel on connectivity in the brain. Brain Connect. 3, 590–600 10.1089/brain.2013.0166
    1. Best J. R., Miller P. H., Naglieri J. A. (2011). Relations between executive function and academic achievement from ages 5 to 17 in a large, representative national sample. Learn. Individ. Differ. 21, 327–336 10.1016/j.lindif.2011.01.007
    1. Bianchi S. M., Robinson J. P., Milkie M. A. (2006). Changing Rhythms of American Family Life. ASA Rose Series. New York, NY: Sussell Sage
    1. Bierman K. L., Nix R. L., Greenberg M. T., Blair C., Domitrovich C. E. (2008). Executive functions and school readiness intervention: impact, moderation, and mediation in the Head Start REDI program. Dev. Psychopathol. 20, 821–843 10.1017/S0954579408000394
    1. Birn R. M., Kenworthy L., Case L., Caravella R., Jones T. B., Bandettini P. A., et al. (2010). Neural systems supporting lexical search guided by letter and semantic category cues: a self-paced overt response fMRI study of verbal fluency. Neuroimage 49, 1099–1107 10.1016/j.neuroimage.2009.07.036
    1. Blair C., Razza R. P. (2007). Relating effortful control, executive function, and false belief understanding to emerging math and literacy ability in kindergarten. Child Dev. 78, 647–663 10.1111/j.1467-8624.2007.01019.x
    1. Blair C., Granger D., Peters Razza R. (2005). Cortisol reactivity is positively related to executive function in preschool children attending Head Start. Child Dev. 76, 554–567 10.1111/j.1467-8624.2005.00863.x
    1. Bodrova E. (2003). Vygotsky and Montessori: one dream, two visions. Montessori Life 15, 30–33
    1. Bodrova E., Leong D. J. (2007). Tools of the Mind. Columbus, OH: Pearson
    1. Braver T. S., Gray J. R., Burgess G. C. (2007). Explaining the many varieties of working memory variation: dual mechanisms of cognitive control, in Variation in Working Memory, eds Conway A., Jarrold C., Kane M., Miyake A., Towse J. (New York, NY: Oxford University Press; ), 76–106
    1. Brocki K. C., Bohlin G. (2004). Executive functions in children aged 6 to 13: a dimensional and developmental study. Dev. Neuropsychol. 26, 571–593 10.1207/s15326942dn2602_3
    1. Bryck R. L., Mayr U. (2005). On the role of verbalization during task set selection: switching or serial order control? Mem. Cognit. 33, 611–623 10.3758/BF03195328
    1. Brydges C. R., Reid C. L., Fox A. M., Anderson M. (2012). A unitary executive function predicts intelligence in children. Intelligence 40, 458–469 10.1016/j.intell.2012.05.006
    1. Cameron C. E., Brock L. L., Murrah W. M., Bell L. H., Worzalla S. L., Grissmer D., et al. (2012). Fine motor skills and executive function both contribute to kindergarten achievement. Child Dev. 83, 1229–1244 10.1111/j.1467-8624.2012.01768.x
    1. Carlson S. M., White R. E., Davis-Unger A. (2014). Evidence for a relation between executive function and pretense representation in preschool children. Cogn. Dev. 29, 1–16 10.1016/j.cogdev.2013.09.001
    1. Chatham C. H., Frank M. J., Munakata Y. (2009). Pupillometric and behavioral markers of a developmental shift in the temporal dynamics of cognitive control. Proc. Natl. Acad. Sci. U.S.A. 106, 5529–5533 10.1073/pnas.0810002106
    1. Chevalier N., Wiebe S. A., Huber K. L., Espy K. A. (2011). Switch detection in preschoolers' cognitive flexibility. J. Exp. Child Psychol. 109, 353–370 10.1016/j.jecp.2011.01.006
    1. Chrysikou E. G., Thompson-Schill S. L. (2011). Dissociable brain states linked to common and creative object use. Hum. Brain Mapp. 32, 665–675 10.1002/hbm.21056
    1. Chua A. (2011). Battle Hymn of the Tiger Mother. New York, NY: Penguin
