Effect of a Weight Loss and Lifestyle Intervention on Dietary Behavior in Men with Obstructive Sleep Apnea: The INTERAPNEA Trial

Almudena Carneiro-Barrera, Francisco J Amaro-Gahete, Lucas Jurado-Fasoli, Germán Sáez-Roca, Carlos Martín-Carrasco, Francisco J Tinahones, Jonatan R Ruiz, Almudena Carneiro-Barrera, Francisco J Amaro-Gahete, Lucas Jurado-Fasoli, Germán Sáez-Roca, Carlos Martín-Carrasco, Francisco J Tinahones, Jonatan R Ruiz

Abstract

This study investigated the effects of an eight-week interdisciplinary weight loss and lifestyle intervention on dietary behavior in men who were overweight/had obesity and moderate-to-severe obstructive sleep apnea (OSA). It was based on data from INTERAPNEA (ClinicalTrials.gov ID: NCT03851653); a randomized clinical trial conducted from April 2019 to April 2020. Men aged 18-65 years with moderate-to-severe OSA and a body mass index ≥25 kg/m2 were randomly assigned to a usual-care group or an eight-week interdisciplinary weight loss and lifestyle intervention combined with usual-care. Dietary behavior was assessed through the Food Behavior Checklist (FBC) and the Mediterranean Diet Adherence Screener (MEDAS). Of the 89 participants who underwent randomization, 75 completed the intervention endpoint assessment, 89 participants being therefore included in the intention-to-treat analyses, and 75 in the per-protocol approach. As compared with usual-care, the intervention group had greater improvements at intervention endpoint in dietary behavior, as measured by the FBC total score (20% increase in FBC total score, mean between-group difference, 8.7; 95% confidence interval, 5.7 to 11.7), and MEDAS total score (33% increase in MEDAS total score, mean between-group difference, 2.1; 95% CI 1.3 to 2.9). At 6 months after intervention, the intervention group also had greater improvements in both the FBC total score (15% increase) and MEDAS total score (25% increase), with mean between-group differences of 7.7 (CI 95%, 4.4 to 10.9) and 1.7 (CI 95%, 0.9 to 2.6), respectively. An eight-week interdisciplinary weight loss and lifestyle intervention resulted in meaningful and sustainable improvements in dietary behavior, including adherence to the Mediterranean diet in men who were overweight/ had obesity and CPAP-treated moderate-to-severe OSA.

Keywords: Mediterranean diet; dietary behavior; lifestyle intervention; obesity; obstructive sleep apnea; weight loss.

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Figures

Figure 1
Figure 1
Flow-chart diagram of the INTERAPNEA randomized clinical trial.
Figure 2
Figure 2
Dietary behavior outcomes. The ends of the boxes in the boxplots are located at the first and third quartiles, with the black line in the middle illustrating the median. Whiskers extend to the upper and lower adjacent values, the location of the furthest point within a distance of 1.5 interquartile ranges from the first and third quartiles. The parallel line plot contains 1 vertical line for each patient, which extends from their baseline value to their 8-week value (A,B) or 6-month value (C,D). Ascending lines indicate an improvement in the outcome. Baseline values are placed in ascending order for the control group and descending order for the intervention group. (A,C), The Food Behavior Checklist assesses dietary behavior (range, 23–85; higher scores indicate healthier dietary behavior) [45]. (B,D), The Mediterranean Diet Adherence Screener assesses adherence to the Mediterranean diet (range, 0–14; higher scores indicate greater adherence; scores ≥ 10 indicate high adherence to the Mediterranean diet) [46].
