Diagnostic value of MRI proton density fat fraction for assessing liver steatosis in chronic viral C hepatitis

Francesco Paparo, Giovanni Cenderello, Matteo Revelli, Lorenzo Bacigalupo, Mariangela Rutigliani, Daniele Zefiro, Luca Cevasco, Maria Amico, Roberto Bandelloni, Giovanni Cassola, Gian Luca Forni, Gian Andrea Rollandi, Francesco Paparo, Giovanni Cenderello, Matteo Revelli, Lorenzo Bacigalupo, Mariangela Rutigliani, Daniele Zefiro, Luca Cevasco, Maria Amico, Roberto Bandelloni, Giovanni Cassola, Gian Luca Forni, Gian Andrea Rollandi

Abstract

Objective: To assess the diagnostic performance of a T1-independent, T2*-corrected multiecho magnetic resonance imaging (MRI) technique for the quantification of hepatic steatosis in a cohort of patients affected by chronic viral C hepatitis, using liver biopsy as gold standard.

Methods: Eighty-one untreated patients with chronic viral C hepatitis were prospectively enrolled. All included patients underwent MRI, transient elastography, and liver biopsy within a time interval <10 days.

Results: Our cohort of 77 patients included 43/77 (55.8%) males and 34/77 (44.2%) females with a mean age of 51.31 ± 11.27 (18-81) years. The median MRI PDFF showed a strong correlation with the histological fat fraction (FF) (r = 0.754, 95% CI 0.637 to 0.836, P < 0.0001), and the correlation was influenced by neither the liver stiffness nor the T2* decay. The median MRI PDFF result was significantly lower in the F4 subgroup (P < 0.05). The diagnostic accuracy of MRI PDFF evaluated by AUC-ROC analysis was 0.926 (95% CI 0.843 to 0.973) for S ≥ 1 and 0.929 (95% CI 0.847 to 0.975) for S = 2.

Conclusions: Our MRI technique of PDFF estimation allowed discriminating with a good diagnostic accuracy between different grades of hepatic steatosis.

Figures

Figure 1
Figure 1
Example of ROI positioning for the calculation of MRI PDFF (a), T2* (b), and R2* decay (reciprocal of T2*, expressed in Hz) (c) in a 52-year-old male patient with chronic viral C hepatitis. The histological FF of this patient was 10%, corresponding to a steatosis grade 1 (S1). Images (d), (e), and (f) show the histogram of pixel distribution with mean values ± standard deviation and medians.
Figure 2
Figure 2
Calculation of MRI PDFF in a 45-year-old male patient with chronic viral C hepatitis (a). The median MRI PDFF value is 10% (b), while histological FF of the patient was 8%, corresponding to a steatosis grade 1 (S1).
Figure 3
Figure 3
Calculation of MRI PDFF in a 45-year-old male patient with chronic viral C hepatitis (a). The median MRI PDFF value is 15% (b), while histological FF of the patient was 37%, corresponding to steatosis grade 2 (S2).
Figure 4
Figure 4
Box-and-whisker plots for MRI PDFF measurements in relation to each grade of steatosis (a), fibrosis (b), and necroinflammatory activity (c). The top and the bottom of the boxes are the first and third quartiles, respectively. The length of the box represents the interquartile range including 50% of the values. The line through the middle of each box represents the median. The error shows the minimum and maximum values (range). An outside value (separate point) is defined as a value that is smaller than the lower quartile minus 1.5 times the interquartile range or larger than the upper quartile plus 1.5 times the interquartile range.
Figure 5
Figure 5
ROC curve analysis of MRI PDFF for patients with steatosis S ≥ 1 (S0 versus S1-S2). The area under the ROC curve is 0.926 (95% CI 0.74–0.94) (a). ROC curve analysis of MRI PDFF for patients with steatosis S = 2 (S0-S1 versus S2). The area under the ROC curve is 0.929 (95% CI 0.806 to 0.968) (b).

