A systematic review of gait perturbation paradigms for improving reactive stepping responses and falls risk among healthy older adults

Christopher McCrum, Marissa H G Gerards, Kiros Karamanidis, Wiebren Zijlstra, Kenneth Meijer, Christopher McCrum, Marissa H G Gerards, Kiros Karamanidis, Wiebren Zijlstra, Kenneth Meijer

Abstract

Background: Falls are a leading cause of injury among older adults and most often occur during walking. While strength and balance training moderately improve falls risk, training reactive recovery responses following sudden perturbations during walking may be more task-specific for falls prevention. The aim of this review was to determine the variety, characteristics and effectiveness of gait perturbation paradigms that have been used for improving reactive recovery responses during walking and reducing falls among healthy older adults.

Methods: A systematic search was conducted in PubMed, Web of Science, MEDLINE and CINAHL databases in December 2015, repeated in May 2016, using sets of terms relating to gait, perturbations, adaptation and training, and ageing. Inclusion criteria: studies were conducted with healthy participants of 60 years or older; repeated, unpredictable, mechanical perturbations were applied during walking; and reactive recovery responses to gait perturbations or the incidence of laboratory or daily life falls were recorded. Results were narratively synthesised. The risk of bias for each study (PEDro Scale) and the levels of evidence for each perturbation type were determined.

Results: In the nine studies that met the inclusion criteria, moveable floor platforms, ground surface compliance changes, or treadmill belt accelerations or decelerations were used to perturb the gait of older adults. Eight studies used a single session of perturbations, with two studies using multiple sessions. Eight of the studies reported improvement in the reactive recovery response to the perturbations. Four studies reported a reduction in the percentage of laboratory falls from the pre- to post-perturbation experience measurement and two studies reported a reduction in daily life falls. As well as the range of perturbation types, the magnitude and frequency of the perturbations varied between the studies.

Conclusions: To date, a range of perturbation paradigms have been used successfully to perturb older adults' gait and stimulate reactive response adaptations. Variation also exists in the number and magnitudes of applied perturbations. Future research should examine the effects of perturbation type, magnitude and number on the extent and retention of the reactive recovery response adaptations, as well as on falls, over longer time periods among older adults.

Keywords: Adaptation; Aged; Ageing; Biomechanics; Falls; Locomotion; Motor learning; Postural balance; Rehabilitation; Systematic review.

Figures

Fig. 1
Fig. 1
Flowchart of systematic search and article inclusion and exclusion process