    1. Connor C. M., Ponitz C. C., Phillips B. M., Travis Q., Glasney S., Morrison F. J. (2010). First graders' literacy and self-regulation gains: the effect of individualizing student instruction. J. Sch. Psychol. 48, 433–455 10.1016/j.jsp.2010.06.003
    1. Costafreda S. G., Fu C. H., Lee L., Everitt B., Brammer M. J., David A. S. (2006). A systematic review and quantitative appraisal of fMRI studies of verbal fluency: role of the left inferior frontal gyrus. Hum. Brain Mapp. 27, 799–810 10.1002/hbm.20221
    1. Daneman M., Merikle P. M. (1996). Working memory and language comprehension: a meta-analysis. Psychon. Bull. Rev. 3, 422–433 10.3758/BF03214546
    1. Dennis M., Francis D. J., Cirino P. T., Schachar R., Barnes M. A., Fletcher J. M. (2009). Why IQ is not a covariate in cognitive studies of neurodevelopmental disorders. J. Int. Neuropsychol. Soc. 15, 331–343 10.1017/S1355617709090481
    1. Diamond A. (2012). Activities and programs that improve children's executive functions. Curr. Dir. Psychol. Sci. 21, 335–341 10.1177/0963721412453722
    1. Diamond A., Barnett W. S., Thomas J., Munro S. (2007). Preschool program improves cognitive control. Science 318, 1387–1388 10.1126/science.1151148
    1. Diamond A., Lee K. (2011). Interventions shown to aid executive function development in children 4-12 years old. Science 333, 959–964 10.1126/science.1204529
    1. D'Ostilio K., Garraux G. (2012). Dissociation between unconscious motor response facilitation and conflict in medial frontal areas. Eur. J. Neurosci. 35, 332–340 10.1111/j.1460-9568.2011.07941.x
    1. Drane D. L., Lee G. P., Cech H., Huthwaite J. S., Ojemann G. A., Ojemann J. G., et al. (2006). Structured cueing on a semantic fluency task differentiates patients with temporal versus frontal lobe seizure onset. Epilepsy Behav. 9, 339–344 10.1016/j.yebeh.2006.06.010
    1. Eccles J. S., Barber B. (1999). Student council, volunteering, basketball, or marching band: what kind of extracurricular involvement matters? J. Adolesc. Res. 14, 10–34 10.1177/0743558499141003
    1. Elias C. L., Berk L. E. (2002). Self-regulation in young children: is there a role for sociodramatic play? Early Child. Res. Q. 17, 216–238 10.1016/S0885-2006(02)00146-1
    1. Ellamil M., Dobson C., Beeman M., Christoff K. (2012). Evaluative and generative modes of thought during the creative process. Neuroimage 59, 1783–1794 10.1016/j.neuroimage.2011.08.008
    1. Engle R. W., Tuholski S. W., Laughlin J. E., Conway A. R. (1999). Working memory, short-term memory, and general fluid intelligence: a latent-variable approach. J. Exp. Psychol. Gen. 128, 309–331 10.1037/0096-3445.128.3.309
    1. Eriksen C. W., Schultz D. W. (1979). Information processing in visual search: a continuous flow conception and experimental results. Percept. Psychophys. 25, 249–263 10.3758/BF03198804
    1. Farah M. J., Shera D. M., Savage J. H., Betancourt L., Giannetta J. M., Brodsky N. L., et al. (2006). Childhood poverty: specific associations with neurocognitive development. Brain Res. 1110, 166–174 10.1016/j.brainres.2006.06.072
    1. Fisher A., Boyle J. M., Paton J. Y., Tomporowski P., Watson C., McColl J. H., et al. (2011). Effects of a physical education intervention on cognitive function in young children: randomized controlled pilot study. BMC Pediatr. 11:97 10.1186/1471-2431-11-97
    1. Fletcher A. C., Nickerson P., Wright K. L. (2003). Structured leisure activities in middle childhood: links to well-being. J. Community Psychol. 31, 641–659 10.1002/jcop.10075
    1. Forstmann B. U., Brass M., Koch I., von Cramon D. Y. (2005). Internally generated and directly cued task sets: an investigation with fMRI. Neuropsychologia 43, 943–952 10.1016/j.neuropsychologia.2004.08.008