References

    1. Negro F. Mechanisms and significance of liver steatosis in hepatitis C virus infection. World Journal of Gastroenterology. 2006;12(42):6756–6765.
    1. Asselah T., Rubbia-Brandt L., Marcellin P., Negro F. Steatosis in chronic hepatitis C: why does it really matter? Gut. 2006;55(1):123–130. doi: 10.1136/gut.2005.069757.
    1. Adinolfi L. E., Gambardella M., Andreana A., Tripodi M.-F., Utili R., Ruggiero G. Steatosis accelerates the progression of liver damage of chronic hepatitis C patients and correlates with specific HCV genotype and visceral obesity. Hepatology. 2001;33(6):1358–1364. doi: 10.1053/jhep.2001.24432.
    1. Fernández -Salazar L., Velayos B., Aller R., Lozano F., Garrote J. A., González J. M. Percutaneous liver biopsy: patients’ point of view. Scandinavian Journal of Gastroenterology. 2011;46(6):727–731. doi: 10.3109/00365521.2011.558112.
    1. Qayyum A., Chen D. M., Breiman R. S., et al. Evaluation of diffuse liver steatosis by ultrasound, computed tomography, and magnetic resonance imaging: which modality is best? Clinical Imaging. 2009;33(2):110–115. doi: 10.1016/j.clinimag.2008.06.036.
    1. Reeder S. B., Cruite I., Hamilton G., Sirlin C. B. Quantitative assessment of liver fat with magnetic resonance imaging and spectroscopy. Journal of Magnetic Resonance Imaging. 2011;34(4):p. spcone. doi: 10.1002/jmri.22775.
    1. Wu C. H., Ho M. C., Jeng Y. M., et al. Quantification of hepatic steatosis: a comparison of the accuracy among multiple magnetic resonance techniques. Journal of Gastroenterology and Hepatology. 2014;29(4):807–813.
    1. Kang B. K., Yu E. S., Lee S. S., et al. Hepatic fat quantification: a prospective comparison of magnetic resonance spectroscopy and analysis methods for chemical-shift gradient echo magnetic resonance imaging with histologic assessment as the reference standard. Investigative Radiology. 2012;47(6):368–375. doi: 10.1097/RLI.0b013e31824baff3.
    1. Bohte A. E., van Werven J. R., Bipat S., Stoker J. The diagnostic accuracy of US, CT, MRI and 1H-MRS for the evaluation of hepatic steatosis compared with liver biopsy: a meta-analysis. European Radiology. 2011;21(1):87–97. doi: 10.1007/s00330-010-1905-5.
    1. Tang A., Tan J., Sun M., et al. Nonalcoholic fatty liver disease: MR imaging of liver proton density fat fraction to assess hepatic steatosis. Radiology. 2013;267(2):422–431. doi: 10.1148/radiol.12120896.
    1. Yokoo T., Bydder M., Hamilton G., et al. Nonalcoholic fatty liver disease: diagnostic and fat-grading accuracy of low-flip-angle multiecho gradient-recalled-echo MR imaging at 1.5 T. Radiology. 2009;251(1):67–76. doi: 10.1148/radiol.2511080666.
    1. Meisamy S., Hines C. D., Hamilton G., et al. Quantification of hepatic steatosis with T1-independent, T2-corrected MR imaging with spectral modeling of fat: blinded comparison with MR spectroscopy. Radiology. 2011;258(3):767–775. doi: 10.1148/radiol.10100708.
    1. Guiu B., Petit J.-M., Loffroy R., et al. Quantification of liver fat content: comparison of triple-echo chemical shift gradient-echo imaging and in vivo proton MR spectroscopy. Radiology. 2009;250(1):95–102. doi: 10.1148/radiol.2493080217.
    1. Mehta S. R., Thomas E. L., Bell J. D., Johnston D. G., Taylor-Robinson S. D. Non-invasive means of measuring hepatic fat content. World Journal of Gastroenterology. 2008;14(22):3476–3483.
