Therapeutic use of botulinum toxin in pain treatment

Raj Kumar, Raj Kumar

Abstract

Botulinum toxin is one of the most potent molecule known to mankind. A neurotoxin, with high affinity for cholinergic synapse, is effectively capable of inhibiting the release of acetylcholine. On the other hand, botulinum toxin is therapeutically used for several musculoskeletal disorders. Although most of the therapeutic effect of botulinum toxin is due to temporary skeletal muscle relaxation (mainly due to inhibition of the acetylcholine release), other effects on the nervous system are also investigated. One of the therapeutically investigated areas of the botulinum neurotoxin (BoNT) is the treatment of pain. At present, it is used for several chronic pain diseases, such as myofascial syndrome, headaches, arthritis, and neuropathic pain. Although the effect of botulinum toxin in pain is mainly due to its effect on cholinergic transmission in the somatic and autonomic nervous systems, research suggests that botulinum toxin can also provide benefits related to effects on cholinergic control of cholinergic nociceptive and antinociceptive systems. Furthermore, evidence suggests that botulinum toxin can also affect central nervous system (CNS). In summary, botulinum toxin holds great potential for pain treatments. It may be also useful for the pain treatments where other methods are ineffective with no side effect(s). Further studies will establish the exact analgesic mechanisms, efficacy, and complication of botulinum toxin in chronic pain disorders, and to some extent acute pain disorders.

Keywords: Axonal transport; Botulinum Toxin; Central Nervous System; Neurotransmitters; Nociception; Sensory Neurons.

Conflict of interest statement

The author declares that there are no competing interests associated with the manuscript.

© 2018 The Author(s).

Figures

Figure 1. The endplate hypothesis of formation…
Figure 1. The endplate hypothesis of formation of MTrPs
One of the reasons for the pain associated with a muscle tension or spasm is due to compression of the muscles for the pain. Formation of MTrP starts with a muscle lesion that leads to an excessive release of Ach into the synapse, which leads to depolarization. Depolarization is followed by a Ca2+ release from SR, which leads to the sliding of the myosin and actin filaments that form a local contracture. This local contracture compresses blood vessels that run along the muscle cells, which sensitizes nociceptors and generate pain. BoNT can be effective in hyperactive state of the muscle by abolishing the release of Ach in the neuromuscular junction that starts and maintain MTrPs (Mense [117]).Abbreviations: Ach, Acetylcholine.
Figure 2. Possible effects of BoNT on…
Figure 2. Possible effects of BoNT on PNS and CNS
Effect of BoNT on PNS could be termed as direct effect on sensory neurons (nociceptors) either by disruption of expression of various receptors on neuronal membrane in presynaptic region or by inhibition of release of various neurotransmitters. The effect on CNS, on the other hand, is primarily due to the indirect effect either by deactivation/inhibition of signaling molecule or effect on purigenic transmission (due to ATP or nucleotides).
Figure 3. Schematics of peripheral and central…
Figure 3. Schematics of peripheral and central sensitization and possible mechanisms of antinociceptive activity of BoNT.
(A) Schematics of peripheral and central sensitization. Normal sensitization process occurs with the help of several neurotransmitters (SP, CGRP, and glutamate), ion channels, and receptors. Peripheral sensitization leads to central sensitization. (B) Possible mechanisms of antinociceptive activity of BoNT. BoNT not only inhibits release of peripheral and central neurotransmitters, but also affects the pain receptors (taken from Oh and Chung [131]).
Figure 4. A possible mechanism for BoNT…
Figure 4. A possible mechanism for BoNT effectiveness on pain
(A) Process showing the transfer of sensory receptor from synaptic vesicle through regular fusion process. Exocytosis process at the synapse is not only involved in neurotransmitter release, but also populates presynaptic regions with several pain receptors. (B) Impairment of fusion process by BoNT toxin which ultimately stops the transfer of receptors to the membrane. Inhibition of fusion vesicles reduces number of pain receptors at the synapse.