    1. Gathercole S. E., Pickering S. J., Ambridge B., Wearing H. (2004). The structure of working memory from 4 to 15 years of age. Dev. Psychol. 40, 177–190 10.1037/0012-1649.40.2.177
    1. Ginsburg K. R. (2007). The importance of play in promoting healthy child development and maintaining strong parent-child bonds. Pediatrics 119, 182–191 10.1542/peds.2006-2697
    1. Groborz M., Nęcka E. (2003). Creativity and cognitive control: explorations of generation and evaluation skills. Creat. Res. J. 15, 183–197 10.1080/10400419.2003.9651411
    1. Heckman J. J., Moon S. H., Pinto R. P., Savelyev A., Yavitz A. Q. (2010). The rate of return to the highscope perry preschool program. J. Public Econ. 94, 114–128 10.1016/j.jpubeco.2009.11.001
    1. Henry J. D., Crawford J. R. (2004). A meta-analytic review of verbal fluency performance following focal cortical lesions. Neuropsychology 18, 284 10.1037/0894-4105.18.2.284
    1. Hirshorn E. A., Thompson-Schill S. L. (2006). Role of the left inferior frontal gyrus in covert word retrieval: neural correlates of switching during verbal fluency. Neuropsychologia 44, 2547–2557 10.1016/j.neuropsychologia.2006.03.035
    1. Hofferth S. L. (2010). Home media and children's achievement and behavior. Child Dev. 81, 1598–1619 10.1111/j.1467-8624.2010.01494.x
    1. Hofferth S. L., Sandberg J. F. (2001a). Changes in American children's time, 1981-1997. Adv. Life Course Res. 6, 193–229 10.1016/S1040-2608(01)80011-3
    1. Hofferth S. L., Sandberg J. F. (2001b). How American children spend their time. J. Marriage Fam. 63, 295–308 10.1111/j.1741-3737.2001.00295.x
    1. Holmes J., Gathercole S. E., Dunning D. L. (2009). Adaptive training leads to sustained enhancement of poor working memory in children. Dev. Sci. 12, 9–15 10.1111/j.1467-7687.2009.00848.x
    1. Holmes J., Gathercole S. E., Place M., Dunning D. L., Hilton K. A., Elliott J. G. (2010). Working memory deficits can be overcome: impacts of training and medication on working memory in children with ADHD. Appl. Cogn. Psychol. 24, 827–836 10.1002/acp.1589
    1. Hughes C., Ensor R., Wilson A., Graham A. (2009). Tracking executive function across the transition to school: a latent variable approach. Dev. Neuropsychol. 35, 20–36 10.1080/87565640903325691
    1. Huizinga M., Dolan C. V., van der Molen M. W. (2006). Age-related change in executive function: developmental trends and a latent variable analysis. Neuropsychologia 44, 2017–2036 10.1016/j.neuropsychologia.2006.01.010
    1. Iudicello J. E., Kellogg E. J., Weber E., Smith C., Grant I., Drane D. L., et al. (2012). Semantic cueing improves category verbal fluency in persons living with HIV infection. J. Neuropsychiatr. Clin. Neurosci. 24, 183–190 10.1176/appi.neuropsych.11100301
    1. Jacques S., Zelazo P. D. (2001). Developmental Neuropsychology The Flexible Item Selection Task (FIST): a measure of executive function in preschoolers. Dev. Neuropsychol. 20, 573–591 10.1207/S15326942DN2003_2
    1. Jarosz A. F., Colflesh G. J., Wiley J. (2012). Uncorking the muse: alcohol intoxication facilitates creative problem solving. Conscious. Cogn. 21, 487–493 10.1016/j.concog.2012.01.002
    1. Johnson G. M. (2010). Children's Internet use at home and school: patterns and profiles. J. Early Child. Res. 8, 282–293 10.1177/1476718X10379783
    1. Kalkut E. L., Han S. D., Lansing A. E., Holdnack J. A., Delis D. C. (2009). Development of set-shifting ability from late childhood through early adulthood. Arch. Clin. Neuropsychol. 24, 565–574 10.1093/arclin/acp048
    1. Kave G., Kigel S., Kochva R. (2008). Switching and clustering in verbal fluency tasks throughout childhood. J. Clin. Exp. Neuropsychol. 30, 349–359 10.1080/13803390701416197