    1. Awai H. I., Newton K. P., Sirlin C. B., Behling C., Schwimmer J. B. Evidence and recommendations for imaging liver fat in children, based on systematic review. Clinical Gastroenterology and Hepatology. 2014;12(5):765–773. doi: 10.1016/j.cgh.2013.09.050.
    1. Fischer M. A., Nanz D., Reiner C. S., et al. Diagnostic performance and accuracy of 3-D spoiled gradient-dual-echo mri with water-and fat-signal separation in liver-fat quantification: comparison to liver biopsy. Investigative Radiology. 2010;45(8):465–470. doi: 10.1097/RLI.0b013e3181da1343.
    1. Kühn J.-P., Evert M., Friedrich N., et al. Noninvasive quantification of hepatic fat content using three-echo Dixon magnetic resonance imaging with correction for t2∗ relaxation effects. Investigative Radiology. 2011;46(12):783–789. doi: 10.1097/RLI.0b013e31822b124c.
    1. Henninger B., Kremser C., Rauch S., et al. Evaluation of liver fat in the presence of iron with MRI using T2∗ correction: a clinical approach. European Radiology. 2013;23(6):1643–1649. doi: 10.1007/s00330-012-2745-2.
    1. Bydder M., Yokoo T., Hamilton G., et al. Relaxation effects in the quantification of fat using gradient echo imaging. Magnetic Resonance Imaging. 2008;26(3):347–359. doi: 10.1016/j.mri.2007.08.012.
    1. Yu H., McKenzie C. A., Shimakawa A., et al. Multiecho reconstruction for simultaneous water-fat decomposition and T2* estimation. Journal of Magnetic Resonance Imaging. 2007;26(4):1153–1161. doi: 10.1002/jmri.21090.
    1. Idilman I. S., Aniktar H., Idilman R., et al. Hepatic steatosis: quantification by proton density fat fraction with MR imaging versus liver biopsy. Radiology. 2013;267(3):767–775. doi: 10.1148/radiol.13121360.
    1. Yu H., Shimakawa A., McKenzie C. A., Brodsky E., Brittain J. H., Reeder S. B. Multiecho water-fat separation and simultaneous R 2 ∗ estimation with multifrequency fat spectrum modeling. Magnetic Resonance in Medicine. 2008;60(5):1122–1134. doi: 10.1002/mrm.21737.
    1. Idilman I. S., Keskin O., Elhan A. H., Idilman R., Karcaaltincaba M. Impact of sequential proton density fat fraction for quantification of hepatic steatosis in nonalcoholic fatty liver disease. Scandinavian Journal of Gastroenterology. 2014;49(5):617–624. doi: 10.3109/00365521.2014.894118.
    1. Ghotb A., Noworolski S. M., Madden E., et al. Adipose tissue and metabolic factors associated with steatosis in HIV/HCV coinfection: histology versus magnetic resonance spectroscopy. Journal of Acquired Immune Deficiency Syndromes. 2010;55(2):228–231. doi: 10.1097/QAI.0b013e3181e1d963.
    1. Mitchell D. G., Navarro V. J., Herrine S. K., et al. Compensated hepatitis C: unenhanced MR imaging correlated with pathologic grading and staging. Abdominal Imaging. 2008;33(1):58–64. doi: 10.1007/s00261-007-9203-7.
    1. Orlacchio A., Bolacchi F., Cadioli M., et al. Evaluation of the severity of chronic hepatitis C with 3-T1H-MR spectroscopy. The American Journal of Roentgenology. 2008;190(5):1331–1339. doi: 10.2214/AJR.07.2262.
    1. Dewey M., Schink T., Dewey C. F. Frequency of referral of patients with safety-related contraindications to magnetic resonance imaging. European Journal of Radiology. 2007;63(1):124–127. doi: 10.1016/j.ejrad.2007.01.025.
    1. Thampanitchawong P., Piratvisuth T. Liver biopsy: complications and risk factors. World Journal of Gastroenterology. 1999;5(4):301–304.
