Progression of Postprandial Blood Plasma Phospholipids Following Acute Intake of Different Dairy Matrices: A Randomized Crossover Trial

Rebekka Thøgersen, Ida Emilie I Lindahl, Bekzod Khakimov, Louise Kjølbæk, Klaus Juhl Jensen, Arne Astrup, Marianne Hammershøj, Anne Raben, Hanne Christine Bertram, Rebekka Thøgersen, Ida Emilie I Lindahl, Bekzod Khakimov, Louise Kjølbæk, Klaus Juhl Jensen, Arne Astrup, Marianne Hammershøj, Anne Raben, Hanne Christine Bertram

Abstract

Studies have indicated that the dairy matrix can affect postprandial responses of dairy products, but little is known about the effect on postprandial plasma phospholipid levels. This study investigated postprandial plasma phospholipid levels following consumption of four different dairy products that are similar in micro and macro nutrients, but different in texture and structure: cheddar cheese (Cheese), homogenized cheddar cheese (Hom. Cheese), micellar casein isolate with cream (MCI Drink) or a gel made from the MCI Drink (MCI Gel). The study was an acute randomized, crossover trial in human volunteers with four test days. Blood samples were collected during an 8 h postprandial period and the content of 53 plasma phospholipids was analysed using liquid chromatography-mass spectrometry (LC-MS). No meal-time interactions were revealed; however, for nine of the 53 phospholipids, a meal effect was found. Thus, the results indicated a lower plasma level of specific lyso-phosphatidylethanolamines (LPEs) and lyso-phosphatidylcholines (LPCs) following consumption of the MCI Gel compared to the MCI Drink and Hom. Cheese, which might be attributed to an effect of viscosity. However, further studies are needed in order to reveal more details on the effect of the dairy matrix on postprandial phospholipids.

Keywords: casein; cheese; food structure; milk phospholipids; phospholipidomics.

Conflict of interest statement

R.T., I.E.I.L., B.K., L.K., M.H., A.R. and H.C.B. declare no conflict of interest. K.J.J. is employed by Arla Foods Amba, Denmark. AA is currently employed by the Novo Nordisk Foundation to establish a National Centre for Healthy Weight in Denmark. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
(A) Relative level of LPE 18:1 in plasma samples. Data were analyzed by repeated measures using a linear mixed model. Overall participant and within-visit participant differences were included as random factors and the analyses were adjusted for BMI, age and visit. q-values indicate FDR-adjusted p-values for meal–time interactions (qmeal*time), the effect of meal (qmeal) and the effect of time (qtime). * indicate significant differences (q < 0.05). (B) p-values obtained from Tukey’s all-pairwise comparison conducted when a significant meal effect was observed in repeated measures analysis. # indicate significant differences (p < 0.05).
Figure 2
Figure 2
(A) Relative level of LPC 16:3 in plasma samples. Data were analyzed by repeated measures using a linear mixed model. Overall participant and within-visit participant differences were included as random factors and the analyses were adjusted for BMI, age and visit. q-values indicate FDR-adjusted p-values for meal–time interactions (qmeal * time), the effect of meal (qmeal) and the effect of time (qtime). * indicate significant differences (q < 0.05). (B) p-values obtained from Tukey’s all-pairwise comparison conducted when a significant meal effect was observed in repeated measures analysis. # indicate significant differences (p < 0.05).
Figure 3
Figure 3
Study design.

