Non-pulsatile blood flow is associated with enhanced cerebrovascular carbon dioxide reactivity and an attenuated relationship between cerebral blood flow and regional brain oxygenation

Cecilia Maria Veraar, Harald Rinösl, Karina Kühn, Keso Skhirtladze-Dworschak, Alessia Felli, Mohamed Mouhieddine, Johannes Menger, Ekaterina Pataraia, Hendrik Jan Ankersmit, Martin Dworschak, Cecilia Maria Veraar, Harald Rinösl, Karina Kühn, Keso Skhirtladze-Dworschak, Alessia Felli, Mohamed Mouhieddine, Johannes Menger, Ekaterina Pataraia, Hendrik Jan Ankersmit, Martin Dworschak

Abstract

Background: Systemic blood flow in patients on extracorporeal assist devices is frequently not or only minimally pulsatile. Loss of pulsatile brain perfusion, however, has been implicated in neurological complications. Furthermore, the adverse effects of absent pulsatility on the cerebral microcirculation are modulated similarly as CO2 vasoreactivity in resistance vessels. During support with an extracorporeal assist device swings in arterial carbon dioxide partial pressures (PaCO2) that determine cerebral oxygen delivery are not uncommon-especially when CO2 is eliminated by the respirator as well as via the gas exchanger of an extracorporeal membrane oxygenation machine. We, therefore, investigated whether non-pulsatile flow affects cerebrovascular CO2 reactivity (CVR) and regional brain oxygenation (rSO2).

Methods: In this prospective, single-centre case-control trial, we studied 32 patients undergoing elective cardiac surgery. Blood flow velocity in the middle cerebral artery (MCAv) as well as rSO2 was determined during step changes of PaCO2 between 30, 40, and 50 mmHg. Measurements were conducted on cardiopulmonary bypass during non-pulsatile and postoperatively under pulsatile blood flow at comparable test conditions. Corresponding changes of CVR and concomitant rSO2 alterations were determined for each flow mode. Each patient served as her own control.

Results: MCAv was generally lower during hypocapnia than during normocapnia and hypercapnia (p < 0.0001). However, the MCAv/PaCO2 slope during non-pulsatile flow was 14.4 cm/s/mmHg [CI 11.8-16.9] and 10.4 cm/s/mmHg [CI 7.9-13.0] after return of pulsatility (p = 0.03). During hypocapnia, non-pulsatile CVR (4.3 ± 1.7%/mmHg) was higher than pulsatile CVR (3.1 ± 1.3%/mmHg, p = 0.01). Independent of the flow mode, we observed a decline in rSO2 during hypocapnia and a corresponding rise during hypercapnia (p < 0.0001). However, the relationship between ΔrSO2 and ΔMCAv was less pronounced during non-pulsatile flow.

Conclusions: Non-pulsatile perfusion is associated with enhanced cerebrovascular CVR resulting in greater relative decreases of cerebral blood flow during hypocapnia. Heterogenic microvascular perfusion may account for the attenuated ΔrSO2/ΔMCAv slope. Potential hazards related to this altered regulation of cerebral perfusion still need to be assessed.

Trial registration: The study was retrospectively registered on October 30, 2018, with Clinical Trial.gov (NCT03732651).

Keywords: Cerebral blood flow velocity; Cerebral microcirculation; Cerebrovascular carbon dioxide reactivity; Extracorporeal cardiopulmonary resuscitation; Extracorporeal membrane oxygenation; Non-pulsatile blood flow; Non-pulsatile left ventricular assist device; Regional brain saturation.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Absolute MCAv measures determined during non-pulsatile and pulsatile flow at hypo-, normo-, and hypercapnia MCAv blood flow velocity in the middle cerebral artery
Fig. 2
Fig. 2
Relative MCAv changes of single patients after induction of hypo- and hypercapnia ΔMCAv relative change in blood flow velocity in the middle cerebral artery
Fig. 3
Fig. 3
Cerebrovascular CO2 reactivity during hypo- and hypercapnia and pulsatile as well as non-pulsatile blood flow CVR cerebrovascular CO2 reactivity
Fig. 4
Fig. 4
Correlation of ΔMCAv and ΔrSO2.r correlation coefficient, ΔMCAv relative change in blood flow velocity in the middle cerebral artery, ΔrSO2 relative change in regional cerebral oxygen saturation