References

    1. Boye ND, Mattace-Raso FU, Van der Velde N, Van Lieshout EM, De Vries OJ, Hartholt KA, et al. Circumstances leading to injurious falls in older men and women in the Netherlands. Injury. 2014;45(8):1224–1230. doi: 10.1016/j.injury.2014.03.021.
    1. Cali CM, Kiel DP. An epidemiologic study of fall-related fractures among institutionalized older people. J Am Geriatr Soc. 1995;43(12):1336–1340. doi: 10.1111/j.1532-5415.1995.tb06610.x.
    1. Terroso M, Rosa N, Marques AT, Simoes R. Physical consequences of falls in the elderly: a literature review from 1995 to 2010. Eur Rev Aging Phys Act. 2014;11(1):51–59. doi: 10.1007/s11556-013-0134-8.
    1. Lord SR, Ward JA, Williams P, Anstey KJ. An epidemiological study of falls in older community-dwelling women: the Randwick falls and fractures study. Aust J Public Health. 1993;17(3):240–245. doi: 10.1111/j.1753-6405.1993.tb00143.x.
    1. Berg WP, Alessio HM, Mills EM, Tong C. Circumstances and consequences of falls in independent community-dwelling older adults. Age Ageing. 1997;26(4):261–268. doi: 10.1093/ageing/26.4.261.
    1. Kelsey JL, Procter-Gray E, Hannan MT, Li W. Heterogeneity of falls among older adults: implications for public health prevention. Am J Public Health. 2012;102(11):2149–2156. doi: 10.2105/AJPH.2012.300677.
    1. Li W, Keegan TH, Sternfeld B, Sidney S, Quesenberry CP, Jr, Kelsey JL. Outdoor falls among middle-aged and older adults: a neglected public health problem. Am J Public Health. 2006;96(7):1192–1200. doi: 10.2105/AJPH.2005.083055.
    1. Robinovitch SN, Feldman F, Yang Y, Schonnop R, Leung PM, Sarraf T, et al. Video capture of the circumstances of falls in elderly people residing in long-term care: an observational study. Lancet. 2013;381(9860):47–54. doi: 10.1016/S0140-6736(12)61263-X.
    1. Tinetti ME, Speechley M, Ginter SF. Risk factors for falls among elderly persons living in the community. N Engl J Med. 1988;319(26):1701–1707. doi: 10.1056/NEJM198812293192604.
    1. Blake AJ, Morgan K, Bendall MJ, Dallosso H, Ebrahim SB, Arie TH, et al. Falls by elderly people at home: prevalence and associated factors. Age Ageing. 1988;17(6):365–372. doi: 10.1093/ageing/17.6.365.
    1. Downton JH, Andrews K. Prevalence, characteristics and factors associated with falls among the elderly living at home. Aging (Milan, Italy) 1991;3(3):219–228.
    1. Carty CP, Barrett RS, Cronin NJ, Lichtwark GA, Mills PM. Lower limb muscle weakness predicts use of a multiple- versus single-step strategy to recover from forward loss of balance in older adults. J Gerontol A Biol Sci Med Sci. 2012;67(11):1246–1252. doi: 10.1093/gerona/gls149.
    1. Carty CP, Cronin NJ, Lichtwark GA, Mills PM, Barrett RS. Lower limb muscle moments and power during recovery from forward loss of balance in male and female single and multiple steppers. Clin Biomech. 2012;27(10):1031–1037. doi: 10.1016/j.clinbiomech.2012.07.009.
    1. Ding L, Yang F. Muscle weakness is related to slip-initiated falls among community-dwelling older adults. J Biomech. 2016;49(2):238–243. doi: 10.1016/j.jbiomech.2015.12.009.
    1. Epro G, Mierau A, Leyendecker M, McCrum C, Brüggemann GP, Karamanidis K. Effects of triceps surae muscle strength on gait stability and adaptability in older adults. In: 11th joint Conference on Motor Control & Learning, Biomechanics & Training (German Society of Sports Science) 2016; Darmstadt, Germany. doi:10.13140/RG.2.2.11520.43523
    1. Grabiner MD, Owings TM, Pavol MJ. Lower extremity strength plays only a small role in determining the maximum recoverable lean angle in older adults. J Gerontol A Biol Sci Med Sci. 2005;60(11):1447–1450. doi: 10.1093/gerona/60.11.1447.