References

    1. Darwin C. (1872) Expression of the Emotions in Man and Animals, John Murray, London
    1. Todd E.M. and Kucharski A. (2004) Pain: Historical Perspectives. Principles and Practice of Pain Medicine (Warfield C.A. and Bajwa Z.H., eds), pp. 1–10, McGraw-Hill, New York
    1. Cui M., Khanijou S., Rubino J. and Aoki K.R. (2004) Subcutaneous administration of botulinum toxin A reduces formalin-induced pain. Pain 107, 125–133 10.1016/j.pain.2003.10.008
    1. Bach-Rojecky L., Relja M. and Lackovic Z. (2005) Botulinum toxin type A in experimental neuropathic pain. J. Neural Transm. 112, 215–219 10.1007/s00702-004-0265-1
    1. Luvisetto S., Marinelli S., Lucchetti F., Marchi F., Cobianchi S., Rossetto O. et al. . (2006) Botulinum neurotoxins and formalin-induced pain: central vs peripheral effects in mice. Brain Res. 1082, 124–131 10.1016/j.brainres.2006.01.117
    1. Park H.J., Lee Y., Lee J. and Moon D.E. (2006) The effects of botulinum toxin A on mechanical and cold allodynia in a rat model of neuropathic pain. Can. J. Anesth. 53, 470–477 10.1007/BF03022619
    1. Luvisetto S., Marinelli S., Cobianchi S. and Pavone F. (2007) Anti-allodynic efficacy of botulinum neurotoxin A in a model of neuropathic pain. Neuroscience 14, 51–54
    1. Freund B. and Schwartz M. (2001) Subcutaneous BTX-A in the treatment of neuropathic pain: a pilot study. 38th Inter-agency Botulism Research Coordinating Meeting; 17–19 October
    1. Argoff CE. (2002) A focused review on the use of botulinum toxins for neuropathic pain. Clin. J. Pain 18, S177–S181 10.1097/00002508-200211001-00010
    1. Jabbari B., Maher N. and Difazio M.P. (2003) Botulinum toxin A improved burning pain and allodynia in two patients with spinal cord pathology. Pain Med. 4, 206–210 10.1046/j.1526-4637.2003.03013.x
    1. Liu H.T., Tsai S.K., Kao M.C. and Hu J.S. (2006) Botulinum toxin A relieved neuropathic pain in a case of post therpetic neuralgia. Pain Med. 7, 89–91 10.1111/j.1526-4637.2006.00100.x
    1. Ranoux D., Nadine A., Morain F. and Bouhassi D. (2008) Botulinum toxin type A induces direct analgesic effects in chronic neuropathic pain. Ann. Neurol. 64, 274–284 10.1002/ana.21427
    1. Caterina M.J., Schumacher M.A., Tominaga M., Rosen T.A., Levine J.D. and Julius D. (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389, 816–824 10.1038/39807
    1. Caterina M.J., Leffler A., Malmberg A.B., Martin W.J., Trafton J., Petersen-Zeitz K.R. et al. . (2000) Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288, 306–313 10.1126/science.288.5464.306
    1. Tominaga M., Caterina M.J., Malmberg A.B., Rosen T.A., Gilbert H., Skinner K. et al. . (1998) The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21, 531–543 10.1016/S0896-6273(00)80564-4
    1. Leffler J.H., AlQatari M., Ernfors P. and Koltzenburg M. (2007) Emergence of functional sensory subtypes as defined by transient receptor potential channel expression. J. Neurosci. 27, 2435–2443 10.1523/JNEUROSCI.5614-06.2007
    1. Rau K.K., Jiang N., Johnson R.D. and Cooper B.Y. (2007) Heat sensitization in skin and muscle nociceptors expressing distinct combinations of TRPV1 and TRPV2 protein. J. Neurophysiol. 97, 2651–2662 10.1152/jn.00840.2006
    1. Le Picheon C.E. and Chesler A.T. (2014) The functional and anatomical dissection of somatosensory subpopulations using mouse genetics. Front. Neuroanat. 8, 1–18
    1. Viana F., de la Pena E. and Belmonte C. (2002) Specificity of cold thermotransduction is determined by differential ionic channel expression. Nat. Neurosci. 5, 254–260 10.1038/nn809
    1. Bandell M., MStory G., WookHwang G., Viswanath V., Eid S.R., Petrus M.J. et al. . (2004) Noxious cold ion channel TRPA1 is activated by pungent compounds and Bradykinin. Neuron 41, 849–857 10.1016/S0896-6273(04)00150-3
    1. Noel J., Zimmermann K., Busserolles J., Deval E., Alloui A., Diochot S. et al. . (2009) The mechano-activated K+ channels TRAAK and TREK-1 control both warm and cold perception. EMBO J. 28, 1308–1318 10.1038/emboj.2009.57