    1. Kelly R., Hammond S., Dissanayake C., Ihsen E. (2011). The relationship between symbolic play and executive function in young children. Australas. J. Early Child. 36, 1–27
    1. Koren R., Kofman O., Berger A. (2005). Analysis of word clustering in verbal fluency of school-aged children. Arch. Clin. Neuropsychol. 20, 1087–1104 10.1016/j.acn.2005.06.012
    1. Larson R. W. (2001). How US children and adolescents spend time: what it does (and doesn't) tell us about their development. Curr. Dir. Psychol. Sci. 10, 160–164 10.1111/1467-8721.00139
    1. Larson R. W., Verma S. (1999). How children and adolescents spend time across the world: work, play, and developmental opportunities. Psychol. Bull. 125, 701–736 10.1037/0033-2909.125.6.701
    1. Lavie N. (1995). Perceptual load as a necessary condition for selective attention. J. Exp. Psychol. 21, 451–468 10.1037/0096-1523.21.3.451
    1. Lie C., Specht K., Marshall J., Fink G. (2006). Using fMRI to decompose the neural processes underlying the Wisconsin Card Sorting Test. Neuroimage 30, 1038–1049 10.1016/j.neuroimage.2005.10.031
    1. Lillard A., Else-quest N. (2006). Evaluating montessori education. Science 313, 1893–1894 10.1126/science.1132362
    1. Lillard A. S. (2012). Preschool children's development in classic Montessori, supplemented Montessori, and conventional programs. J. Sch. Psychol. 50, 379–401 10.1016/j.jsp.2012.01.001
    1. Lillard A. S., Lerner M. D., Hopkins E. J., Dore R. A., Smith E. D., Palmquist C. M. (2013). The impact of pretend play on children's development: a review of the evidence. Psychol. Bull. 139, 1–34 10.1037/a0029321
    1. Liu-Ambrose T., Nagamatsu L. S., Voss M. W., Khan K. M., Handy T. C. (2012). Resistance training and functional plasticity of the aging brain: a 12-month randomized controlled trial. Neurobiol. Aging 33, 1690–1698 10.1016/j.neurobiolaging.2011.05.010
    1. Mackey A. P., Singley A. T. M., Bunge S. A. (2013). Intensive reasoning training alters patterns of brain connectivity at rest. J. Neurosci. 33, 4796–4803 10.1523/JNEUROSCI.4141-12.2013
    1. Mahone M. E., Hagelthorn K. M., Cutting L. E., Schuerholz L. J., Pelletier S. F., Rawlins C., et al. (2002). Effects of IQ on executive function measures in children with ADHD. Child Neuropsychol. 8, 52–65 10.1076/chin.8.1.52.8719
    1. Mahoney J. L., Stattin H. (2000). Leisure activities and adolescent antisocial behavior: the role of structure and social context. J. Adolesc. 23, 113–127 10.1006/jado.2000.0302
    1. McAuley T., Christ S. E., White D. A. (2011). Mapping the development of response inhibition in young children using a modified day-night task. Dev. Neuropsychol. 36, 539–551 10.1080/87565641.2010.549871
    1. McDermott J. M., Pérez-Edgar K., Fox N. A. (2007). Variations of the flanker paradigm: assessing selective attention in young children. Behav. Res. Methods 39, 62–70 10.3758/BF03192844
    1. Meeks C. B., Mauldin T. (1990). Children's time in structured and unstructured leisure activities. Lifestyles Fam. Econ. Issues 11, 257–281 10.1007/BF00987003
    1. Miller G. (2012). The smartphone psychology manifesto. Perspect. Psychol. Sci. 7, 221–237 10.1177/1745691612441215
    1. Miller M. R., Müller U., Giesbrecht G. F., Carpendale J. I. M., Kerns K. A. (2013). The contribution of executive function and social understanding to preschoolers' letter and math skills. Cogn. Dev. 28, 331–349 10.1016/j.cogdev.2012.10.005
    1. Milteer R. M., Ginsburg K. R. (2012). The importance of play in promoting healthy child development and maintaining strong parent-child bond: focus on children in poverty. Pediatrics 129, 204–213 10.1542/peds.2011-2953