    1. Graham DF, Carty CP, Lloyd DG, Barrett RS. Biomechanical predictors of maximal balance recovery performance amongst community-dwelling older adults. Exp Gerontol. 2015;66:39–46. doi: 10.1016/j.exger.2015.04.006.
    1. Karamanidis K, Arampatzis A, Mademli L. Age-related deficit in dynamic stability control after forward falls is affected by muscle strength and tendon stiffness. J Electromyogr Kinesiol. 2008;18(6):980–989. doi: 10.1016/j.jelekin.2007.04.003.
    1. Pijnappels M, Reeves ND, Maganaris CN, van Dieen JH. Tripping without falling; lower limb strength, a limitation for balance recovery and a target for training in the elderly. J Electromyogr Kinesiol. 2008;18(2):188–196. doi: 10.1016/j.jelekin.2007.06.004.
    1. Pijnappels M, van der Burg PJ, Reeves ND, van Dieen JH. Identification of elderly fallers by muscle strength measures. Eur J Appl Physiol. 2008;102(5):585–592. doi: 10.1007/s00421-007-0613-6.
    1. Senden R, Savelberg HHCM, Adam J, Grimm B, Heyligers IC, Meijer K. The influence of age, muscle strength and speed of information processing on recovery responses to external perturbations in gait. Gait Posture. 2014;39(1):513–517. doi: 10.1016/j.gaitpost.2013.08.033.
    1. Chang JT, Morton SC, Rubenstein LZ, Mojica WA, Maglione M, Suttorp MJ, et al. Interventions for the prevention of falls in older adults: systematic review and meta-analysis of randomised clinical trials. BMJ. 2004;328(7441):680. doi: 10.1136/bmj.328.7441.680.
    1. Gillespie LD, Robertson MC, Gillespie WJ, Sherrington C, Gates S, Clemson LM, et al. Interventions for preventing falls in older people living in the community. Cochrane Database Syst Rev. 2012;9:CD007146.
    1. Sherrington C, Whitney JC, Lord SR, Herbert RD, Cumming RG, Close JC. Effective exercise for the prevention of falls: a systematic review and meta-analysis. J Am Geriatr Soc. 2008;56(12):2234–2243. doi: 10.1111/j.1532-5415.2008.02014.x.
    1. Hof AL. The equations of motion for a standing human reveal three mechanisms for balance. J Biomech. 2007;40(2):451–457. doi: 10.1016/j.jbiomech.2005.12.016.
    1. Maki BE, McIlroy WE. Control of rapid limb movements for balance recovery: age-related changes and implications for fall prevention. Age Ageing. 2006;35(Suppl 2):ii12–ii18.
    1. Kummel J, Kramer A, Giboin LS, Gruber M. Specificity of balance training in healthy individuals: a systematic review and meta-analysis. Sports Med. 2016;46(9):1261–71. doi: 10.1007/s40279-016-0515-z.
    1. Bhatt T, Espy D, Yang F, Pai YC. Dynamic gait stability, clinical correlates, and prognosis of falls among community-dwelling older adults. Arch Phys Med Rehabil. 2011;92(5):799–805. doi: 10.1016/j.apmr.2010.12.032.
    1. Mackey DC, Robinovitch SN. Postural steadiness during quiet stance does not associate with ability to recover balance in older women. Clin Biomech. 2005;20(8):776–783. doi: 10.1016/j.clinbiomech.2005.05.002.
    1. Owings TM, Pavol MJ, Foley KT, Grabiner MD. Measures of postural stability are not predictors of recovery from large postural disturbances in healthy older adults. J Am Geriatr Soc. 2000;48(1):42–50. doi: 10.1111/j.1532-5415.2000.tb03027.x.
    1. McCrum C, Eysel-Gosepath K, Epro G, Meijer K, Savelberg HHCM, Brüggemann GP, Karamanidis K. Associations between bipedal stance stability and locomotor stability following a trip in unilateral vestibulopathy. J Appl Biomech 2016. doi: 10.1123/jab.2016-0004