    1. Chalfie M. (2009) Neurosensory mechanotransduction. Nat. Rev. Mol. Cell Biol. 10, 44–52 10.1038/nrm2595
    1. Wetzel C., Hu J., Riethmacher D., Benckendorff A., Harder L., Eilers A. et al. . (2007) A stomatin-domain protein essential for touch sensation in the mouse. Nature 445, 206–209 10.1038/nature05394
    1. Caterina M.J., Rosen T.A., Tominaga M., Brake A.J. and Julius D. (1999) A capsaicin-receptor homologue with a high threshold for noxious heat. Nature 398, 436–441 10.1038/18906
    1. Muraki K., Iwata Y., Katanosaka Y., Ito T., Ohya S., Shigekawa M. et al. . (2003) TRPV2 is a component of osmotically sensitive cation channels in murine aortic myocytes. Circ. Res. 93, 829–838 10.1161/01.RES.0000097263.10220.0C
    1. Kwan K.Y., Allchrone A.J., Vollarath M.A., Christensen A.P., Zhang D.S., Woolf C.J. et al. . (2006) TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron 50, 277–289 10.1016/j.neuron.2006.03.042
    1. Karashima Y., Talavera K., Everaerts W., Janssens A., Kwan K.Y., Vennekens R. et al. . (2009) TRPA1 acts as a cold sensor in vitro and in vivo. Proc. Natl. Acad. Sci. U.S.A. 106, 1273–1278 10.1073/pnas.0808487106
    1. Bautista D.M., Jordt S.E., Nikai T., Tsuruda P.R., Read A.J., Poblete J. et al. . (2006) TRPA1, mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 124, 1269–1282 10.1016/j.cell.2006.02.023
    1. Suzuki H., Ker R., Bianchi L., Jensen C.F., Slone D., Xue J. et al. . (2003) In vivo imaging of C. elegans mechanosensory neurons demonstrates a specific role for the MEC-4 channel in the process of gentle touch secnsation. Neurons 39, 1005–1017 10.1016/j.neuron.2003.08.015
    1. McKemy D.D., Neuhausser W.M. and Julius D. (2002) Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416, 52–58 10.1038/nature719
    1. McKemy D.D. (2007) TRP ion channel function in sensory transduction and cellular signaling cascades. In Chapter 13 TRPM8: The Cold and Menthol Receptor (Liedtke W.B. and Heller S., eds), CRC Press/Taylor & Francis, Boca Raton, FL, U.S.A.
    1. Peier A.M., Moqrich A., Hergarden A.C., Reeve A.J., Andersson D.A., Story G.M. et al. . (2002) A TRP channel that senses cold stimuli and menthol. Cell 108, 705–715 10.1016/S0092-8674(02)00652-9
    1. Anderson J.L., Lilja A., Hartvig P., Langstrom B., Gordh T., Handwerker H. et al. . (1997) Somatotopic organization along the central sulcus for pain localization in humans as revealed by positron emission tomography. Exp. Brain Res. 117, 192–199 10.1007/s002210050215
    1. Kenshalo D.R. and Isensee O. (1983) Responses of primate SI cortical neurons to noxious stimuli. J. Neurophysiol. 50, 1479–1496 10.1152/jn.1983.50.6.1479
    1. Royce G.J. and Mourey R.J. (1985) Efferent connections of the Centro median and para fascicular thalamic nuclei: an autoradiographic investigation in the cat. J. Comp. Neurol. 235, 277–300 10.1002/cne.902350302
    1. Desbois C. and Villanueva L. (2001) The organization of lateral ventromedial thalamic connections in the rat: a link for the distribution of nociceptive signals to widespread cortical regions. Neuroscience 102, 885–898 10.1016/S0306-4522(00)00537-6
    1. Shyu B.C., Lin C.Y., Sun J.J., Chen S.L. and Chang C. (2004) BOLD response to direct thalamic stimulation reveals a functional connection between the medial thalamus and the anterior cingulate cortex in the rat. Magn. Reson. Med. 52, 47–55 10.1002/mrm.20111
    1. Lamont L.A., Tranquilli W.J. and Grimm K.A. (2000) Physiology of pain. Manage. Pain 30, 703–728
    1. Stamford JA. (1995) Descending control of pain. Br. J. Anaesth. 75, 217–227 10.1093/bja/75.2.217
    1. Fields H.L., Basbaum A.I. and Heinricher M.M. (2005) Central nervous system mechanisms of pain modulation. In Textbook of Pain 5th edn (McMahon S. and Koltzenburg M., eds), pp. 125–142, Elsevier Health Sciences, Burlington, Massachussets, U.S.A.