References

    1. Purohit SN, Cornwell WK, Pal JD, Lindenfeld J, Ambardekar AV. Living without a pulse: the vascular implications of continuous-flow left ventricular assist devices. Circ Heart Fail. 2018;11:a004670. doi: 10.1161/CIRCHEARTFAILURE.117.004670.
    1. O'Neil MP, Fleming JC, Badhwar A, Guo LR. Pulsatile versus nonpulsatile flow during cardiopulmonary bypass: microcirculatory and systemic effects. Ann Thorac Surg. 2012;94:2046–2053. doi: 10.1016/j.athoracsur.2012.05.065.
    1. Inamori S, Shirai M, Yahagi N, et al. A comparative study of cerebral microcirculation during pulsatile and nonpulsatile selective cerebral perfusion: assessment by synchroton radiation microangiography. ASAIO J. 2013;59:374–379. doi: 10.1097/MAT.0b013e3182976939.
    1. Salameh A, Kühne L, Grassl M, et al. Protective effects of pulsatile flow during cardiopulmonary bypass. Ann Thorac Surg. 2015;99:192–199. doi: 10.1016/j.athoracsur.2014.07.070.
    1. O'Neil MP, Alie R, Guo LR, Myers ML, Murkin J, Ellis C. Microvascular responsiveness to pulsatile and non-pulsatile flow during cardiopulmonary bypass. Ann Thorac Surg. 2018;105:1745–1753. doi: 10.1016/j.athoracsur.2018.01.007.
    1. Stöhr EJ, McDonnell BJ, Colombo PC, Willey JZ. CrossTalk proposal: blood flow pulsatility in left ventricular assist device patients is essential to maintain normal brain physiology. J Physiol. 2019;597:353–356. doi: 10.1113/JP276729.
    1. Wadowski PP, Steinlechner B, Zimpfer D, et al. Functional capillary impairment in patients with ventricular assist devices. Sci Rep. 2019;9:5909. doi: 10.1038/s41598-019-42334-3.
    1. Kara A, Akin S, dos Reis Miranda D, et al. Microcirculatory assessement of patients under VA-ECMO. Crit Care. 2016;20:344. doi: 10.1186/s13054-016-1519-7.
    1. Modine T, Azzaoui R, Ouk T, et al. Changes in cerebral vascular reactivity occur early during cardiopulmonary bypass in the rat. Ann Thorac Surg. 2006;82:672–678. doi: 10.1016/j.athoracsur.2006.03.061.
    1. Brian JE, Jr, Faraci FM, Heistad DD. Recent insights into the regulation of cerebral circulation. Clin Exp Pharmacol Physiol. 1996;23:449–457. doi: 10.1111/j.1440-1681.1996.tb02760.x.
    1. Tranmer BI, Gross CE, Kindt GW, Adey GR. Pulsatile versus nonpulsatile blood flow in the treatment of acute cerebral ischemia. Neurosurgery. 1986;19:724–731. doi: 10.1227/00006123-198611000-00002.
    1. Murkin JM, Adams SJ, Novick RJ, et al. Monitoring brain oxygen saturation during coronary bypass surgery: a randomized, prospective study. Anesth Analg. 2007;104:51–58. doi: 10.1213/01.ane.0000246814.29362.f4.
    1. Singal RK, Docking LM, Girling LG, et al. Biologically variable bypass reduces enzymuria after deep hypothermic circulatory arrest. Ann Thorac Surg. 2006;82:1480–1488. doi: 10.1016/j.athoracsur.2006.05.015.
    1. Roach GW, Kanchuger M, Mangano CM, et al. Adverse cerebral outcome after coronary bypass surgery. N Engl J Med. 1996;335:1857–1863. doi: 10.1056/NEJM199612193352501.
    1. Acharya D, Loyaga-Rendon R, Morgan CJ, et al. INTERMACS analysis of stroke during support with continuous-flow left ventricular assist devices. JACC Heart Fail. 2017;5:703–711. doi: 10.1016/j.jchf.2017.06.014.