Figure 3
Figure 3
Association of changes in dietary behavior over time with changes in sleep outcomes. Each dot represents one of three separate observations (baseline, 8 weeks and 6 months after intervention) of dietary behavior—as measured by the Food Behavior Checklist (AC) and Mediterranean Diet Adherence Screener (DF)—and sleep outcomes for a participant. Observations from the same participant are given the same color, with corresponding lines to show the repeated measures correlation fit for each participant. (AC) The Food Behavior Checklist assesses dietary behavior (range, 23–85; higher scores indicate healthier dietary behavior) [45]. (DF) The Mediterranean Diet Adherence Screener assesses adherence to the Mediterranean diet (range, 0–14; higher scores indicate greater adherence; scores ≥ 10 indicate high adherence to the Mediterranean diet) [46].
Figure 4
Figure 4
Association of changes in dietary behavior over time with changes in body weight and composition outcomes. Each dot represents one of three separate observations (baseline, 8 weeks and 6 months after intervention) of dietary behavior—as measured by the Food Behavior Checklist (AC) and Mediterranean Diet Adherence Screener (DF)—and body weight and composition outcomes for a participant. Observations from the same participant are given the same color, with corresponding lines to show the repeated measures correlation fit for each participant. (AC) The Food Behavior Checklist assesses dietary behavior (range, 23–85; higher scores indicate healthier dietary behavior) [45]. (DF) The Mediterranean Diet Adherence Screener assesses adherence to the Mediterranean diet (range, 0–14; higher scores indicate greater adherence; scores ≥ 10 indicate high adherence to the Mediterranean diet) [46].
Figure 5
Figure 5
Association of changes in dietary behavior over time with changes in body circumferences outcomes Each dot represents one of three separate observations (baseline, 8 weeks and 6 months after intervention) of dietary behavior—as measured by the Food Behavior Checklist (AC) and Mediterranean Diet Adherence Screener (DF)—and body circumferences outcomes for a participant. Observations from the same participant are given the same color, with corresponding lines to show the repeated measures correlation fit for each participant. (AC) The Food Behavior Checklist assesses dietary behavior (range, 23–85; higher scores indicate healthier dietary behavior) [45]. (DF) The Mediterranean Diet Adherence Screener assesses adherence to the Mediterranean diet (range, 0–14; higher scores indicate greater adherence; scores ≥ 10 indicate high adherence to the Mediterranean diet) [46].

References

    1. Benjafield A.V., Ayas N.T., Eastwood P.R., Heinzer R., Ip M.S.M., Morrell M.J., Nunez C.M., Patel S.R., Penzel T., Pépin J.L., et al. Estimation of the global prevalence and burden of obstructive sleep apnoea: A literature-based analysis. Lancet Respir. Med. 2019;7:687–698. doi: 10.1016/S2213-2600(19)30198-5.
    1. Carneiro-Barrera A., Amaro-Gahete F.J., Sáez-Roca G., Martín-Carrasco C., Ruiz J.R., Buela-Casal G. Anxiety and depression in patients with obstructive sleep apnoea before and after continuous positive airway pressure: The ADIPOSA study. J. Clin. Med. 2019;8:2099. doi: 10.3390/jcm8122099.
    1. Almendros I., Martinez-Garcia M.A., Farré R., Gozal D. Obesity, sleep apnea, and cancer. Int. J. Obes. 2020;44:1653–1667. doi: 10.1038/s41366-020-0549-z.
    1. Yeghiazarians Y., Jneid H., Tietjens J.R., Redline S., Brown D.L., El-Sherif N., Mehra R., Bozkurt B., Ndumele C.E., Somers V.K. Obstructive Sleep Apnea and Cardiovascular Disease: A Scientific Statement From the American Heart Association. Circulation. 2021;144:e56–e67. doi: 10.1161/CIR.0000000000000988.
    1. Urbanik D., Gać P., Martynowicz H., Podgórski M., Poręba M., Mazur G., Poręba R. Obstructive Sleep Apnea as a Predictor of Arrhythmias in 24-h ECG Holter Monitoring. Brain Sci. 2021;11:486. doi: 10.3390/brainsci11040486.
    1. Bittencourt L., Javaheri S., Servantes D.M., Kravchychyn A.C.P., Almeida D.R., Tufik S. In patients with heart failure, enhanced ventilatory response to exercise is associated with severe obstructive sleep apnea. J. Clin. Sleep Med. 2021;17:1875–1880. doi: 10.5664/jcsm.9396.
