Metformin lowers serum cobalamin without changing other markers of cobalamin status: a study on women with polycystic ovary syndrome

Eva Greibe, Birgitta Trolle, Mustafa V Bor, Finn F Lauszus, Ebba Nexo, Eva Greibe, Birgitta Trolle, Mustafa V Bor, Finn F Lauszus, Ebba Nexo

Abstract

Treatment with the anti-diabetic drug metformin is followed by a decline in plasma cobalamin, but it is unsettled whether this denotes an impaired cobalamin status. This study has explored changes in the markers of cobalamin status in women with Polycystic Ovary Syndrome treated with metformin (1.5-2.5 g per day) (n = 29) or placebo (n = 23) for six months. Serum samples were collected before and after two, four, and six months of treatment. We found serum cobalamin to decline and reach significant lower levels after six months of treatment (p = 0.003). Despite the decline in serum cobalamin, we observed no reductions in the physiological active part of cobalamin bound to transcobalamin (holotranscobalamin), or increase in the metabolic marker of cobalamin status, methylmalonic acid. Instead, the non-functional part of circulating cobalamin bound to haptocorrin declined (p = 0.0009). Our results have two implications: The data questions whether metformin treatment induces an impaired cobalamin status in PCOS patients, and further suggests that serum cobalamin is a futile marker for judging cobalamin status in metformin-treated patients.

Figures

Figure 1
Figure 1
Serum markers for cobalamin status in women with Polycystic Ovary Syndrome (PCOS) on treatment with metformin or placebo. Serum cobalamin (A), holotranscobalamin (holoTC) (B), totaltranscobalamin (totalTC) (C), cobalamin-haptocorrin (Cbl-HC) (D), totalhaptocorrin (totalHC) (E), and methylmalonic acid (MMA) (F) in women with PCOS before and during treatment with metformin (black) or placebo (grey). To compare changes between baseline and a given time point, the two-tailed paired t-test or the Wilcoxon signed rank test was used. Due to incomplete sample material, the number of baseline paired samples varied with the time points (metformin: two (n = 16), four (n = 26), and six (n = 23) months; placebo: two (n = 16), four (n = 20), and six (n = 23) months). Results are presented as mean with SEM. Reference intervals for healthy adults [19,20,22,23] are indicated as a light grey fill between dotted lines. Reference interval for Cbl-HC was calculated from [20]. p-values ≤ 0.05 were considered statistical significant and are denoted with asterisks above the error bars. *1 p = 0.003, *2 p = 0.012, *3 p = 0.0009, *4 p = 0.02, *5 p = 0.02.