    1. Bardoni R., Takazawa T., Tong C.K., Choudhary P., Scherrer G.N. and Macdermott A.B. (2013) Pre- and Postsynaptic inhibitory control in the spinal cord dorsal horn. Ann. N.Y. Acad. Sci. 1279, 90–96 10.1111/nyas.12056
    1. Drinovac V., Bach-Rohecky L., Matal I. and Lackovic Z. (2013) Involvement of mu-opioid receptors in antinociceptive action of botulinum toxin type A. Neuropharmacology 70, 331–337 10.1016/j.neuropharm.2013.02.011
    1. Drinovac V., Bach-Rojecky L., Babic A. and Lackovic Z. (2014) Antinociceptive effect of botulinu toxin type A on experimental abdominal pain. Eur. J. Pharmacol. 745, 190–195 10.1016/j.ejphar.2014.10.038
    1. Bossowska A. and Majewski M. (2012) Botulinum toxin type A induced changes in the chemical coding of dorsal root ganglion neurons supplying the porcine urinary bladder. Pol. J. Vet. Sci. 15, 345–353
    1. Dong M., Yeh F., Tepp W.H., Dean C., Johnson E.A., Janz R. et al. . (2006) SV2 is the protein receptor for botulinum neurotoxin A. Science 312, 592–596 10.1126/science.1123654
    1. Binz T., Blasi J., Yamasaki S., Baumeister A., Link E., Südhof T.C. et al. . (1994) Proteolysis of SNAP-25 by types E and A botulinal neurotoxins. J. Biol. Chem. 269, 1617–1620
    1. Schiavo G., Benfenati F., Poulaine B., Rossetto O., de Laureto P.P., DasGupta B.R. et al. . (1992) Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature 359, 832–835 10.1038/359832a0
    1. Singh B.R. (2000) Intimate details of the most poisonous poison. Nat. Struct. Biol. 7, 617–619 10.1038/77900
    1. Verderio C., Grumelli C., Raiteri L., Coco S., Paluzzi S., Caccin P. et al. . (2007) Traffic of botulinum toxins A and E in excitatory and inhibitory neurons. Traffic 8, 142–153 10.1111/j.1600-0854.2006.00520.x
    1. Frassoni C., Inverardi F., Coco S., Ortino B., Grumelli C., Pozzi D. et al. . (2005) Analysis of SNAP-25 immunoreactivity in hippocampal inhibitory neurons during development in culture and in situ. Neuroscience 131, 813–823 10.1016/j.neuroscience.2004.11.042
    1. Huang X., Wheeler M.B., Kang Y.H., Sheu L., Lukacs G.L., Trimble W.S. et al. . (1998) Truncated SNAP 25. (1-197) like botulinum neurotoxin A can inhibit insulin secretion from HIT-T15 insulinoma cells. Mol. Endocrinol. 12, 1060–1070
    1. Criado M., Gil A., Viniegra S. and Gutierrez L.M. (1999) A single amino acid near the C-terminus of the synaptosome associated protein of 25 kDa. (SNAP-25) is essential for exocytosisin chromaffin cells. Proc. Natl. Acad. Sci. U.S.A. 96, 7256–7261 10.1073/pnas.96.13.7256
    1. Grumelli C., Corradini I., Matteoli M. and Verderio C. (2010) Intrinsic calcium dynamics control botulinum toxin A susceptibility in distinct neuronal populations. Cell Calcium 47, 419–424 10.1016/j.ceca.2010.03.002
    1. Verderio C., Pozzi D., Pravettoni E., Inverardi F., Schenk U., Coco S. et al. . (2004) SNAP-25 modulation of calcium dynamics underlies differences in GABAergic and glutamatergic responsiveness to depolarization. Neuron 41, 599–610 10.1016/S0896-6273(04)00077-7
    1. Pozzi D., Condliffe S., Bozzi Y., Chikhladze M., Grumelli C., Proux-Gillardeaux V. et al. . (2008) Activity-dependent phosphorylation of Ser187 is required for SNAP-25-negative modulation of neuronal voltage-gated calcium channels. Proc. Natl. Acad. Sci. U.S.A. 105, 323–328 10.1073/pnas.0706211105
    1. Araque A., Li N., Doyle R.T. and Haydon P.G. (2000) SNARE protein dependent glutamate release from astrocytes. J. Neurosci. 21, 666–673 10.1523/JNEUROSCI.20-02-00666.2000
    1. Holthe A., Hofmann F., Lux R., Veh R.W., Just I. and Ahnert-Hilger G. (2008) Glutamate uptake and release by astrocytes are enhanced by Clostridium botulinum C3 protein. J. Biol. Chem. 283, 9289–9299 10.1074/jbc.M706499200
    1. Aoki K.R., Brin M.F. and Whitcup S.M. (2008) Is botulinum toxin really moving into the CNS like tetanus toxin ? J. Neurosci.,
