Exercise Ventilatory Inefficiency in Post-COVID-19 Syndrome: Insights from a Prospective Evaluation

Álvaro Aparisi, Cristina Ybarra-Falcón, Mario García-Gómez, Javier Tobar, Carolina Iglesias-Echeverría, Sofía Jaurrieta-Largo, Raquel Ladrón, Aitor Uribarri, Pablo Catalá, Williams Hinojosa, Marta Marcos-Mangas, Laura Fernández-Prieto, Rosa Sedano-Gutiérrez, Iván Cusacovich, David Andaluz-Ojeda, Blanca de Vega-Sánchez, Amada Recio-Platero, Esther Sanz-Patiño, Dolores Calvo, Carlos Baladrón, Manuel Carrasco-Moraleja, Carlos Disdier-Vicente, Ignacio J Amat-Santos, J Alberto San Román, Álvaro Aparisi, Cristina Ybarra-Falcón, Mario García-Gómez, Javier Tobar, Carolina Iglesias-Echeverría, Sofía Jaurrieta-Largo, Raquel Ladrón, Aitor Uribarri, Pablo Catalá, Williams Hinojosa, Marta Marcos-Mangas, Laura Fernández-Prieto, Rosa Sedano-Gutiérrez, Iván Cusacovich, David Andaluz-Ojeda, Blanca de Vega-Sánchez, Amada Recio-Platero, Esther Sanz-Patiño, Dolores Calvo, Carlos Baladrón, Manuel Carrasco-Moraleja, Carlos Disdier-Vicente, Ignacio J Amat-Santos, J Alberto San Román

Abstract

Introduction: Coronavirus disease 2019 (COVID-19) is a systemic disease characterized by a disproportionate inflammatory response in the acute phase. This study sought to identify clinical sequelae and their potential mechanism.

Methods: We conducted a prospective single-center study (NCT04689490) of previously hospitalized COVID-19 patients with and without dyspnea during mid-term follow-up. An outpatient group was also evaluated. They underwent serial testing with a cardiopulmonary exercise test (CPET), transthoracic echocardiogram, pulmonary lung test, six-minute walking test, serum biomarker analysis, and quality of life questionaries.

Results: Patients with dyspnea (n = 41, 58.6%), compared with asymptomatic patients (n = 29, 41.4%), had a higher proportion of females (73.2 vs. 51.7%; p = 0.065) with comparable age and prevalence of cardiovascular risk factors. There were no significant differences in the transthoracic echocardiogram and pulmonary function test. Patients who complained of persistent dyspnea had a significant decline in predicted peak VO2 consumption (77.8 (64-92.5) vs. 99 (88-105); p < 0.00; p < 0.001), total distance in the six-minute walking test (535 (467-600) vs. 611 (550-650) meters; p = 0.001), and quality of life (KCCQ-23 60.1 ± 18.6 vs. 82.8 ± 11.3; p < 0.001). Additionally, abnormalities in CPET were suggestive of an impaired ventilatory efficiency (VE/VCO2 slope 32 (28.1-37.4) vs. 29.4 (26.9-31.4); p = 0.022) and high PETCO2 (34.5 (32-39) vs. 38 (36-40); p = 0.025).

Interpretation: In this study, >50% of COVID-19 survivors present a symptomatic functional impairment irrespective of age or prior hospitalization. Our findings suggest a potential ventilation/perfusion mismatch or hyperventilation syndrome.

Keywords: cardiopulmonary exercise testing; dyspnea; post-COVID-19 syndrome; pulmonary function test; six-minute walking test; ventilatory inefficiency.

Conflict of interest statement

The authors declare that they have no conflict of interest.

Figures

Figure 1
Figure 1
Quality of life assessment with Kansas City Cardiomyopathy Questionnaire (KCMQ). * (p < 0.01) and ** (p < 0.001) indicate significant differences.
Figure 2
Figure 2
Temporal dynamic changes of inflammatory markers and lymphocytes from hospital admission to follow-up in the hospitalized cohort. * Excludes outside values; ¥ (p < 0.05); † (p < 0.01); ‡ (p < 0.001).
Figure 3
Figure 3
Predictors of dyspnea among hospitalized and ambulatory patients.