References

    1. Van Staveren W.A., de Groot L.C. Evidence-based dietary guidance and the role of dairy products for appropriate nutrition in the elderly. J. Am. Coll. Nutr. 2011;30(Suppl. 1):429–437. doi: 10.1080/07315724.2011.10719987.
    1. Lovegrove J.A. Dietary dilemmas over fats and cardiometabolic risk. Proc. Nutr. Soc. 2020;79:11–21. doi: 10.1017/S0029665119000983.
    1. Astrup A., Bertram H.C.S., Bonjour J.-P., de Groot L.C.P., de Oliveira Otto M.C., Feeney E.L., Garg M.L., Givens I., Kok F.J., Krauss R.M., et al. WHO draft guidelines on dietary saturated and trans fatty acids: Time for a new approach? BMJ. 2019;366:l4137. doi: 10.1136/bmj.l4137.
    1. Feeney E.L., Barron R., Dible V., Hamilton Z., Power Y., Tanner L., Flynn C., Bouchier P., Beresford T., Noronha N., et al. Dairy matrix effects: Response to consumption of dairy fat differs when eaten within the cheese matrix—A randomized controlled trial. Am. J. Clin. Nutr. 2018;108:667–674. doi: 10.1093/ajcn/nqy146.
    1. Soerensen K.V., Thorning T.K., Astrup A., Kristensen M., Lorenzen J.K. Effect of dairy calcium from cheese and milk on fecal fat excretion, blood lipids, and appetite in young men. Am. J. Clin. Nutr. 2014;99:984–991. doi: 10.3945/ajcn.113.077735.
    1. Hjerpsted J., Leedo E., Tholstrup T. Cheese intake in large amounts lowers LDL-cholesterol concentrations compared with butter intake of equal fat content. Am. J. Clin. Nutr. 2011;94:1479–1484. doi: 10.3945/ajcn.111.022426.
    1. Thorning T.K., Bertram H.C., Bonjour J.-P., De Groot L., Dupont D., Feeney E., Ipsen R., Lecerf J.M., Mackie A., McKinley M.C., et al. Whole dairy matrix or single nutrients in assessment of health effects: Current evidence and knowledge gaps. Am. J. Clin. Nutr. 2017;105:1033–1045. doi: 10.3945/ajcn.116.151548.
    1. Fardet A., Dupont D., Rioux L.-E., Turgeon S.L. Influence of food structure on dairy protein, lipid and calcium bioavailability: A narrative review of evidence. Crit. Rev. Food Sci. Nutr. 2019;59:1987–2010. doi: 10.1080/10408398.2018.1435503.
    1. Lorenzen J.K., Astrup A. Dairy calcium intake modifies responsiveness of fat metabolism and blood lipids to a high-fat diet. Br. J. Nutr. 2011;105:1823–1831. doi: 10.1017/S0007114510005581.
    1. Lorenzen J.K., Jensen S.K., Astrup A. Milk minerals modify the effect of fat intake on serum lipid profile: Results from an animal and a human short-term study. Br. J. Nutr. 2014;111:1412–1420. doi: 10.1017/S0007114513003826.
    1. Ayala-Bribiesca E., Turgeon S.L., Britten M. Effect of calcium on fatty acid bioaccessibility during in vitro digestion of Cheddar-type cheeses prepared with different milk fat fractions. J. Dairy Sci. 2017;100:2454–2470. doi: 10.3168/jds.2016-11902.
    1. Ayala-Bribiesca E., Turgeon S.L., Pilon G., Marette A., Britten M. Postprandial lipemia and fecal fat excretion in rats is affected by the calcium content and type of milk fat present in Cheddar-type cheeses. Food Res. Int. 2018;107:589–595. doi: 10.1016/j.foodres.2018.02.058.
    1. Torcello-Gómez A., Boudard C., Mackie A.R. Calcium Alters the Interfacial Organization of Hydrolyzed Lipids during Intestinal Digestion. Langmuir. 2018;34:7536–7544. doi: 10.1021/acs.langmuir.8b00841.