    1. Fendler TJ, Spertus JA, Gosch KL, et al. Incidence and predictors of cognitive decline in patients with left ventricular assist devices. Circ Cardiovasc Qual Outcomes. 2015;8:285–291. doi: 10.1161/CIRCOUTCOMES.115.001856.
    1. Caro MA, Rosenthal JL, Kendall K, Pozuelo L, Funk MC. What the psychiatrist needs to know about ventricular assist devices: a comprehensive review. Psychosomatics. 2016;57:229–237. doi: 10.1016/j.psym.2016.01.002.
    1. Selnes OA, Gottesman RF, Grega MA, Baumgartner WA, Zeger SL, McKhann GM. Cognitive and neurologic outcomes after coronary-artery bypass surgery. N Engl J Med. 2012;366:250–257. doi: 10.1056/NEJMra1100109.
    1. Willie Christopher K., Tzeng Yu-Chieh, Fisher Joseph A., Ainslie Philip N. Integrative regulation of human brain blood flow. The Journal of Physiology. 2014;592(5):841–859. doi: 10.1113/jphysiol.2013.268953.
    1. Hoiland RL, Fisher JA, Ainslie PN. Regulation of the cerebral circulation by arterial carbon dioxide. Compr Physiol. 2019;9:1101–1154. doi: 10.1002/cphy.c180021.
    1. Ainslie PN, Duffin J. Integration of cerebrovascular CO2 reactivity and chemoreflex control of breathing: mechanisms of regulation, measurement, and intepretation. Am J Physiol Regul Integr Comp Physiol. 2009;296:R1473–R1495. doi: 10.1152/ajpregu.91008.2008.
    1. Baumgartner RW, Regard M. Role of impaired CO2 reactivity in the diagnosis of cerebral low flow infarcts. J Neurol Neurosurg Psychiatry. 1994;57:814–817. doi: 10.1136/jnnp.57.7.814.
    1. Guennec LL, Cholet C, Huang F, Schmidt M, Brechot N, Hekimian G, et al. Ischemic and hemorrhagic brain injury during venoarterial-extracorporeal membrane oxygenation. Ann Intensive Care. 2018;8:129. doi: 10.1186/s13613-018-0475-6.
    1. Sundgreen C, Larsen FS, Herzog TM, Knudsen GM, Boesgaard S, Aldershvile J. Autoregulation of cerebral blood flow in patients resuscitated from cardiac arrest. Stroke. 2001;32:128–132. doi: 10.1161/01.STR.32.1.128.
    1. Kilgannon JH, Hunter BR, Puskarich MA, et al. Partial pressure of arterial carbon dioxide after resuscitation from cardiac arrest and neurological outcome: a prospective multi-center protocol-directed cohort study. Resuscitation. 2019;135:212–220. doi: 10.1016/j.resuscitation.2018.11.015.
    1. Tolins ML, Henning DJ, Gaieski DF, Grossestreuer AV, Jaworski A, Johnson NJ. Initial arterial carbon dioxide tension is associated with neurological outcome after resuscitation from cardiac arrest. Resuscitation. 2017;114:53–58. doi: 10.1016/j.resuscitation.2017.03.006.
    1. Giller CA, Bowman G, Dyer H, Mootz L, Krippner W. Cerebral arterial diameters during changes in blood pressure and carbon dioxide during craniotomy. Neurosurgery. 1993;32:737–741. doi: 10.1227/00006123-199305000-00006.
    1. Alkire MT. Quantitative EEG correlations with brain glucose metabolic rate during anesthesia in volunteers. Anesthesiology. 1998;89:323–333. doi: 10.1097/00000542-199808000-00007.