References

    1. Pinney S.P., Giustino G., Halperin J.L., Mechanick J.I., Neibart E., Olin J.W., Rosenson R.S., Fuster V. Coronavirus Historical Perspective, Disease Mechanisms, and Clinical Outcomes. J. Am. Coll. Cardiol. 2020;76:1999–2010. doi: 10.1016/j.jacc.2020.08.058.
    1. World Health Organization (WHO) Coronavirus Disease (COVID-19) [(accessed on 5 August 2020)]; Available online: .
    1. Garrigues E., Janvier P., Kherabi Y., Le Bot A., Hamon A., Gouze H., Doucet L., Berkani S., Oliosi E., Mallart E., et al. Post-discharge persistent symptoms and health-related quality of life after hospitalization for COVID-19. J. Infect. 2020;81:e4–e6. doi: 10.1016/j.jinf.2020.08.029.
    1. Carfì A., Bernabei R., Landi F. Persistent Symptoms in Patients After Acute COVID-19. JAMA. 2020;324:603–605. doi: 10.1001/jama.2020.12603.
    1. Huang Y., Tan C., Wu J., Chen M., Wang Z., Luo L., Zhou X., Liu X., Huang X., Yuan S., et al. Impact of coronavirus disease 2019 on pulmonary function in early convalescence phase. Respir. Res. 2020;21:1–10. doi: 10.1186/s12931-020-01429-6.
    1. Frija-Masson J., Debray M.-P., Gilbert M., Lescure F.-X., Travert F., Borie R., Khalil A., Crestani B., D’Ortho M.-P., Bancal C. Functional characteristics of patients with SARS-CoV-2 pneumonia at 30 days post-infection. Eur. Respir. J. 2020;56:2001754. doi: 10.1183/13993003.01754-2020.
    1. Mo X., Jian W., Su Z., Chen M., Peng H., Peng P., Lei C., Chen R., Zhong N., Li S. Abnormal pulmonary function in COVID-19 patients at time of hospital discharge. Eur. Respir. J. 2020;55:2001217. doi: 10.1183/13993003.01217-2020.
    1. Zhao Y.-M., Shang Y.-M., Song W.-B., Li Q.-Q., Xie H., Xu Q.-F., Jia J.-L., Li L.-M., Mao H.-L., Zhou X.-M., et al. Follow-up study of the pulmonary function and related physiological characteristics of COVID-19 survivors three months after recovery. EClinicalMedicine. 2020;25:100463. doi: 10.1016/j.eclinm.2020.100463.
    1. Hui D.S., Wong K.T., Ko F.W.S., Tam L.S., Chan D.P., Woo J., Sung J.J.Y. The 1-Year Impact of Severe Acute Respiratory Syndrome on Pulmonary Function, Exercise Capacity, and Quality of Life in a Cohort of Survivors. Chest. 2005;128:2247–2261. doi: 10.1378/chest.128.4.2247.
    1. Ahmed H., Patel K., Greenwood D., Halpin S., Lewthwaite P., Salawu A., Eyre L., Breen A., O’Connor R., Jones A., et al. Long-term clinical outcomes in survivors of severe acute respiratory syndrome and Middle East respiratory syndrome coronavirus outbreaks after hospitalisation or ICU admission: A systematic review and meta-analysis. J. Rehabil. Med. 2020 doi: 10.2340/16501977-2694.
    1. Spertus J.A., Jones P.G., Sandhu A.T., Arnold S.V. Interpreting the Kansas City Cardiomyopathy Questionnaire in Clinical Trials and Clinical Care. J. Am. Coll. Cardiol. 2020;76:2379–2390. doi: 10.1016/j.jacc.2020.09.542.
    1. Lang R.M., Badano L.P., Mor-Avi V., Afilalo J., Armstrong A., Ernande L., Flachskampf F.A., Foster E., Goldstein S.A., Kuznetsova T., et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American society of echocardiography and the European association of cardiovascular imaging. Eur. Heart J. Cardiovasc. Imaging. 2015;16:233–271. doi: 10.1093/ehjci/jev014.
    1. Graham B.L., Steenbruggen I., Miller M.R., Barjaktarevic I.Z., Cooper B.G., Hall G.L., Hallstrand T.S., Kaminsky D.A., McCarthy K., McCormack M.C., et al. Standardization of Spirometry 2019 Update. An Official American Thoracic Society and European Respiratory Society Technical Statement. Am. J. Respir. Crit. Care Med. 2019;200:e70–e88. doi: 10.1164/rccm.201908-1590ST.