    1. Michalek-Zrabkowska M., Macek P., Martynowicz H., Gac P., Mazur G., Grzeda M., Poreba R. Obstructive Sleep Apnea as a Risk Factor of Insulin Resistance in Nondiabetic Adults. Life. 2021;11:50. doi: 10.3390/life11010050.
    1. Sanderson J.E., Fang F., Lu M., Ma C.Y., Wei Y.X. Obstructive sleep apnoea, intermittent hypoxia and heart failure with a preserved ejection fraction. Heart. 2021;107:190–194. doi: 10.1136/heartjnl-2020-317326.
    1. Urbanik D., Gać P., Martynowicz H., Poręba M., Podgórski M., Negrusz-Kawecka M., Mazur G., Sobieszczańska M., Poręba R. Obstructive sleep apnea as a predictor of reduced heart rate variability. Sleep Med. 2019;54:8–15. doi: 10.1016/j.sleep.2018.09.014.
    1. Gać P., Urbanik D., Macek P., Martynowicz H., Mazur G., Poręba R. Coexistence of cardiovascular risk factors and obstructive sleep apnoea in polysomnography. Respir. Physiol. Neurobiol. 2022;295:103782. doi: 10.1016/j.resp.2021.103782.
    1. Basner R.C. Continuous positive airway pressure for obstructive sleep apnea. N. Eng. J. Med. 2007;356:1751–1758. doi: 10.1056/NEJMct066953.
    1. Rotenberg B.W., Murariu D., Pang K.P. Trends in CPAP adherence over twenty years of data collection: A flattened curve. J. Otolaryngol. Head Neck Surg. 2016;45:43. doi: 10.1186/s40463-016-0156-0.
    1. Barbé F., Durán-Cantolla J., Sánchez-de-la-Torre M., Martínez-Alonso M., Carmona C., Barceló A., Chiner E., Masa J.F., Gonzalez M., Marín J.M., et al. Effect of continuous positive airway pressure on the incidence of hypertension and cardiovascular events in nonsleepy patients with obstructive sleep apnea: A randomized controlled trial. JAMA. 2012;307:2161–2168. doi: 10.1001/jama.2012.4366.
    1. McEvoy R.D., Antic N.A., Heeley E., Luo Y., Ou Q., Zhang X., Mediano O., Chen R., Drager L.F., Liu Z., et al. CPAP for prevention of cardiovascular events in obstructive sleep apnea. N. Engl. J. Med. 2016;375:919–931. doi: 10.1056/NEJMoa1606599.
    1. Sánchez-de-la-Torre M., Sánchez-de-la-Torre A., Bertran S., Abad J., Duran-Cantolla J., Cabriada V., Mediano O., Masdeu M.J., Alonso M.L., Masa J.F., et al. Effect of obstructive sleep apnoea and its treatment with continuous positive airway pressure on the prevalence of cardiovascular events in patients with acute coronary syndrome (ISAACC study): A randomised controlled trial. Lancet Respir. Med. 2020;8:359–367. doi: 10.1016/S2213-2600(19)30271-1.
    1. Ong C.W., O’Driscoll D.M., Truby H., Naughton M.T., Hamilton G.S. The reciprocal interaction between obesity and obstructive sleep apnoea. Sleep Med. Rev. 2013;17:123–131. doi: 10.1016/j.smrv.2012.05.002.
    1. Epstein L.J., Kristo D., Strollo P.J., Friedman N., Malhotra A., Patil S.P., Ramar K., Rogers R., Schwab R.J., Weaver E.M., et al. Clinical guideline for the evaluation, management and long-term care of obstructive sleep apnea in adults. J. Clin. Sleep Med. 2009;5:263–276.