    1. Vors C.L., Joumard-Cubizolles M., Lecomte E., Combe L., Ouchchane J., Drai K., Raynal F., Joffre L., Meiller M., Le Barz P., et al. Milk polar lipids reduce lipid cardiovascular risk factors in overweight postmenopausal women: Towards a gut sphingomyelin-cholesterol interplay. Gut. 2020;69:487–501. doi: 10.1136/gutjnl-2018-318155.
    1. Noh S.K., Koo S.I. Milk Sphingomyelin Is More Effective than Egg Sphingomyelin in Inhibiting Intestinal Absorption of Cholesterol and Fat in Rats. J. Nutr. 2004;134:2611–2616. doi: 10.1093/jn/134.10.2611.
    1. Wat E., Tandy S., Kapera E., Kamili A., Chung R.W., Brown A., Rowney M., Cohn J.S. Dietary phospholipid-rich dairy milk extract reduces hepatomegaly, hepatic steatosis and hyperlipidemia in mice fed a high-fat diet. Atherosclerosis. 2009;205:144–150. doi: 10.1016/j.atherosclerosis.2008.12.004.
    1. Kamili A., Wat E., Chung R.W., Tandy S., Weir J.M., Meikle P.J., Cohn J.S. Hepatic accumulation of intestinal cholesterol is decreased and fecal cholesterol excretion is increased in mice fed a high-fat diet supplemented with milk phospholipids. Nutr. Metab. 2010;7:90. doi: 10.1186/1743-7075-7-90.
    1. LeComte M., Bourlieu C., Fouilloux-Meugnier E., Penhoat A., Cheillan D., Pineau G., Loizon E., Trauchessec M., Claude M., Ménard O., et al. Milk Polar Lipids Affect In Vitro Digestive Lipolysis and Postprandial Lipid Metabolism in Mice. J. Nutr. 2015;145:1770–1777. doi: 10.3945/jn.115.212068.
    1. Lindahl I.E.I., Artegoitia V.M., Downey E., O’Mahony J.A., O’Shea C.-A., Ryan C.A., Kelly A.L., Bertram H.C., Sundekilde U.K. Quantification of Human Milk Phospholipids: The Effect of Gestational and Lactational Age on Phospholipid Composition. Nutrients. 2019;11:222. doi: 10.3390/nu11020222.
    1. Kjølbæk L., Schmidt J.M., Rouy E., Jensen K.J., Astrup A., Bertram H.C., Hammershøj M., Raben A. Matrix structure of cheese products results in different postprandial lipid responses: A randomized, crossover trial. Am. J. Clin. Nutr. 2021 doi: 10.1093/ajcn/nqab220. accepted for publication.
    1. Schmidt J.M., Kjølbæk L., Jensen K.J., Rouy E., Bertram H.C., Larsen T., Raben A., Astrup A., Hammershøj M. Influence of type of dairy matrix micro- and macrostructure on in vitro lipid digestion. Food Funct. 2020;11:4960–4972. doi: 10.1039/D0FO00785D.
    1. Drouin-Chartier J.-P., Tremblay A.J., Maltais-Giguère J., Charest A., Guinot L., Rioux L.-E., Labrie S., Britten M., Lamarche B., Turgeon S.L., et al. Differential impact of the cheese matrix on the postprandial lipid response: A randomized, crossover, controlled trial. Am. J. Clin. Nutr. 2017;106:1358–1365. doi: 10.3945/ajcn.117.165027.
    1. Anto L., Warykas S.W., Torres-Gonzalez M., Blesso C.N. Milk Polar Lipids: Underappreciated Lipids with Emerging Health Benefits. Nutrients. 2020;12:1001. doi: 10.3390/nu12041001.
    1. Contarini G., Povolo M. Phospholipids in Milk Fat: Composition, Biological and Technological Significance, and Analytical Strategies. Int. J. Mol. Sci. 2013;14:2808–2831. doi: 10.3390/ijms14022808.
    1. Mazzei J.C., Zhou H., Brayfield B.P., Hontecillas R., Bassaganya-Riera J., Schmelz E.M. Suppression of intestinal inflammation and inflammation-driven colon cancer in mice by dietary sphingomyelin: Importance of peroxisome proliferator-activated receptor γ expression. J. Nutr. Biochem. 2011;22:1160–1171. doi: 10.1016/j.jnutbio.2010.09.017.