    1. Grabiner MD, Crenshaw JR, Hurt CP, Rosenblatt NJ, Troy KL. Exercise-based fall prevention: can you be a bit more specific? Exerc Sport Sci Rev. 2014;42(4):161–168. doi: 10.1249/JES.0000000000000023.
    1. Grabiner MD, Donovan S, Bareither ML, Marone JR, Hamstra-Wright K, Gatts S, et al. Trunk kinematics and fall risk of older adults: translating biomechanical results to the clinic. J Electromyogr Kinesiol. 2008;18(2):197–204. doi: 10.1016/j.jelekin.2007.06.009.
    1. Granacher U, Muehlbauer T, Zahner L, Gollhofer A, Kressig RW. Comparison of traditional and recent approaches in the promotion of balance and strength in older adults. Sports Med. 2011;41(5):377–400. doi: 10.2165/11539920-000000000-00000.
    1. Oddsson LIE, Boissy P, Melzer I. How to improve gait and balance function in elderly individuals - compliance with principles of training. Eur Rev Aging Phys Act. 2007;4(1):15–23. doi: 10.1007/s11556-007-0019-9.
    1. Luchies CW, Wallace D, Pazdur R, Young S, DeYoung AJ. Effects of age on balance assessment using voluntary and involuntary step tasks. J Gerontol A Biol Sci Med Sci. 1999;54(3):M140–144. doi: 10.1093/gerona/54.3.M140.
    1. Arena SL, Davis JL, Grant JW, Madigan ML. Tripping elicits earlier and larger deviations in linear head acceleration compared to slipping. PLoS One. 2016;11(11):e0165670. doi: 10.1371/journal.pone.0165670.
    1. Forssberg H, Grillner S, Rossignol S. Phase dependent reflex reversal during walking in chronic spinal cats. Brain Res. 1975;85(1):103–107. doi: 10.1016/0006-8993(75)91013-6.
    1. Forssberg H, Grillner S, Rossignol S. Phasic gain control of reflexes from the dorsum of the paw during spinal locomotion. Brain Res. 1977;132(1):121–139. doi: 10.1016/0006-8993(77)90710-7.
    1. Lam T, Wolstenholme C, van der Linden M, Pang MYC, Yang JF. Stumbling corrective responses during treadmill-elicited stepping in human infants. J Physiol. 2003;553(1):319–331. doi: 10.1113/jphysiol.2003.043984.
    1. Zhong H, Roy RR, Nakada KK, Zdunowski S, Khalili N, de Leon RD, et al. Accommodation of the spinal cat to a tripping perturbation. Front Physiol. 2012;3:112. doi: 10.3389/fphys.2012.00112.
    1. Pang MY, Lam T, Yang JF. Infants adapt their stepping to repeated trip-inducing stimuli. J Neurophysiol. 2003;90(4):2731–2740. doi: 10.1152/jn.00407.2003.
    1. McCrum C, Eysel-Gosepath K, Epro G, Meijer K, Savelberg HH, Brüggemann GP, et al. Deficient recovery response and adaptive feedback potential in dynamic gait stability in unilateral peripheral vestibular disorder patients. Physiol Rep. 2014;2(12):e12222. doi: 10.14814/phy2.12222.
    1. Moreno Catalá M, Woitalla D, Arampatzis A. Reactive but not predictive locomotor adaptability is impaired in young parkinson’s disease patients. Gait Posture. 2016;48:177–82. doi: 10.1016/j.gaitpost.2016.05.008.
    1. Barrett RS, Cronin NJ, Lichtwark GA, Mills PM, Carty CP. Adaptive recovery responses to repeated forward loss of balance in older adults. J Biomech. 2012;45(1):183–187. doi: 10.1016/j.jbiomech.2011.10.005.
    1. Bohm S, Mademli L, Mersmann F, Arampatzis A. Predictive and reactive locomotor adaptability in healthy elderly: a systematic review and meta-analysis. Sports Med. 2015;45(12):1759–1777. doi: 10.1007/s40279-015-0413-9.
    1. Carty CP, Cronin NJ, Lichtwark GA, Mills PM, Barrett RS. Mechanisms of adaptation from a multiple to a single step recovery strategy following repeated exposure to forward loss of balance in older adults. PLoS One. 2012;7(3):e33591. doi: 10.1371/journal.pone.0033591.
    1. Dijkstra BW, Horak FB, Kamsma YP, Peterson DS. Older adults can improve compensatory stepping with repeated postural perturbations. Front Aging Neurosci. 2015;7:201. doi: 10.3389/fnagi.2015.00201.