    1. Hudgel D.W., Patel S.R., Ahasic A.M., Bartlett S.J., Bessesen D.H., Coaker M.A., Fiander P.M., Grunstein R.R., Gurubhagavatula I., Kapur V.K., et al. The role of weight management in the treatment of adult obstructive sleep apnea: An official American Thoracic Society clinical practice guideline. Am. J. Respir. Crit. Care Med. 2018;198:e70–e87. doi: 10.1164/rccm.201807-1326ST.
    1. Carneiro-Barrera A., Díaz-Román A., Guillén-Riquelme A., Buela-Casal G. Weight loss and lifestyle interventions for obstructive sleep apnoea in adults: Systematic review and meta-analysis. Obes. Rev. 2019;20:750–762. doi: 10.1111/obr.12824.
    1. Carneiro-Barrera A., Amaro-Gahete F.J., Guillén-Riquelme A., Jurado-Fasoli L., Sáez-Roca G., Martín-Carrasco C., Buela-Casal G., Ruiz J.R. Effect of an interdisciplinary weight loss and lifestyle intervention on obstructive sleep apnea severity: The INTERAPNEA randomized clinical trial. JAMA Netw. Open. 2022;5:e228212. doi: 10.1001/jamanetworkopen.2022.8212.
    1. Foster G.D., Borradaile K.E., Sanders M.H., Millman R., Zammit G., Newman A.B., Wadden T.A., Kelley D., Wing R.R., Pi-Sunyer F.X., et al. A randomized study on the effect of weight loss on obstructive sleep apnea among obese patients with type 2 diabetes: The Sleep AHEAD study. Arch. Intern. Med. 2009;169:1619–1626. doi: 10.1001/archinternmed.2009.266.
    1. Johansson K., Neovius M., Lagerros Y.T., Harlid R., Rossner S., Granath F., Hemmingsson E. Effect of a very low energy diet on moderate and severe obstructive sleep apnoea in obese men: A randomised controlled trial. BMJ. 2009;339:b4609. doi: 10.1136/bmj.b4609.
    1. Georgoulis M., Yiannakouris N., Kechribari I., Lamprou K., Perraki E., Vagiakis E., Kontogianni M.D. The effectiveness of a weight-loss Mediterranean diet/lifestyle intervention in the management of obstructive sleep apnea: Results of the “MIMOSA” randomized clinical trial. Clin. Nutr. 2021;40:850–859. doi: 10.1016/j.clnu.2020.08.037.
    1. Georgoulis M., Yiannakouris N., Tenta R., Fragopoulou E., Kechribari I., Lamprou K., Perraki E., Vagiakis E., Kontogianni M.D. A weight-loss Mediterranean diet/lifestyle intervention ameliorates inflammation and oxidative stress in patients with obstructive sleep apnea: Results of the “MIMOSA” randomized clinical trial. Eur. J. Nutr. 2021;60:3799–3810. doi: 10.1007/s00394-021-02552-w.
    1. Araghi M.H., Chen Y.F., Jagielski A., Choudhury S., Banerjee D., Hussain S., Thomas G.N., Taheri S. Effectiveness of lifestyle interventions on obstructive sleep apnea (OSA): Systematic review and meta-analysis. Sleep. 2013;36:1553–1562E. doi: 10.5665/sleep.3056.
    1. Dobrosielski D.A., Papandreou C., Patil S.P., Salas-Salvadó J. Diet and exercise in the management of obstructive sleep apnoea and cardiovascular disease risk. Eur. Respir. Rev. 2017;26:160110. doi: 10.1183/16000617.0110-2016.
    1. Després J.P., Poirier P. Diabetes: Looking back at Look AHEAD--giving lifestyle a chance. Nat. Rev. Cardiol. 2013;10:184–186. doi: 10.1038/nrcardio.2013.16.
    1. Papandreou C., Schiza S.E., Bouloukaki I., Hatzis C.M., Kafatos A.G., Siafakas N.M., Tzanakis N.E. Effect of Mediterranean diet versus prudent diet combined with physical activity on OSAS: A randomised trial. Eur. Respir. J. 2012;39:1398–1404. doi: 10.1183/09031936.00103411.