    1. Lawrence G.W., Ovsepian S.V., Wang J., Aoki K.R. and Dolly J.O. (2012) Extravesicular intraneuronal migration of internalized botulinum neurotoxins without detectable inhibition of distal neurotransmission. Biochem. J. 441, 443–452 10.1042/BJ20111117
    1. Antonucci F., Rossi C., Gianfranceschi L., Rossetto O. and Caleo M. (2008) Long distance retrograde effects of botulinum neurotoxin A. J. Neurosci. 28, 3689–3696 10.1523/JNEUROSCI.0375-08.2008
    1. Restani L., Giribaldi F., Manich M., Bercsenyi K., Menendez G., Rossetto O. et al. . (2012) Botulinum neurotoxin A and E undergo retrograde axonal transport in primary motor neurons. PLoS Pathog. 8, e1003087 10.1371/journal.ppat.1003087
    1. Papagiannopoulou D., Vardouli L., Dimitriadis F. and Apostolidis A. (2016) Retrograde transport of radiolabeled botulinum neurotoxin type A to the CNS after intradetrusor injection in rats. BJU Int. 117, 697–704 10.1111/bju.13163
    1. Restani L., Antonucci F., Gianfranceschi L., Rossi C., Rossetto O. and Caleo M. (2011) Evidence for anterograde transport and transcytosis of botulinum neurotoxin A. J. Neurosci. 31, 15650–15659 10.1523/JNEUROSCI.2618-11.2011
    1. Matak I., Riederer P. and Lacković Z. (2012) Botulinum toxin’s axonal transport from periphery to the spinal cord. Neurochem. Int. 61, 236–239 10.1016/j.neuint.2012.05.001
    1. Marino M.J., Terashima T., Steinauer J.J., Eddinger K.A., Yaksh T.L. and Xu Q. (2014) Botulinum toxin B in the sensory afferent transmitter release spinal activation and pain behavior. Pain 155, 674–684 10.1016/j.pain.2013.12.009
    1. Nair U., Jotwani A., Geng J., Gammoh N., Richerson D., Yen W.L. et al. . (2011) SNARE proteins are required for macro autophagy. Cell 146, 290–302 10.1016/j.cell.2011.06.022
    1. Ungermann C. and Langosch D. (2005) Functions of SNAREs in intracellular membrane fusion and lipid bilayer mixing. J. Cell Sci. 118, 3819–3828 10.1242/jcs.02561
    1. Ray P., Ishida H., Millard C.B., Petrali J.P. and Ray R. (1999) Phospholipase A2 and arachidonic acid-mediated mechanism of neuroexocytosis: a possible target of botulinum neurotoxin A other than SANP-25. J. Appl. Toxicol. 19 (Suppl. 1), S27–S28 10.1002/(SICI)1099-1263(199912)19:1+<S27::AID-JAT610>;2-A
    1. Garner C.G., Straube A., Witt T.N., Gasser T. and Oertel W.H. (1993) Time course of distant effects of local injections of botulinum toxin. Mov. Disord. 8, 33–37 10.1002/mds.870080106
    1. Giladi N. (1997) The mechanism of action of botulinum toxin type A in focal dystonia is most probably through its dual effect on efferent (motor) and afferent pathways at the injected site. Neurol. Sci. 152, 132–135 10.1016/S0022-510X(97)00151-2,
    1. Abbruzzese G. and Berardelli A. (2006) Neurophysiological effects of botulinum toxin type A. Neurotox. Res. 9, 109–114 10.1007/BF03033927
    1. Morenilla-Palao C., Planelle-Cases F., Garcia-Sanz N. and Ferrer-Montiel A. (2004) Regulated exocytosis contributes to protein kinase C potentiation of vanilloid receptor activity. J. Biol. Chem. 279, 25665–25672 10.1074/jbc.M311515200
    1. Duc C. and Catsicas S. (1995) Ultrastructural localization of SNAP‐25 within the rat spinal cord and peripheral nervous system. J. Comp. Neurol. 356, 152–163 10.1002/cne.903560111
    1. Coffield J.A. and Yan X. (2009) Neuritogenic actions of botulinum neurotoxin A on cultured motor neurons. J. Pharmacol. Exp. Ther. 330, 352–358 10.1124/jpet.108.147744
    1. Ray P., Berman J.D., Middleton W. and Brendle J. (1993) Botulinum toxin inhibits arachidonic acid release associated with acetylcholine release from PC12 cells. J. Biol. Chem. 268, 11057–11064
    1. Ishida H., Zhang X., Erickson K. and Ray P. (2004) Botulinum toxin type A targets RhoB to inhibit lysophosphatidic acid-stimulated actin reorganization and acetylcholine release in nerve growth factor-treated PC12 cells. J. Pharmacol. Exp. Ther. 310, 881–889 10.1124/jpet.104.065318
    1. Zhang P., Ray R., Singh B.R. and Ray P. (2013) Mastoparan-7 rescues botulinum toxin-A poisoned neurons in a mouse spinal cord cell culture model. Toxicon 76, 37–43 10.1016/j.toxicon.2013.09.002