    1. McCrum C, Epro G, Meijer K, Zijlstra W, Brüggemann GP, Karamanidis K. Locomotor stability and adaptation during perturbed walking across the adult female lifespan. J Biomech. 2016;49(7):1244–1247. doi: 10.1016/j.jbiomech.2016.02.051.
    1. Pavol MJ, Runtz EF, Pai YC. Young and older adults exhibit proactive and reactive adaptations to repeated slip exposure. J Gerontol A Biol Sci Med Sci. 2004;59(5):494–502. doi: 10.1093/gerona/59.5.M494.
    1. Bieryla KA, Madigan ML. Proof of concept for perturbation-based balance training in older adults at a high risk for falls. Arch Phys Med Rehabil. 2011;92(5):841–843. doi: 10.1016/j.apmr.2010.12.004.
    1. Mansfield A, Peters AL, Liu BA, Maki BE. Effect of a perturbation-based balance training program on compensatory stepping and grasping reactions in older adults: a randomized controlled trial. Phys Ther. 2010;90(4):476–491. doi: 10.2522/ptj.20090070.
    1. Mansfield A, Wong JS, Bryce J, Knorr S, Patterson KK. Does perturbation-based balance training prevent falls? Systematic review and meta-analysis of preliminary randomized controlled trials. Phys Ther. 2015;95(5):700–709. doi: 10.2522/ptj.20140090.
    1. Okubo Y, Schoene D, Lord SR. Step training improves reaction time, gait and balance and reduces falls in older people: a systematic review and meta-analysis. Br J Sports Med 2016; doi:10.1136/bjsports-2015-095452
    1. Bhatt T, Yang F, Pai YC. Learning to resist gait-slip falls: long-term retention in community-dwelling older adults. Arch Phys Med Rehabil. 2012;93(4):557–564. doi: 10.1016/j.apmr.2011.10.027.
    1. Lurie JD, Zagaria AB, Pidgeon DM, Forman JL, Spratt KF. Pilot comparative effectiveness study of surface perturbation treadmill training to prevent falls in older adults. BMC Geriatr. 2013;13:49. doi: 10.1186/1471-2318-13-49.
    1. Pai YC, Bhatt T, Yang F, Wang E. Perturbation training can reduce community-dwelling older adults’ annual fall risk: a randomized controlled trial. J Gerontol A Biol Sci Med Sci. 2014;69(12):1586–1594. doi: 10.1093/gerona/glu087.
    1. Parijat P, Lockhart TE. Effects of moveable platform training in preventing slip-induced falls in older adults. Ann Biomed Eng. 2012;40(5):1111–1121. doi: 10.1007/s10439-011-0477-0.
    1. de Morton NA. The PEDro scale is a valid measure of the methodological quality of clinical trials: a demographic study. Aust J Physiother. 2009;55(2):129–133. doi: 10.1016/S0004-9514(09)70043-1.
    1. Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther. 2003;83(8):713–721.
    1. Teasell R, Bayona N, Marshall S, Cullen N, Bayley M, Chundamala J, et al. A systematic review of the rehabilitation of moderate to severe acquired brain injuries. Brain Inj. 2007;21(2):107–112. doi: 10.1080/02699050701201524.
    1. Pai YC, Bhatt T, Wang E, Espy D, Pavol MJ. Inoculation against falls: rapid adaptation by young and older adults to slips during daily activities. Arch Phys Med Rehabil. 2010;91(3):452–459. doi: 10.1016/j.apmr.2009.10.032.
    1. Pai YC, Yang F, Bhatt T, Wang E. Learning from laboratory-induced falling: long-term motor retention among older adults. Age. 2014;36(3):9640. doi: 10.1007/s11357-014-9640-5.
    1. Bierbaum S, Peper A, Karamanidis K, Arampatzis A. Adaptational responses in dynamic stability during disturbed walking in the elderly. J Biomech. 2010;43(12):2362–2368. doi: 10.1016/j.jbiomech.2010.04.025.
    1. Bierbaum S, Peper A, Karamanidis K, Arampatzis A. Adaptive feedback potential in dynamic stability during disturbed walking in the elderly. J Biomech. 2011;44(10):1921–1926. doi: 10.1016/j.jbiomech.2011.04.027.