References

    1. Jager J., Kooy A., Lehert P., Wulffelé M.G., Kolk J., Bets D., Verburg J., Donker A.J., Stehouwer C.D. Long term treatment with metformin in patients with type 2 diabetes and risk of vitamin B-12 deficiency: Randomized placebo controlled trial. BMJ. 2010;340:c2181. doi: 10.1136/bmj.c2181.
    1. Reinstatler L., Qi Y.P., Williamson R.S., Garn J.V., Oakley G.P. Association of biochemical B12 deficiency with metformin therapy and vitamin B12 supplements. Diabetes Care. 2012;35:327–333. doi: 10.2337/dc11-1582.
    1. DeFronzo R.A., Goodman A.M. Efficacy of metformin in patients with non-insulin-dependent diabetes mellitus. The Multicenter Metformin Study Group. N. Engl. J. Med. 1995;333:541–549. doi: 10.1056/NEJM199508313330902.
    1. Tomkin G.H., Hadden D.R., Weaver J.A., Montgomery D.A. Vitamin-B12 status of patients on long-term metformin therapy. Br. Med. J. 1971;2:685–687. doi: 10.1136/bmj.2.5763.685.
    1. Wulffele M.G., Kooy A., Lehert P., Bets D., Ogterop J.C., Burg B.B., Donker A.J., Stehouwer C.D. Effects of short-term treatment with metformin on serum concentrations of homocysteine, folate and vitamin B12 in type 2 diabetes mellitus: A randomized, placebo-controlled trial. J. Intern. Med. 2003;254:455–463. doi: 10.1046/j.1365-2796.2003.01213.x.
    1. Bauman W.A., Shaw S., Jayatilleke E., Spungen A.M., Herbert V. Increased intake of calcium reverses vitamin B12 malabsorption induced by metformin. Diabetes Care. 2000;23:1227–1231. doi: 10.2337/diacare.23.9.1227.
    1. Mazokopakis E.E., Starakis I.K. Recommendations for diagnosis and management of metformin-induced vitamin B12 (Cbl) deficiency. Diabetes Res. Clin. Pract. 2012;97:359–367. doi: 10.1016/j.diabres.2012.06.001.
    1. Lord J., Wilkin T. Metformin in polycystic ovary syndrome. Curr. Opin. Obstet. Gynecol. 2004;16:481–486. doi: 10.1097/00001703-200412000-00008.
    1. Carlsen S.M., Kjotrod S., Vanky E., Romundstad P. Homocysteine levels are unaffected by metformin treatment in both nonpregnant and pregnant women with polycystic ovary syndrome. Acta Obstet. Gynecol. Scand. 2007;86:145–150. doi: 10.1080/00016340600855946.
    1. Nielsen M.J., Rasmussen M.R., Andersen C.B., Nexo E., Moestrup S.K. Vitamin B12 transport from food to the body’s cells—A sophisticated, multistep pathway. Nat. Rev. Gastroenterol. Hepatol. 2012;9:345–354. doi: 10.1038/nrgastro.2012.76.
    1. Reynolds E. Vitamin B12, folic acid, and the nervous system. Lancet Neurol. 2006;5:949–960. doi: 10.1016/S1474-4422(06)70598-1.
    1. Hvas A.M., Nexo E. Diagnosis and treatment of vitamin B12 deficiency—An update. Haematologica. 2006;91:1506–1512.
    1. Caspary W.F., Zavada I., Reimold W., Deuticke U., Emrich D., Willms B. Alteration of bile acid metabolism and vitamin-B12-absorption in diabetics on biguanides. Diabetologia. 1977;13:187–193. doi: 10.1007/BF01219698.
    1. Obeid R., Jung J., Falk J., Herrmann W., Geisel J., Friesenhahn-Ochs B., Lammert F., Fassbender K., Kostopoulos P. Serum vitamin B12 not reflecting vitamin B12 status in patients with type 2 diabetes. Biochimie. 2013;95:1056–1061. doi: 10.1016/j.biochi.2012.10.028.
    1. Greibe E., Miller J.W., Foutouhi S.H., Green R., Nexo E. Metformin increases liver accumulation of vitamin B12—An experimental study in rats. Biochimie. 2013;95:1061–1065.
    1. Trolle B., Flyvbjerg A., Kesmodel U., Lauszus F.F. Efficacy of metformin in obese and non-obese women with polycystic ovary syndrome: A randomized, double-blinded, placebo-controlled cross-over trial. Hum. Reprod. 2007;22:2967–2973. doi: 10.1093/humrep/dem271.
    1. Hustad S., Eussen S., Midttun O., Ulvik A., van de Kant P.M., Morkrid L., Gislefoss R., Ueland P.M. Kinetic modeling of storage effects on biomarkers related to B vitamin status and one-carbon metabolism. Clin. Chem. 2012;58:402–410. doi: 10.1373/clinchem.2011.174490.
    1. Nexo E., Christensen A.L., Petersen T.E., Fedosov S.N. Measurement of transcobalamin by ELISA. Clin. Chem. 2000;46:1643–1649.
    1. Nexo E., Christensen A.L., Hvas A.M., Petersen T.E., Fedosov S.N. Quantification of holo-transcobalamin, a marker of vitamin B12 deficiency. Clin. Chem. 2002;48:561–562.
    1. Morkbak A.L., Pedersen J.F., Nexo E. Glycosylation independent measurement of the cobalamin binding protein haptocorrin. Clin. Chem. Acta. 2005;356:184–190. doi: 10.1016/j.cccn.2005.01.013.
    1. Lakso H., Appelblad P., Schneede J. Quantification of Methylmalonic acid in human plasma with hydrophilic interaction liquid chromatography separation and mass spectrometric detection. Clin. Chem. 2008;54:2028–2029. doi: 10.1373/clinchem.2007.101253.
    1. Nexo E. Variation with age of reference values for P-cobalamin. Scand. J. Haematol. 1983;30:430–432. doi: 10.1111/j.1600-0609.1983.tb02530.x.
    1. Rasmussen K., Moller J., Lyngbak M., Pedersen A.M., Dybkjaer L. Age- and gender-specific reference intervals for total homocysteine and methylmalonic acid in plasma before and after vitamin supplementation. Clin. Chem. 1996;42:630–636.
    1. Leung S., Mattman A., Snyder F., Kassam R., Meneilly G., Nexo E. Metformin induced reductions in plasma cobalamin and haptocorrin bound cobalamin levels in elderly diabetic patient. Clin. Biochem. 2010;43:759–760. doi: 10.1016/j.clinbiochem.2010.02.011.
    1. Greibe E., Andreasen B.H., Lildballe D.L., Morkbak A.L., Hvas A.M., Nexo E. Uptake of cobalamin and markers of cobalamin status: A longitudinal study of healthy pregnant women. Clin. Chem. Lab. Med. 2011;49:1877–1882.

Source: PubMed

3
S'abonner