    1. Angelucci E., Giovagnoni A., Valeri G., et al. Limitations of magnetic resonance imaging in measurement of hepatic iron. Blood. 1997;90(12):4736–4742.
    1. Paparo F., Cevasco L., Zefiro D., et al. Diagnostic value of real-time elastography in the assessment ofhepatic fibrosis in patients with liver iron overload. European Journal of Radiology. 2013;82(12):e755–e761. doi: 10.1016/j.ejrad.2013.08.038.
    1. Sandrin L., Fourquet B., Hasquenoph J. M., et al. Transient elastography: a new noninvasive method for assessment of hepatic fibrosis. Ultrasound in Medicine and Biology. 2003;29(12):1705–1713. doi: 10.1016/j.ultrasmedbio.2003.07.001.
    1. Ziol M., Handra-Luca A., Kettaneh A., et al. Noninvasive assessment of liver fibrosis by measurement of stiffness in patients with chronic hepatitis C. Hepatology. 2005;41(1):48–54. doi: 10.1002/hep.20506.
    1. Bedossa P., Poynard T. An algorithm for the grading of activity in chronic hepatitis C. Hepatology. 1996;24(2):289–293. doi: 10.1053/jhep.1996.v24.pm0008690394.
    1. Theise N. D. Liver biopsy assessment in chronic viral hepatitis: a personal, practical approach. Modern Pathology. 2007;20(supplement 1):S3–S14.
    1. Kleiner D. E., Brunt E. M., Van Natta M., et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41(6):1313–1321. doi: 10.1002/hep.20701.
    1. Bülow R., Mensel B., Meffert P., Hernando D., Evert M., Kühn J. P. Diffusion-weighted magnetic resonance imaging for staging liver fibrosis is less reliable in the presence of fat and iron. European Radiology. 2013;23(5):1281–1287. doi: 10.1007/s00330-012-2700-2.
    1. Bedossa P., Dargère D., Paradis V. Sampling variability of liver fibrosis in chronic hepatitis C. Hepatology. 2003;38(6):1449–1457. doi: 10.1016/j.hep.2003.09.022.
    1. Marshall R. H., Eissa M., Bluth E. I., Gulotta P. M., Davis N. K. Hepatorenal index as an accurate, simple, and effective tool in screening for steatosis. American Journal of Roentgenology. 2012;199(5):997–1002. doi: 10.2214/AJR.11.6677.
    1. Rubbia-Brandt L., Quadri R., Abid K., et al. Hepatocyte steatosis is a cytopathic effect of hepatitis C virus genotype 3. Journal of Hepatology. 2000;33(1):106–115. doi: 10.1016/S0168-8278(00)80166-X.
    1. Kumar D., Farrell G. C., Fung C., George J. Hepatitis C virus genotype 3 is cytopathic to hepatocytes: reversal of hepatic steatosis after sustained therapeutic response. Hepatology. 2002;36(5):1266–1272. doi: 10.1053/jhep.2002.36370.
    1. Rubbia-Brandt L., Fabris P., Paganin S., et al. Steatosis affects chronic hepatitis C progression in a genotype specific way. Gut. 2004;53(3):406–412. doi: 10.1136/gut.2003.018770.
    1. Abdelmalek M., Ludwig J., Lindor K. D. Two cases from the spectrum of nonalcoholic steatohepatitis. Journal of Clinical Gastroenterology. 1995;20(2):127–130. doi: 10.1097/00004836-199503000-00011.
    1. Fartoux L., Chazouillères O., Wendum D., Poupon R., Serfaty L. Impact of steatosis on progression of fibrosis in patients with mild hepatitis C. Hepatology. 2005;41(1):82–87. doi: 10.1002/hep.20519.
    1. Pirisi M., Scott C. A., Avellini C., et al. Iron deposition and progression of disease in chronic hepatitis C: role of interface hepatitis, portal inflammation, and HFE missense mutations. American Journal of Clinical Pathology. 2000;113(4):546–554. doi: 10.1309/TRB1-JXUJ-L9R6-9NHX.

Source: PubMed

3
S'abonner