    1. Sakai M, Shiba Y, Sato H, Takahira N. Motor adaptation during slip-perturbed gait in older adults. J Phys Ther Sci. 2008;20(2):109–115. doi: 10.1589/jpts.20.109.
    1. McCrum C, Essers JMN, Jie L-J, Liu W-Y, Meijer K. Commentary: older adults can improve compensatory stepping with repeated postural perturbations. Front Aging Neurosci. 2016;8:111. doi: 10.3389/fnagi.2016.00111.
    1. Süptitz F, Karamanidis K, Catala MM, Brüggemann GP. Symmetry and reproducibility of the components of dynamic stability in young adults at different walking velocities on the treadmill. J Electromyogr Kinesiol. 2012;22(2):301–307. doi: 10.1016/j.jelekin.2011.12.007.
    1. Maki BE, Edmondstone MA, McIlroy WE. Age-related differences in laterally directed compensatory stepping behavior. J Gerontol A Biol Sci Med Sci. 2000;55(5):M270–277. doi: 10.1093/gerona/55.5.M270.
    1. Mille ML, Johnson ME, Martinez KM, Rogers MW. Age-dependent differences in lateral balance recovery through protective stepping. Clin Biomech. 2005;20(6):607–616. doi: 10.1016/j.clinbiomech.2005.03.004.
    1. Mille ML, Johnson-Hilliard M, Martinez KM, Zhang Y, Edwards BJ, Rogers MW. One step, two steps, three steps more … directional vulnerability to falls in community-dwelling older people. J Gerontol A Biol Sci Med Sci. 2013;68(12):1540–1548. doi: 10.1093/gerona/glt062.
    1. Schrager MA, Kelly VE, Price R, Ferrucci L, Shumway-Cook A. The effects of age on medio-lateral stability during normal and narrow base walking. Gait Posture. 2008;28(3):466–471. doi: 10.1016/j.gaitpost.2008.02.009.
    1. Singer JC, Prentice SD, McIlroy WE. Age-related challenges in reactive control of mediolateral stability during compensatory stepping: A focus on the dynamics of restabilisation. J Biomech. 2016;49(5):749–755. doi: 10.1016/j.jbiomech.2016.02.001.
    1. Hilliard MJ, Martinez KM, Janssen I, Edwards B, Mille ML, Zhang Y, et al. Lateral balance factors predict future falls in community-living older adults. Arch Phys Med Rehabil. 2008;89(9):1708–1713. doi: 10.1016/j.apmr.2008.01.023.
    1. Lord SR, Rogers MW, Howland A, Fitzpatrick R. Lateral stability, sensorimotor function and falls in older people. J Am Geriatr Soc. 1999;47(9):1077–1081. doi: 10.1111/j.1532-5415.1999.tb05230.x.
    1. Maki BE, Holliday PJ, Topper AK. A prospective study of postural balance and risk of falling in an ambulatory and independent elderly population. J Gerontol. 1994;49(2):M72–84. doi: 10.1093/geronj/49.2.M72.
    1. Fujimoto M, Bair WN, Rogers MW. Center of pressure control for balance maintenance during lateral waist-pull perturbations in older adults. J Biomech. 2015;48(6):963–968. doi: 10.1016/j.jbiomech.2015.02.012.
    1. Martelli D, Vashista V, Micera S, Agrawal S. Direction-dependent adaptation of dynamic gait stability following waist-pull perturbations. IEEE Trans Neural Syst Rehabil Eng. 2016;24(12):1304–1313. doi: 10.1109/TNSRE.2015.2500100.
    1. Peterson DS, Dijkstra BW, Horak FB. Postural motor learning in people with Parkinson’s disease. J Neurol. 2016;263(8):1518–1529. doi: 10.1007/s00415-016-8158-4.
    1. Arampatzis A, Peper A, Bierbaum S. Exercise of mechanisms for dynamic stability control increases stability performance in the elderly. J Biomech. 2011;44(1):52–58. doi: 10.1016/j.jbiomech.2010.08.023.
    1. Bierbaum S, Peper A, Arampatzis A. Exercise of mechanisms of dynamic stability improves the stability state after an unexpected gait perturbation in elderly. Age. 2013;35(5):1905–1915. doi: 10.1007/s11357-012-9481-z.