    1. Graham B.L., Brusasco V., Burgos F., Cooper B.G., Jensen R., Kendrick A., MacIntyre N.R., Thompson B.R., Wanger J. 2017 ERS/ATS standards for single-breath carbon monoxide uptake in the lung. Eur. Respir. J. 2017;49:1600016. doi: 10.1183/13993003.00016-2016.
    1. Holland A.E., Spruit M.A., Troosters T., Puhan M.A., Pepin V., Saey D., McCormack M.C., Carlin B.W., Sciurba F., Pitta F., et al. An official European Respiratory Society/American Thoracic Society technical standard: Field walking tests in chronic respiratory disease. Eur. Respir. J. 2014;44:1428–1446. doi: 10.1183/09031936.00150314.
    1. Balady G.J., Arena R., Sietsema K., Myers J., Coke L., Fletcher G.F., Forman D., Franklin B., Guazzi M., Gulati M., et al. Clinician’s Guide to Cardiopulmonary Exercise Testing in Adults. Circulation. 2010;122:191–225. doi: 10.1161/CIR.0b013e3181e52e69.
    1. Román J.A.S., Uribarri A., Amat-Santos I.J., Aparisi Á., Catalá P., González-Juanatey J.R. The presence of heart disease worsens prognosis in patients with COVID-19. Rev. Española Cardiol. 2020;73:773–775. doi: 10.1016/j.rec.2020.05.025.
    1. Carvalho-Schneider C., Laurent E., Lemaignen A., Beaufils E., Bourbao-Tournois C., Laribi S., Flament T., Ferreira-Maldent N., Bruyère F., Stefic K., et al. Follow-up of adults with noncritical COVID-19 two months after symptom onset. Clin. Microbiol. Infect. 2021;27:258–263. doi: 10.1016/j.cmi.2020.09.052.
    1. Rosales-Castillo A., Ríos C.G.D.L., García J.D.M. Persistencia de manifestaciones clínicas tras la infección COVID-19: Importancia del seguimiento. Med. Clín. 2020;156:35–36. doi: 10.1016/j.medcli.2020.08.001.
    1. Mandal S., Barnett J., Brill S.E., Brown J.S., Denneny E.K., Hare S.S., Heightman M., Hillman T.E., Jacob J., Jarvis H.C., et al. ‘Long-COVID’: A cross-sectional study of persisting symptoms, biomarker and imaging abnormalities following hospitalisation for COVID-19. Thorax. 2021;76:396–398. doi: 10.1136/thoraxjnl-2020-215818.
    1. Daher A., Balfanz P., Cornelissen C., Müller A., Bergs I., Marx N., Müller-Wieland D., Hartmann B., Dreher M., Müller T. Follow up of patients with severe coronavirus disease 2019 (COVID-19): Pulmonary and extrapulmonary disease sequelae. Respir. Med. 2020;174:106197. doi: 10.1016/j.rmed.2020.106197.
    1. Goërtz Y.M., Van Herck M., Delbressine J.M., Vaes A.W., Meys R., Machado F.V., Houben-Wilke S., Burtin C., Posthuma R., Franssen F.M., et al. Persistent symptoms 3 months after a SARS-CoV-2 infection: The post-COVID-19 syndrome? ERJ Open Res. 2020;6:00542–02020. doi: 10.1183/23120541.00542-2020.
    1. Xiong Q., Xu M., Li J., Liu Y., Zhang J., Xu Y., Dong W. Clinical sequelae of COVID-19 survivors in Wuhan, China: A single-centre longitudinal study. Clin. Microbiol. Infect. 2021;27:89–95. doi: 10.1016/j.cmi.2020.09.023.
    1. Smet J., Stylemans D., Hanon S., Ilsen B., Verbanck S., Vanderhelst E. Clinical status and lung function 10 weeks after severe SARS-CoV-2 infection. Respir. Med. 2021;176:106276. doi: 10.1016/j.rmed.2020.106276.
    1. Taboada M., Cariñena A., Moreno E., Rodríguez N., Domínguez M.J., Casal A., Riveiro V., Diaz-Vieito M., Valdés L., Álvarez J., et al. Post-COVID-19 functional status six-months after hospitalization. J. Infect. 2020;82:e31–e33. doi: 10.1016/j.jinf.2020.12.022.
    1. McCue C., Cowan R., Quasim T., Puxty K., McPeake J. Long term outcomes of critically ill COVID-19 pneumonia patients: Early learning. Intensiv. Care Med. 2021;47:240–241. doi: 10.1007/s00134-020-06313-x.