    1. Patnode C.D., Evans C.V., Senger C.A., Redmond N., Lin J.S. Behavioral Counseling to Promote a Healthful Diet and Physical Activity for Cardiovascular Disease Prevention in Adults without Known Cardiovascular Disease Risk Factors: Updated Systematic Review for the U.S. Preventive Services Task Force. Agency for Healthcare Research and Quality (US); Rockville, MD, USA: 2017.
    1. Lin J.S., O’Connor E., Evans C.V., Senger C.A., Rowland M.G., Groom H.C. Behavioral counseling to promote a healthy lifestyle in persons with cardiovascular risk factors: A systematic review for the U.S. Prev. Serv. Task Force. Ann. Intern. Med. 2014;161:568–578.
    1. Lin J.S., O’Connor E.A., Evans C.V., Senger C.A., Rowland M.G., Groom H.C. Behavioral Counseling to Promote a Healthy Lifestyle for Cardiovascular Disease Prevention in Persons with Cardiovascular Risk Factors: An Updated Systematic Evidence Review for the U.S. Preventive Services Task. Agency for Healthcare Research and Quality; Rockville, MD, USA: 2014. Force Evidence Report No. 113. AHRQ Publication No. 13-05179-EF-1.
    1. Raynor H.A., Anderson A.M., Miller G.D., Reeves R., Delahanty L.M., Vitolins M.Z., Harper P., Mobley C., Konersman K., Mayer-Davis E., et al. Partial Meal Replacement Plan and Quality of the Diet at 1 Year: Action for Health in Diabetes (Look AHEAD) Trial. J. Acad. Nutr. Diet. 2015;115:731–742. doi: 10.1016/j.jand.2014.11.003.
    1. Das S.K., Bukhari A.S., Taetzsch A.G., Ernst A.K., Rogers G.T., Gilhooly C.H., Hatch-McChesney A., Blanchard C.M., Livingston K.A., Silver R.E., et al. Randomized trial of a novel lifestyle intervention compared with the Diabetes Prevention Program for weight loss in adult dependents of military service members [published correction appears in Am. J. Clin. Nutr. 2021 Oct 4; 114, 1574] Am. J. Clin. Nutr. 2021;114:1546–1559. doi: 10.1093/ajcn/nqab259.
    1. Beatty C.J., Landry S.A., Lee J., Joosten S.A., Turton A., O’Driscoll D.M., Wong A.-M., Thomson L., Edwards B.A., Hamilton G.S. Dietary intake, eating behavior and physical activity in individuals with and without obstructive sleep apnea. Sleep Biol. Rhythms. 2021;19:85–92. doi: 10.1007/s41105-020-00291-9.
    1. Reid M., Maras J.E., Shea S., Wood A.C., Castro-Diehl C., Johnson D.A., Huang T., Jacobs D.R., Jr., Crawford A., St-Onge M.P., et al. Association between diet quality and sleep apnea in the Multi-Ethnic Study of Atherosclerosis. Sleep. 2019;42:zsy194. doi: 10.1093/sleep/zsy194.
    1. Vasquez M.M., Goodwin J.L., Drescher A.A., Smith T.W., Quan S.F. Associations of dietary intake and physical activity with sleep disordered breathing in the Apnea Positive Pressure Long-Term Efficacy Study (APPLES) J. Clin. Sleep Med. 2008;4:411–418. doi: 10.5664/jcsm.27274.
    1. Carneiro-Barrera A., Amaro-Gahete F.J., Díaz-Román A., Guillén-Riquelme A., Jurado-Fasoli L., Sáez-Roca G., Martín-Carrasco C., Ruiz J.R., Buela-Casal G. Interdisciplinary weight loss and lifestyle intervention for obstructive sleep apnoea in adults: Rationale, design and methodology of the INTERAPNEA study. Nutrients. 2019;11:2227. doi: 10.3390/nu11092227.