    1. Mutch WAC, El-Gabalawy R, Girling L, Kilborn K, Jacobsohn E. End-tidal hypocapnia under anesthesia predicts postoperative delirium. Front Neurol. 2018;9:678. doi: 10.3389/fneur.2018.00678.
    1. Ji B, Ündar A. Comparison of perfusion modes on microcirculation during acute and chronic cardiac support: is there a difference? Perfusion. 2007;22:115–119. doi: 10.1177/0267659107080115.
    1. Ündar A, Eichstaedt HC, Masai T, et al. Comparison of six pediatric cardiopulmonary bypass pumps during pulsatile and nonpulsatile perfusion. J Thorac Cardiovasc Surg. 2001;122:827–829. doi: 10.1067/mtc.2001.114931.
    1. Floras JS, Rao V, Billia F. To pulse or not to pulse, is that the question? Circulation. 2015;132:2293–2296. doi: 10.1161/CIRCULATIONAHA.115.019461.
    1. Ingyinn M, Lee J, Short BL, Viswanathan M. Venoarterial extracorporeal membrane oxygenation impairs basal nitric oxide production in cerebral arteries of newborn lambs. Pediatr Crit Care Med. 2000;1:161–165. doi: 10.1097/00130478-200010000-00013.
    1. Grubhofer G, Mares P, Rajek A, et al. Pulsatility does not change cerebral oxygenation during cardiopulmonary bypass. Acta Anaesthesiol Scand. 2000;44:586–591. doi: 10.1034/j.1399-6576.2000.00517.x.
    1. Smielewski P, Kirkpatrick P, Minhas P, Pickard JD, Czosnyka M. Can cerebrovascular reactivity be measured with near-infrared spectroscopy? Stroke. 1995;26:2285–2292. doi: 10.1161/01.STR.26.12.2285.
    1. Grubhofer G, Plöchl W, Skolka M, Czerny M, Ehrlich M, Lassnigg A. Comparing Doppler ultrasonography and cerebral oximetry as indicators for shunting in carotid endarterectomy. Anesth Analg. 2000;91:1339–1344. doi: 10.1097/00000539-200012000-00006.
    1. Lundar T, Lindegaard KF, Frøysaker T, et al. Cerebral carbon dioxide reactivity during nonpulsatile cardiopulmonary bypass. Ann Thorac Surg. 1986;41:525–530. doi: 10.1016/S0003-4975(10)63034-2.
    1. Mariappan R, Mehta J, Chui J, Manninen P, Venkatraghavan L. Cerebrovascular reactivity to carbon dioxide under anesthesia: a qualitative systematic review. J Neurosurg Anesthesiol. 2015;27:123–135. doi: 10.1097/ANA.0000000000000092.
    1. Davis MJ, Hill MA. Signaling mechanisms underlying the vascular myogenic response. Physiol Rev. 1999;79:387–423. doi: 10.1152/physrev.1999.79.2.387.
    1. Ainslie PN, Hoiland RL. Transcranial Doppler ultrasound: valid, invalid, or both? J Appl Physiol. 2014;117:1081–1083. doi: 10.1152/japplphysiol.00854.2014.
    1. Battisti-Charbonney A, Fisher J, Duffin J. The cerebrovascular response to carbon dioxide in humans. J Physiol. 2011;589:3039–3048. doi: 10.1113/jphysiol.2011.206052.
    1. Rozet I, Vavilala MS, Lindley AM, Visco E, Treggiari M, Lam AM. Cerebral autoregulation and CO2 reactivity in anterior and posterior cerebral circulation during sevoflurane anesthesia. Anesth Analg. 2006;102:560–564. doi: 10.1213/01.ane.0000184817.10595.62.
    1. Willie CK, Macleod DB, Shaw AD, et al. Regional brain blood flow in man during acute changes in arterial blood gases. J Physiol. 2012;590:3261–3275. doi: 10.1113/jphysiol.2012.228551.