    1. Moffitt T. E., Arseneault L., Belsky D., Dickson N., Hancox R. J., Harrington H., et al. (2011). A gradient of childhood self-control predicts health, wealth, and public safety. Proc. Natl. Acad. Sci. U.S.A. 108, 2693–2698 10.1073/pnas.1010076108
    1. Montessori M. M. Jr. (1976). Education for Human Development: Understanding Montessori. New York, NY: Schocken
    1. Munakata Y., Snyder H. R., Chatham C. H. (2012). Developing cognitive control: three key transitions. Curr. Dir. Psychol. Sci. 21, 71–77 10.1177/0963721412436807
    1. Noble K. G., McCandliss B. D., Farah M. J. (2007). Socioeconomic gradients predict individual differences in neurocognitive abilities. Dev. Sci. 10, 464–480 10.1111/j.1467-7687.2007.00600.x
    1. Noble K. G., Norman M. F., Farah M. J. (2005). Neurocognitive correlates of socioeconomic status in kindergarten children. Dev. Sci. 8, 74–87 10.1111/j.1467-7687.2005.00394.x
    1. Osgood D. W., Anderson A. L., Shaffer J. N. (2005). Unstructured leisure in the after-school hours, in Organized Activities as Contexts of Development: Extracurricular Activities, After-school and Community Programs, eds Mahoney J. L., Larson R. W., Eccles J. S. (Mahwah, NJ: Erlbaum; ), 45–64
    1. Paquet L. (2001). Eliminating flanker effects and negative priming in the flankers task: evidence for early selection. Psychon. Bull. Rev. 8, 301–306 10.3758/BF03196165
    1. Raboutet C., Sauzéon H., Corsini M. M., Rodrigues J., Langevin S., N'Kaoua B. (2010). Performance on a semantic verbal fluency task across time: dissociation between clustering, switching, and categorical exploitation processes. J. Clin. Exp. Neuropsychol. 32, 268–280 10.1080/13803390902984464
    1. Ramdass D., Zimmerman B. J. (2011). Developing self-regulation skills: the important role of homework. J. Adv. Acad. 22, 194–218 10.1177/1932202X1102200202
    1. Randolph C., Braun A. R., Goldberg T. E., Chase T. N. (1993). Semantic fluency in Alzheimer's, Parkinson's, and Huntington's disease: dissociation of storage and retrieval failures. Neuropsychology 7, 82–88 10.1037/0894-4105.7.1.82
    1. Raver C. C., Blair C., Willoughby M. (2013). Poverty as a predictor of 4-year-olds' executive function: new perspectives on models of differential susceptibility. Dev. Psychol. 49, 292–304 10.1037/a0028343
    1. Ridderinkhof K. R., van der Molen M. W. (1995). A psychophysiological analysis of developmental differences in the ability to resist interference. Child Dev. 66, 1040–1056 10.2307/1131797
    1. Röthlisberger M., Neuenschwander R., Cimeli P., Michel E., Roebers C. M. (2012). Improving executive function in 5- and 6-year-olds: evaluation of a small group intervention in prekindergarten and kindergarten children. Infant Child Dev. 21, 411–429 10.1002/icd.752
    1. Rueda M. R., Checa P., Cómbita L. M. (2012). Enhanced efficiency of the executive attention network after training in preschool children: immediate changes and effects after two months. Dev. Cogn. Neurosci. 2, S192–S204 10.1016/j.dcn.2011.09.004
    1. Rueda M. R., Fan J., McCandliss B. D., Halparin J. D., Gruber D. B., Lercari L. P., et al. (2004). Development of attentional networks in childhood. Neuropsychologia 42, 1029–1040 10.1016/j.neuropsychologia.2003.12.012
    1. Rueda M. R., Rothbart M. K., McCandliss B. D., Saccomanno L., Posner M. I. (2005). Training, maturation, and genetic influences on the development of executive attention. Proc. Natl. Acad. Sci. U.S.A. 102, 14931–14936 10.1073/pnas.0506897102
    1. Sauzéon H., Lestage P., Raboutet C., N'Kaoua B., Claverie B. (2004). Verbal fluency output in children aged 7–16 as a function of the production criterion: qualitative analysis of clustering, switching processes, and semantic network exploitation. Brain Lang. 89, 192–202 10.1016/S0093-934X(03)00367-5