    1. Sluka K.A., Kalra A. and Moore S.A. (2001) Unilateral intramuscular injections of acidic saline produce a bilateral, long-lasting hyperalgesia. Muscle Nerve 24, 37–46 10.1002/1097-4598(200101)24:1<37::AID-MUS4>;2-8
    1. Tillu D.V., Gebhart G.F. and Sluka K.A. (2008) Descending facilitatory pathways from the RVM initiate and maintain bilateral hyperalgesia after muscle insult. Pain 136, 331–339 10.1016/j.pain.2007.07.011
    1. Back-Rojecky L., Salkovic-Petrisic M. and Lackovic Z. (2010) Botulinum toxin A reduces pain super sensitivity in experimental diabetic neuropathy: bilateral effect after unilateral injection. Eur. J. Pharmocol. 633, 10–14 10.1016/j.ejphar.2010.01.020
    1. Aoki K.R. (2003) Evidence for antinociceptive activity of botulinum toxin type A in pain management. Headache 43 (Suppl. 1), S9–S15 10.1046/j.1526-4610.43.7s.3.x
    1. Kitamura Y., Matsuka Y., Spigelman I. et al. . (2009) Botulinum toxin type A. (150 kDa) decreases exaggerated neurotransmitter release from trigeminal ganglion neurons and relieves neuropathy behaviors induced by infraorbital nerve constriction. Neuroscience 159, 1422–1429 10.1016/j.neuroscience.2009.01.066
    1. Durham P.L., Cady R. and Cady R. (2004) Regulation of calcitonin gene‐related peptide secretion from trigeminal nerve cells by botulinum toxin Type A: implications for migraine therapy. Headache 44, 35–43 10.1111/j.1526-4610.2004.04007.x
    1. Meng J., Wang J., Lawrence G. and Dolly J.O. (2007) Synaptobrevin I mediate exocytosis of CGRP from sensory neurons and inhibition by botulinum toxins reflects their anti-nociceptive potential. J. Cell Sci. 120, 2864–2874 10.1242/jcs.012211
    1. Gobel H. (2004) Botulinum toxin in migraine prophylaxis. J. Neurol. 251, I8–I11 10.1007/s00415-004-1103-y
    1. Allam N., Brasil-Neto J.P., Brown G. and Tomaz C. (2005) Injections of botulinum toxin type a produce pain alleviation in intractable trigeminal neuralgia. Clin. J. Pain 21, 182–184 10.1097/00002508-200503000-00010
    1. Mahowald M.L., Singh J.A. and Dykstra D. (2006) Long term effects of intra-articular botulinum toxin A for refractory joint pain. Neurotox. Res. 9, 179–188 10.1007/BF03033937
    1. Jabbari B. (2008) Evidence based medicine in the use of botulinum toxin for back pain. J. Neural Transm. 115, 637–640 10.1007/s00702-007-0864-8
    1. Singh JA. (2013) Use of botulinum toxin in musculoskeletal pain. F1000 Res. 2, 52
    1. Jackson J.L., Kuriyama A. and Hayashino Y. (2012) Botulinum toxin A for prophylactic treatment of migraine and tension headaches in adults: a meta-analysis. J. Am. Med. Assoc. 307, 1736–1745 10.1001/jama.2012.505
    1. Whitcup S.M., Turkel C.C., DeGryse R.E. and Brin M.F. (2014) Development of onabotulinum toxin A for chronic migraine. Ann. N.Y. Acad. Sci. 67–80 10.1111/nyas.12488
    1. Gerwin R. (2011) Treatment of chronic migraine headache with Onabotulinumtoxin A. Curr. Pain Headache Rep. 15, 336–338 10.1007/s11916-011-0202-6
    1. Benemei S., Cesaris F.D., Fusi C., Rossi E., Lupi C. and Geppetti P. (2013) TRPA1 and other TRP channels in migraine. J. Headache Pain 14, 71–76 10.1186/1129-2377-14-71
    1. Guo B.L., Zheng C.X., Sui B.D., Li Y.Q., Wang Y.Y. and Yang Y.L. (2013) A closer look to botulinum neurotoxin type A- induced analgesia. Toxicon 71, 134–139 10.1016/j.toxicon.2013.05.011
    1. Piovesan E.J., Teive H.G., Kowacs P.A., Della Coletta M.V., Vemeck L.C. and Siberstein S.D. (2005) An open study of botulinum-A toxin treatment of trigeminal neuralgia. Neurology 65, 1306–1308 10.1212/01.wnl.0000180940.98815.74
    1. Bach-Rojecky L. and Lackovic Z. (2009) Central origin of the antinociceptive action of botulinum toxin type A. Pharmacol. Biochem. Behav. 94, 234–238 10.1016/j.pbb.2009.08.012
    1. Dressler D., Bigalke H. and Benecke R. (2003) Botulinum toxin type B in antibody induced botulinum toxin type A therapy failure. J. Neurol. 250, 967–969 10.1007/s00415-003-1129-6