    1. Bellapart J, Chan GSH, Tzeng YC, et al. The effect of ventricular assist devices on cerebral blood flow and blood pressure fractality. Physiol Meas. 2011;32:1361–1372. doi: 10.1088/0967-3334/32/9/001.
    1. Meng L, Gelb AW. Regulation of cerebral autoregulation by carbon dioxide. Anesthesiology. 2015;122:196–205. doi: 10.1097/ALN.0000000000000506.
    1. Peebles KC, Ball OG, MacRae BA, Horsman HM, Tzeng YC. Sympathetic regulation of the human cerebrovascular response to carbon dioxide. J Appl Physiol. 2012;113:700–706. doi: 10.1152/japplphysiol.00614.2012.
    1. Przybylowski T, Bangash MF, Reichmuth K, Morgan BJ, Skatrud JB, Dempsey JA. Mechanisms of the cerebrovascular response to apnea in humans. J Physiol. 2003;548:323–332. doi: 10.1111/j.1469-7793.2003.t01-1-00323.x.
    1. Cornwell WK, Tarumi T, Stickford A, et al. Restoration of pulsatile flow reduces sympathetic nerve activity among individuals with continous-flow left ventricular assist devices. Circulation. 2015;132:2316–2322. doi: 10.1161/CIRCULATIONAHA.115.017647.
    1. Rubanyi GM, Romero JC, Vanhoutte PM. Flow-induced release of endothelium-derived relaxing factor. Am J Phys. 1986;19:H1145–H1149.
    1. Raignault A, Bolduc V, Lesage F, Thorin E. Pulse pressure-dependent cerebrovascular eNOS regulation in mice. J Cereb Blood Flow Metab. 2017;37:413–424. doi: 10.1177/0271678X16629155.
    1. Markham DW, Fu Q, Palmer MD, et al. Sympathetic neural and hemodynamic responses to upright tilt in patients with pulsatile and nonpulsatile left ventricular assist devices. Circ Heart Fail. 2013;6:293–299. doi: 10.1161/CIRCHEARTFAILURE.112.969873.
    1. Johnsson P, Messeter K, Ryding E, Kugelberg J, Stahl E. Cerebral vasoreactivity to carbon dioxide during cardiopulmonary perfusion at normothermia and hypothermia. Ann Thorac Surg. 1989;48:769–775. doi: 10.1016/0003-4975(89)90668-1.
    1. Ševerdija Ervin E., Vranken Nousjka P.A., Simons Antoine P., Gommer Erik D., Heijmans John H., Maessen Jos G., Weerwind Patrick W. Hemodilution Combined With Hypercapnia Impairs Cerebral Autoregulation During Normothermic Cardiopulmonary Bypass. Journal of Cardiothoracic and Vascular Anesthesia. 2015;29(5):1194–1199. doi: 10.1053/j.jvca.2015.03.022.
    1. Tu YK, Liu HM. Effects of isovolemic hemodilution on hemodynamics, cerebral perfusion, and cerebral vascular reactivity. Stroke. 1996;27:441–445. doi: 10.1161/01.STR.27.3.441.
    1. Bush Adam M., Borzage Matthew T., Choi Soyoung, Václavů Lena, Tamrazi Benita, Nederveen Aart J., Coates Thomas D., Wood John C. Determinants of resting cerebral blood flow in sickle cell disease. American Journal of Hematology. 2016;91(9):912–917. doi: 10.1002/ajh.24441.
    1. Kaisti KK, Langsjö JW, Aalto S, et al. Effects of sevoflurane, propofol, and adjunct nitrous oxide on regional cerebral blood flow, oxygen consumption, and blood volume in humans. Anesthesiology. 2003;99:603–613. doi: 10.1097/00000542-200309000-00015.
    1. Klein KU, Fukui K, Schramm P, et al. Human cerebral microcirculation and oxygen saturation during propofol-induced reduction of bispectral index. Br J Anaesth. 2011;107:735–741. doi: 10.1093/bja/aer227.