    1. Norris G.H., Jiang C., Ryan J., Porter C.M., Blesso C.N. Milk sphingomyelin improves lipid metabolism and alters gut microbiota in high fat diet-fed mice. J. Nutr. Biochem. 2016;30:93–101. doi: 10.1016/j.jnutbio.2015.12.003.
    1. Averill M., Rubinow K.B., Cain K., Wimberger J., Babenko I., Becker J.O., Foster-Schubert K.E., Cummings D.E., Hoofnagle A.N., Vaisar T. Postprandial remodeling of high-density lipoprotein following high saturated fat and high carbohydrate meals. J. Clin. Lipidol. 2020;14:66–76.e11. doi: 10.1016/j.jacl.2019.11.002.
    1. Meikle P.J., Barlow C., Mellett N.A., Mundra P.A., Bonham M., Larsen E.A., Cameron-Smith D., Sinclair A.J., Nestel P.J., Wong G. Postprandial Plasma Phospholipids in Men Are Influenced by the Source of Dietary Fat. J. Nutr. 2015;145:2012–2018. doi: 10.3945/jn.115.210104.
    1. Chatelaine H., Dey P., Mo X., Mah E., Bruno R.S., Kopec R.E. Vitamin A and D Absorption in Adults with Metabolic Syndrome versus Healthy Controls: A Pilot Study Utilizing Targeted and Untargeted LC–MS Lipidomics. Mol. Nutr. Food Res. 2021;65:e2000413. doi: 10.1002/mnfr.202000413.
    1. Weiland A., Bub A., Barth S.W., Schrezenmeir J., Pfeuffer M. Effects of dietary milk- and soya-phospholipids on lipid-parameters and other risk indicators for cardiovascular diseases in overweight or obese men—Two double-blind, randomised, controlled, clinical trials. J. Nutr. Sci. 2016;5:e21. doi: 10.1017/jns.2016.9.
    1. Hussain M.M. Intestinal lipid absorption and lipoprotein formation. Curr. Opin. Lipidol. 2014;25:200–206. doi: 10.1097/MOL.0000000000000084.
    1. Sanggaard K.M., Holst J.J., Rehfeld J.F., Sandström B., Raben A., Tholstrup T. Different effects of whole milk and a fermented milk with the same fat and lactose content on gastric emptying and postprandial lipaemia, but not on glycaemic response and appetite. Br. J. Nutr. 2004;92:447–459. doi: 10.1079/BJN20041219.
    1. Ehrlein H.-J., Pröve J. Effect of viscosity of test meals on gastric emptying in dogs. Q. J. Exp. Physiol. 1982;67:419–425. doi: 10.1113/expphysiol.1982.sp002657.
    1. Armand M., Pasquier B., André M., Borel P., Senft M., Peyrot J., Salducci J., Portugal H., Jaussan V., Lairon D. Digestion and absorption of 2 fat emulsions with different droplet sizes in the human digestive tract. Am. J. Clin. Nutr. 1999;70:1096–1106. doi: 10.1093/ajcn/70.6.1096.
    1. Jukkola A., Rojas O.J. Milk fat globules and associated membranes: Colloidal properties and processing effects. Adv. Colloid Interface Sci. 2017;245:92–101. doi: 10.1016/j.cis.2017.04.010.
    1. Bligh E.G., Dyer W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959;37:911–917. doi: 10.1139/o59-099.
    1. Liebisch G., Vizcaino J.A., Köfeler H., Trötzmüller M., Griffiths W., Schmitz G., Spener F., Wakelam M. Shorthand notation for lipid structures derived from mass spectrometry. J. Lipid Res. 2013;54:1523–1530. doi: 10.1194/jlr.M033506.
    1. Benjamini Y., Hochberg Y. Controlling the False Discovery Rate—A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B. 1995;57:289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x.

Source: PubMed

3
S'abonner