    1. Schweinhart L. J., Montie J., Xiang Z., Barnett W. S., Belfield C. R., Nores M. (2005). Lifetime Effects: The High/Scope Perry Preschool study Through age 40 (Monographs of the High/Scope Educational Research Foundation, 14). Ypsilanti, MI: High/Scope Press
    1. Shipstead Z., Redick T. S., Engle R. W. (2012). Is working memory training effective? Psychol. Bull. 138, 628–654 10.1037/a0027473
    1. Smidts D. P., Jacobs R., Anderson V. (2004). The Object Classification Task for Children (OCTC): a measure of concept generation and mental flexibility in early childhood. Dev. Neuropsychol. 26, 385–401 10.1207/s15326942dn2601_2
    1. Snyder H. R., Munakata Y. (2010). Becoming self-directed: abstract representations support endogenous flexibility in children. Cognition 116, 155–167 10.1016/j.cognition.2010.04.007
    1. Snyder H. R., Munakata Y. (2013). So many options, so little control: abstract representations can reduce selection demands to increase children's self-directed flexibility. J. Exp. Child Psychol. 116, 659–673 10.1016/j.jecp.2013.07.010
    1. St Clair-Thompson H. L., Gathercole S. E. (2006). Executive functions and achievements in school: shifting, updating, inhibition, and working memory. Q. J. Exp. Psychol. 59, 745–759 10.1080/17470210500162854
    1. Thorell L. B., Lindqvist S., Bergman Nutley S., Bohlin G., Klingberg T. (2009). Training and transfer effects of executive functions in preschool children. Dev. Sci. 12, 106–113 10.1111/j.1467-7687.2008.00745.x
    1. Titz C., Karbach J. (2014). Working memory and executive functions: effects of training on academic achievement. Psychol. Res. [Epub ahead of print]. 10.1007/s00426-013-0537-1
    1. Tremblay P., Gracco V. L. (2006). Contribution of the frontal lobe to externally and internally specified verbal responses: fMRI evidence. Neuroimage 33, 947–957 10.1016/j.neuroimage.2006.07.041
    1. Troyer A. K., Moscovitch M., Winocur G. (1997). Clustering and switching as two components of verbal fluency: evidence from younger and older healthy adults. Neuropsychology 11, 138–146 10.1037/0894-4105.11.1.138
    1. Troyer A. K., Moscovitch M., Winocur G., Alexander M. P., Stuss D. (1998). Clustering and switching on verbal fluency: the effects of focal frontal- and temporal-lobe lesions. Neuropsychologia 36, 499–504 10.1016/S0028-3932(97)00152-8
    1. Unsworth N., Spillers G. J., Brewer G. A. (2010). Variation in verbal fluency: a latent variable analysis of clustering, switching, and overall performance. Q. J. Exp. Psychol. 64, 447–466 10.1080/17470218.2010.505292
    1. Vandewater E. A., Rideout V. J., Wartella E. A., Huang X., Shim M. (2007). Digital childhood: electronic media and technology use among infants, toddlers, and preschoolers. Pediatrics 119, 1006–1015 10.1542/peds.2006-1804
    1. Vygotsky L. S. (1967). Play and its role in the mental development of the child. Soviet Psychology. 7, 6–18
    1. Welsh M. C., Pennington B. F., Groisser D. B. (1991). A normative-developmental study of executive function: a window on prefrontal function in children. Dev. Neuropsychol. 7, 131–149 10.1080/87565649109540483
    1. Zelazo P. D., Carlson S. M., Kesek A. (2008). The development of executive function in childhood, in Handbook of Developmental Cognitive Neuroscience, 2nd Edn. eds Nelson C., Luciana M. (Cambridge, MA: MIT Press; ), 553–574
    1. Zelazo P. D., Lyons K. E. (2012). The potential benefits of mindfulness training in early childhood: a developmental social cognitive neuroscience perspective. Child Dev. Perspect. 6, 154–160 10.1111/j.1750-8606.2012.00241.x

Source: PubMed

3
S'abonner