    1. Strebel S, Kaufmann M, Guardiola PM, Schaefer HG. Cerebral vasomotor responsiveness to carbon dioxide is preserved during propofol and midazolam anesthesia in humans. Anesth Analg. 1994;78:884–888. doi: 10.1213/00000539-199405000-00009.
    1. Maekawa T, Cho S, Fukusaki M, Shibata O, Sumikawa K. Effects of clonidine on human middle cerebral artery flow velocity and cerebrovascular CO2 response during sevoflurane anesthesia. J Neurosurg Anesthesiol. 1999;3:173–177. doi: 10.1097/00008506-199907000-00003.
    1. Cho S, Fujigaki T, Uchiyama Y, Fukusaki M, Shibata O, Sumikawa K. Effects of sevoflurane with and without nitrous oxide on human cerebral circulation. Anesthesiology. 1996;85:755–760. doi: 10.1097/00000542-199610000-00010.
    1. Myburgh JA, Upton RN, Grant C, Martinez A. The cerebrovascular effects of adrenaline, noradrenaline and dopamine infusions under propofol and isoflurane anaesthesia in sheep. Anaesth Intensive Care. 2002;30:725–733. doi: 10.1177/0310057X0203000602.
    1. Pagel PS, Hettrick DA, Warltier DC. Influence of levosimendan, pimobendan, and milrinone on the regional distribution of cardiac output in anaesthestized dogs. Br J Pharmacol. 1996;119:609–615. doi: 10.1111/j.1476-5381.1996.tb15716.x.
    1. Schalen W, Messeter K, Nordström CH. Cerebral vasoreactivity and the prediction of outcome in severe traumatic brain lesions. Acta Anaesthesiol Scand. 1991;35:113–122. doi: 10.1111/j.1399-6576.1991.tb03258.x.
    1. Schnaubelt S, Sulzgruber P, Menger J, Skhirtladze-Dworschak K, Sterz F, Dworschak M. Regional cerebral oxygen saturation during cardiopulmonary resuscitation as a predictor of return of spontaneous circulation and favourable outcome - a review of the current literature. Resuscitation. 2018;125:39–47. doi: 10.1016/j.resuscitation.2018.01.028.
    1. Skhirtladze K, Mora B, Moritz A, Birkenberg B, Ankersmit HJ, Dworschak M. Impaired recovery of cardiac output and mean arterial pressure after successful defibrillation in patients with low left ventricular ejection fraction. Resuscitation. 2010;81:1123–1127. doi: 10.1016/j.resuscitation.2010.06.004.
    1. Prough DS, Rogers AT, Stump DA, et al. Cerebral blood flow decreases with time whereas cerebral oxygen consumption remains stable during hypothermic cardiopulmonary bypass in humans. Anesth Analg. 1991;72:161–168. doi: 10.1213/00000539-199102000-00004.
    1. Dworschak M. Is extracorporeal cardiopulmonary resuscitation for out-of-hospital cardiac arrest superior compared with conventional resuscitation? Crit Care Med. 2013;41:1365–1366. doi: 10.1097/CCM.0b013e31828044c0.
    1. Kim YM, Youn CS, Kim SH, Lee BK, Cho IS, Cho GC, et al. Adverse events associated with poor neurological outcome during targeted temperature management and advanced critical care after out-of-hospital cardiac arrest. Crit Care. 2015;19:282.
    1. Kane N, Grocott L, Kandler R, Lawrence S, Pang C. Hyperventilation during electroencephalography: safety and efficacy. Seizure. 2014;23:129–134. doi: 10.1016/j.seizure.2013.10.010.

Source: PubMed

3
S'abonner