    1. Tenforde M.W., Kim S.S., Lindsell C.J., Rose E.B., Shapiro N.I., Files D.C., Gibbs K.W., Erickson H.L., Steingrub J.S., Smithline H.A., et al. Symptom Duration and Risk Factors for Delayed Return to Usual Health Among Outpatients with COVID-19 in a Multistate Health Care Systems Network—United States, March–June 2020. MMWR Morb. Mortal. Wkly. Rep. 2020;69:993–998. doi: 10.15585/mmwr.mm6930e1.
    1. Nayor M., Houstis N.E., Namasivayam M., Rouvina J., Hardin C., Shah R.V., Ho J.E., Malhotra R., Lewis G.D. Impaired Exercise Tolerance in Heart Failure with Preserved Ejection Fraction. JACC Hear Fail. 2020;8:605–617. doi: 10.1016/j.jchf.2020.03.008.
    1. Weatherald J., Farina S., Bruno N., Laveneziana P. Cardiopulmonary Exercise Testing in Pulmonary Hypertension. Ann. Am. Thorac. Soc. 2017;14:S84–S92. doi: 10.1513/AnnalsATS.201610-788FR.
    1. Jin Y., Ji W., Yang H., Chen S., Zhang W., Duan G. Endothelial activation and dysfunction in COVID-19: From basic mechanisms to potential therapeutic approaches. Signal Transduct. Target. Ther. 2020;5:1–13. doi: 10.1038/s41392-020-00454-7.
    1. Maiese A., Manetti A.C., La Russa R., Di Paolo M., Turillazzi E., Frati P., Fineschi V. Autopsy findings in COVID-19-related deaths: A literature review. Forensic Sci. Med. Pathol. 2021;17:279–296. doi: 10.1007/s12024-020-00310-8.
    1. Ackermann M., Verleden S.E., Kuehnel M., Haverich A., Welte T., Laenger F., Vanstapel A., Werlein C., Stark H., Tzankov A., et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N. Engl. J. Med. 2020;383:120–128. doi: 10.1056/NEJMoa2015432.
    1. De Michele S., Sun Y., Yilmaz M.M., Katsyv I., Salvatore M., Dzierba A.L., Marboe C.C., Brodie D., Patel N.M., Garcia C.K., et al. Forty Postmortem Examinations in COVID-19 Patients Two Distinct Pathologic Phenotypes and Correlation with Clinical and Radiologic Findings. Am. J. Clin. Pathol. 2020;154:156. doi: 10.1093/ajcp/aqaa156.
    1. Ackermann M., Mentzer S.J., Kolb M., Jonigk D. Inflammation and intussusceptive angiogenesis in COVID-19: Everything in and out of flow. Eur. Respir. J. 2020;56:2003147. doi: 10.1183/13993003.03147-2020.
    1. Ong K.-C., Ng A.-K., Lee L.-U., Kaw G., Kwek S.-K., Leow M.-S., Earnest A. Pulmonary function and exercise capacity in survivors of severe acute respiratory syndrome. Eur. Respir. J. 2004;24:436–442. doi: 10.1183/09031936.04.00007104.
    1. Brat K., Stastna N., Merta Z., Olson L.J., Johnson B.D., Cundrle I. Cardiopulmonary exercise testing for identification of patients with hyperventilation syndrome. PLoS ONE. 2019;14:e0215997. doi: 10.1371/journal.pone.0215997.
    1. Motiejunaite J., Balagny P., Arnoult F., Mangin L., Bancal C., D’Ortho M.-P., Frija-Masson J. Hyperventilation: A Possible Explanation for Long-Lasting Exercise Intolerance in Mild COVID-19 Survivors? Front. Physiol. 2021;11:614590. doi: 10.3389/fphys.2020.614590.
    1. Crisafulli E., Gabbiani D., Magnani G., Dorelli G., Busti F., Sartori G., Senna G., Girelli D. Residual Lung Function Impairment Is Associated with Hyperventilation in Patients Recovered from Hospitalised COVID-19: A Cross-Sectional Study. J. Clin. Med. 2021;10:1036. doi: 10.3390/jcm10051036.
    1. Dorelli G., Braggio M., Gabbiani D., Busti F., Caminati M., Senna G., Girelli D., Laveneziana P., Ferrari M., Sartori G., et al. Importance of Cardiopulmonary Exercise Testing amongst Subjects Recovering from COVID-19. Diagnostics. 2021;11:507. doi: 10.3390/diagnostics11030507.

Source: PubMed

3
S'abonner