    1. Klein AW. (2001) Complications and adverse reactions with the use of botulinum toxin. Semin. Cutan. Med. Surg. 20, 109–120 10.1053/sder.2001.25964
    1. Baizabal-Carvallo JF. (2015) Can the immunological response to botulinum toxin trigger head-aches? Neurotox. Res. 27, 69–70 10.1007/s12640-014-9490-z
    1. Wang L., Sun Y., Yang W., Lindo P. and Singh B R. (2014) Type A botulinum neurotoxin complex proteins differentially modulate host response of neuronal cells. Toxicon 82, 52–60 10.1016/j.toxicon.2014.02.004
    1. Gamse R. and Saria A. (1985) Potentiation of tachykinin-induced plasma protein extravasation by calcitonin gene-related peptide. Eur. J. Pharmacol. 114, 61–66 10.1016/0014-2999(85)90520-5
    1. Lynn B., Ye W. and Cotsell B. (1992) The actions of capsaicin applied topically to the skin of the rat on C-fiber afferents antidromic vasodilation and substance P levels. Br. J. Pharmacol. 107, 400–406 10.1111/j.1476-5381.1992.tb12758.x
    1. Gazerani P., Pedersen N.S., Drewes A.M. and Arendt-Nielsen L. (2009) Botulinum toxin type A reduces histamine induced itch and vasomotor responses in human skin. Br. J. Dermatol. 161, 737–745 10.1111/j.1365-2133.2009.09305.x
    1. Kramer H.H., Angerer C., Erbguth F., Schmelz M. and Birklein F. (2003) Botulinum toxin A reduces neurogenic flare but has almost no effect on pain and hyperalgesia in human skin. J. Neurol. 250, 188–193 10.1007/s00415-003-0971-x
    1. Tugnoli V., Capone J.G., Eleopra R., Quatrale R., Sensi M., Gastaldo E. et al. . (2007) Botulinum toxin type A reduces capsaicin-evoked pain and neurogenic vasodilatation in human skin. Pain 130, 76–83 10.1016/j.pain.2006.10.030
    1. Takasusuki T. and Yaksh T.L. (2011) Regulation of spinal substance p release by intrathecal calcium channel blockade. Anesthesiology 115, 153–164 10.1097/ALN.0b013e31821950c2
    1. Baulmann J., Spitznagel H., Herdegen T., Unger T. and Culman J. (2000) Tachykinin receptor inhibition and c-Fos expression in the rat brain following formalin-induced pain. Neuroscience 95, 813–820 10.1016/S0306-4522(99)00478-9
    1. Mustafa G., Anderson E.M., Bokrand-Donatelli Y., Neubert J.K. and Caudle R.M. (2013) Ant-nociceptive effect of a conjugate of substance P and light chain of botulinum neurotoxin type A. Pain 154, 2547–2553 10.1016/j.pain.2013.07.041
    1. Chaddock J.A., Purkiss J.R., Friis L.M., Broadbridge J.D., Duggan M.J., Fooks S.J. et al. . (2000) Inhibition of vesicular secretion in both neuronal and nonneuronal cells by a retargeted endopeptidase derivative of Clostridial botulinum neurotoxin type A. Infect. Immun. 68, 2587–2593 10.1128/IAI.68.5.2587-2593.2000
    1. Chaddock J.A., Purkiss J.R., Duggan M.J., Quinn C.P., Shone C.C. and Foster K.A. (2000) A conjugate composed of nerve growth factor coupled to a non-toxic derivative of Clostridium botulinum neurotoxin type A can inhibit neurotransmitter release in vitro. Growth Factors 18, 147–155 10.3109/08977190009003240
    1. Chaddock J.A., Herbert M.H., Ling R.J., Alexander F.C., Fooks S.J., Revell D.F. et al. . (2002) Expression and purification of catalytically active, non-toxic endopeptidase derivatives of Clostridium botulinum toxin type A. Protein Expr. Purif. 25, 219–228 10.1016/S1046-5928(02)00002-5
    1. Chaddock J.A., Purkiss J.R., Alexander F.C., Doward S., Fooks S.J., Friis L.M. et al. . (2004) Retargated clostridial endopeptidases: Inhibition of nociceptive neurotransmitter release in vitro and antinociceptive activity in in vivo models of pain. Mov Disord. 19, S42–S47 10.1002/mds.20008
    1. Burstein R., Zhang X., Levy D., Aoki K.R. and Brin M.F. (2014) Selective inhibition of meningeal nociceptors by botulinum neurotoxin type A: therapeutic implications to migraine and other pains. Cephalalgia 34, 853–869 10.1177/0333102414527648
    1. Shimizu T., Shibata M., Toriumi H., Iwashita T., Funakubo M., Sato H. et al. . (2012) Reduction of TRPV1 expression in the trigeminal system by botulinum neurotoxin type-A. Neurobiol. Dis. 48, 367–378 10.1016/j.nbd.2012.07.010