    1. Basoglu O.K., Tasbakan M.S. Gender differences in clinical and polysomnographic features of obstructive sleep apnea: A clinical study of 2827 patients. Sleep Breath. 2018;22:241–249. doi: 10.1007/s11325-017-1482-9.
    1. Robertson C., Avenell A., Boachie C., Stewart F., Archibald D., Douglas F., Hoddinott P., van Teijlingen E., Boyers D. Should weight loss and maintenance programmes be designed differently for men? A systematic review of long-term randomised controlled trials presenting data for men and women: The ROMEO project. Obes. Res. Clin. Pract. 2016;10:70–84. doi: 10.1016/j.orcp.2015.04.005.
    1. Williams R.L., Wood L.G., Collins C.E., Callister R. Effectiveness of weight loss interventions—Is there a dif-ference between men and women: A systematic review. Obes. Rev. 2015;16:171–186. doi: 10.1111/obr.12241.
    1. Harreiter J., Kautzky-Willer A. Sex and gender differences in prevention of type 2 diabetes. Front. Endocrinol. 2018;9:220. doi: 10.3389/fendo.2018.00220.
    1. Bischoff S.C., Boirie Y., Cederholm T., Chourdakis M., Cuerda C., Delzenne N.M., Deutz N.E., Fouque D., Genton L., Gil C., et al. Towards a multidisciplinary approach to understand and manage obesity and related diseases. Clin. Nutr. 2017;36:917–938. doi: 10.1016/j.clnu.2016.11.007.
    1. Heymsfield S.B., Wadden T.A. Mechanisms, pathophysiology, and management of obesity. N. Engl. J. Med. 2017;376:254–266. doi: 10.1056/NEJMra1514009.
    1. Prochaska J.O., Velicer W.F. The transtheoretical model of health behavior change. Am. J. Health Promot. 1997;12:38–48. doi: 10.4278/0890-1171-12.1.38.
    1. Banna J.C., Townsend M.S. Assessing factorial and convergent validity and reliability of a food behaviour checklist for Spanish-speaking participants in US Department of Agriculture nutrition education programmes. Public Health Nutr. 2011;14:1165–1176. doi: 10.1017/S1368980010003058.
    1. Schröder H., Fitó M., Estruch R., Martínez-González M.A., Corella D., Salas-Salvadó J., Lamuela-Raventós R., Ros E., Salaverría I., Fiol M., et al. A short screener is valid for assessing Mediterranean diet adherence among older Spanish men and women. J. Nutr. 2011;141:1140–1145. doi: 10.3945/jn.110.135566.
    1. Bates D., Maechler M., Bolker B.M., Walker S.C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015;67:1–48. doi: 10.18637/jss.v067.i01.
    1. Bakdash J.Z., Marusich L.R. Repeated Measures Correlation. Front. Psychol. 2017;8:456. doi: 10.3389/fpsyg.2017.00456.
    1. Look AHEAD Research Group Look AHEAD (Action for Health in Diabetes): Design and methods for a clinical trial of weight loss for the prevention of cardiovascular disease in type 2 diabetes. Con. Clin. Trials. 2003;24:610–628. doi: 10.1016/S0197-2456(03)00064-3.
    1. Guyenet S.J., Schwartz M.W. Clinical review: Regulation of food intake, energy balance, and body fat mass: Implications for the pathogenesis and treatment of obesity. J. Clin. Endocrinol. Metab. 2012;97:745–755. doi: 10.1210/jc.2011-2525.
    1. Estruch R., Martínez-González M.A., Corella D., Salas-Salvadó J., Fitó M., Chiva-Blanch G., Fiol M., Gómez-Gracia E., Arós F., Lapetra J., et al. Effect of a high-fat Mediterranean diet on bodyweight and waist circumference: A prespecified secondary outcomes analysis of the PREDIMED randomised controlled trial. Lancet Diabetes Endocrinol. 2016;4:666–676. doi: 10.1016/S2213-8587(16)30085-7.

Source: PubMed

3
S'abonner