    1. Aragao FA, Karamanidis K, Vaz MA, Arampatzis A. Mini-trampoline exercise related to mechanisms of dynamic stability improves the ability to regain balance in elderly. J Electromyogr Kinesiol. 2011;21(3):512–518. doi: 10.1016/j.jelekin.2011.01.003.
    1. Shapiro A, Melzer I. Balance perturbation system to improve balance compensatory responses during walking in old persons. J Neuroeng Rehabil. 2010;7:32. doi: 10.1186/1743-0003-7-32.
    1. Süptitz F, Catala MM, Brüggemann GP, Karamanidis K. Dynamic stability control during perturbed walking can be assessed by a reduced kinematic model across the adult female lifespan. Hum Mov Sci. 2013;32(6):1404–14.
    1. Pijnappels M, Bobbert MF, van Dieën JH. Push-off reactions in recovery after tripping discriminate young subjects, older non-fallers and older fallers. Gait Posture. 2005;21(4):388–94. doi: 10.1016/j.gaitpost.2004.04.009.
    1. Pijnappels M, Bobbert MF, van Dieen JH. How early reactions in the support limb contribute to balance recovery after tripping. J Biomech. 2005;38(3):627–34. doi: 10.1016/j.jbiomech.2004.03.029.
    1. Heiden TL, Sanderson DJ, Inglis JT, Siegmund GP. Adaptations to normal human gait on potentially slippery surfaces: the effects of awareness and prior slip experience. Gait Posture. 2006;24(2):237–46. doi: 10.1016/j.gaitpost.2005.09.004.
    1. Hof AL, Vermerris SM, Gjaltema WA. Balance responses to lateral perturbations in human treadmill walking. J Exp Biol. 2010;213(15):2655–64. doi: 10.1242/jeb.042572.
    1. Sturnieks DL, Menant J, Delbaere K, Vanrenterghem J, Rogers MW, Fitzpatrick RC, et al. Force-controlled balance perturbations associated with falls in older people: a prospective cohort study. PLoS One. 2013;8(8):e70981. doi: 10.1371/journal.pone.0070981.
    1. Müller R, Häufle DF, Blickhan R. Preparing the leg for ground contact in running: the contribution of feed-forward and visual feedback. J Exp Biol. 2015;218:451–457. doi: 10.1242/jeb.113688.
    1. van der Linden MH, Hendricks HT, Bloem BR, Duysens J. Hitting a support surface at unexpected height during walking induces loading transients. Gait Posture. 2009;29(2):255–60. doi: 10.1016/j.gaitpost.2008.08.017.
    1. van der Linden MH, Marigold DS, Gabreels FJ, Duysens J. Muscle reflexes and synergies triggered by an unexpected support surface height during walking. J Neurophysiol. 2007;97(5):3639–50. doi: 10.1152/jn.01272.2006.
    1. Nashner LM. Balance adjustments of humans perturbed while walking. J Neurophysiol. 1980;44(4):650–64.
    1. Pater ML, Rosenblatt NJ, Grabiner MD. Expectation of an upcoming large postural perturbation influences the recovery stepping response and outcome. Gait Posture. 2015;41(1):335–7. doi: 10.1016/j.gaitpost.2014.10.026.
    1. Rosenblatt NJ, Marone J, Grabiner MD. Preventing trip-related falls by community-dwelling adults: a prospective study. J Am Geriatr Soc. 2013;61(9):1629–1631. doi: 10.1111/jgs.12428.
    1. Protas EJ, Mitchell K, Williams A, Qureshy H, Caroline K, Lai EC. Gait and step training to reduce falls in Parkinson’s disease. NeuroRehabilitation. 2005;20(3):183–190.
    1. Smania N, Corato E, Tinazzi M, Stanzani C, Fiaschi A, Girardi P, et al. Effect of balance training on postural instability in patients with idiopathic Parkinson’s disease. Neurorehabil Neural Repair. 2010;24(9):826–834. doi: 10.1177/1545968310376057.
    1. Suteerawattananon M, MacNeill B, Protas EJ. Supported treadmill training for gait and balance in a patient with progressive supranuclear palsy. Phys Ther. 2002;82(5):485–495.

Source: PubMed

3
S'abonner