    1. Mika J., Rojewska E., Makuch W., Korostynski M., Luvisetto S., Marinelli S. et al. . (2011) The effect of Botulinum neurotoxin A on sciatic nerve injury-induced neuroimmunological changes in rat dorsal root ganglia and spinal cord. Neuroscience 175, 356–366 10.1016/j.neuroscience.2010.11.040
    1. Kim H.J., Lee G.W., Kim M.J., Yang K.Y., Kim S.T., Bae Y.C. et al. . (2015) Antinociceptive effects of transcytosed botulinum neurotoxin type A on trigeminal nociception in rats Korean. J. Phy. Pharmacol. 19, 349–355
    1. Mense S. (2004) Neurological basis for the use of botulinum toxin in pain therapy. J. Neurol. 251, i1–i7 10.1007/s00415-004-1102-z
    1. Smith C.P., Vemulakonda V.M., Kiss S., Boone T.B. and Somogyi G.T. (2005) Enhanced ATP release from rat bladder urothelium during chronic bladder inflammation: effect of botulinum toxin A. Neurochem. Int. 47, 291–297 10.1016/j.neuint.2005.04.021
    1. Smith C.P., Gangitano D.A., Munoz A., Salas N.A., Boone T.B., Aoki K.R. et al. . (2008) Botulinum toxin type A normalizes alterations in urothelial ATP and NO release induced by chronic spinal cord injury. Neurochem. Int. 52, 1068–1075 10.1016/j.neuint.2007.11.006
    1. Khera M., Somogyi G.T., Kiss S., Boone T.B. and Smith C.P. (2004) Botulinum toxin A inhibits ATP release from bladder urothelium after chronic spinal cord injury. Neurochem. Int. 45, 987–993 10.1016/j.neuint.2004.06.001
    1. Vizzard MA. (2000) Increased expression of spinal cord Fos proteininducedby bladder stimulation after spinal cord injury. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279, R295–R305 10.1152/ajpregu.2000.279.1.R295
    1. Birder L.A. and de Groat W.C. (1992) Increased c-fos expression in spinal neurons after irritation of the lower urinary tract in the rat. J. Neurosci. 12, 4878–4889 10.1523/JNEUROSCI.12-12-04878.1992
    1. Birder L.A. and de Groat W.C. (1993) Induction of c-fos expression in spinal neurons by nociceptive and nonnociceptive stimulation of LUT. Am. J. Physiol. 265, R326–R333
    1. Munoz A., Somogyi G.T., Boone T.B. and Smith C.P. (2011) Central inhibitory effect of intravesically applied botulinum toxin A in chronic spinal cord injury. Nurol Urodynamics 30, 1376–1381
    1. Huang P.P., Khan I., Suhail M.S., Malkmus S. and Yaksh T.L. (2011) Spinal botulinum neurotoxin B: effects on sfferent transmitter release and nociceptive processing. PLoS ONE 6, e19126 10.1371/journal.pone.0019126
    1. Marinelli S., Valentina V., Ruggero R., Carolina U., Tata A.M., Luvisetto S. et al. . (2012) The analgesic effect on neuropathic pain of retrogradely transported botulinum neurotoxin A involves Schwann cells and astrocytes. PLoS ONE 7, e47977 10.1371/journal.pone.0047977
    1. Da Silva L.B., Poulsen J.N., Nielsen L.A. and Gazerani P. (2015) Botulinum neurotoxin type A modulates vesicular release of glutamate from satellite glial cells. J. Cell. Mol. Med. 19, 1900–1909 10.1111/jcmm.12562
    1. Piotrowska A., Popiolek-Barczyk K., Pavone F. and Mika J. (2017) Comparison of the expression changes after botulinum toxin Type A and minocycline administration in lipopolysaccharide-stimulated rat microglial and astroglial cultures. Front. Cell Infect. Microbiol. 7, 141 10.3389/fcimb.2017.00141
    1. Carruthers A., Kiene K. and Carruthers J. (1996) Botulinum A exotoxin use in clinical dermatology. J. Am. Acad. Dermatol. 34, 788–797 10.1016/S0190-9622(96)90016-X
    1. Matarasso S.L. (1998) Complications of botulinum A exotoxin for hyperfunctional lines. Dermatol. Surg. 24, 1249–1254 10.1111/j.1524-4725.1998.tb04106.x
    1. Oh H.M. and Chung M.E. (2015) Botulinum toxin for neuropathic pain: a review of the literature. Toxins 7, 3127–3154 10.3390/toxins7083127
    1. Barwood D., Nailliey C., Boyd R., Brereton K., Low J., Nattrass G. et al. . (2000) Analgesic effects of botulinum toxin A: a randomized placebo controlled clinical trial. Dev. Med. Child Neurol. 42, 116–121 10.1017/S0012162200000220

Source: PubMed

3
S'abonner