Actionable Mutation Profiles of Non-Small Cell Lung Cancer patients from Vietnamese population

Anh-Thu Huynh Dang, Vu-Uyen Tran, Thanh-Truong Tran, Hong-Anh Thi Pham, Dinh-Thong Le, Lam Nguyen, Ngoc-Vu Nguyen, Thai-Hoa Thi Nguyen, Chu Van Nguyen, Ha Thu Le, Mai-Lan Thi Nguyen, Vu Thuong Le, Phuc Huu Nguyen, Binh Thanh Vo, Hong-Thuy Thi Dao, Luan Thanh Nguyen, Thien-Chi Van Nguyen, Quynh-Tram Nguyen Bui, Long Hung Nguyen, Nguyen Huu Nguyen, Quynh-Tho Thi Nguyen, Truong Xuan Le, Thanh-Thuy Thi Do, Kiet Truong Dinh, Han Ngoc Do, Minh-Duy Phan, Hoai-Nghia Nguyen, Le Son Tran, Hoa Giang, Anh-Thu Huynh Dang, Vu-Uyen Tran, Thanh-Truong Tran, Hong-Anh Thi Pham, Dinh-Thong Le, Lam Nguyen, Ngoc-Vu Nguyen, Thai-Hoa Thi Nguyen, Chu Van Nguyen, Ha Thu Le, Mai-Lan Thi Nguyen, Vu Thuong Le, Phuc Huu Nguyen, Binh Thanh Vo, Hong-Thuy Thi Dao, Luan Thanh Nguyen, Thien-Chi Van Nguyen, Quynh-Tram Nguyen Bui, Long Hung Nguyen, Nguyen Huu Nguyen, Quynh-Tho Thi Nguyen, Truong Xuan Le, Thanh-Thuy Thi Do, Kiet Truong Dinh, Han Ngoc Do, Minh-Duy Phan, Hoai-Nghia Nguyen, Le Son Tran, Hoa Giang

Abstract

Comprehensive profiling of actionable mutations in non-small cell lung cancer (NSCLC) is vital to guide targeted therapy, thereby improving the survival rate of patients. Despite the high incidence and mortality rate of NSCLC in Vietnam, the actionable mutation profiles of Vietnamese patients have not been thoroughly examined. Here, we employed massively parallel sequencing to identify alterations in major driver genes (EGFR, KRAS, NRAS, BRAF, ALK and ROS1) in 350 Vietnamese NSCLC patients. We showed that the Vietnamese NSCLC patients exhibited mutations most frequently in EGFR (35.4%) and KRAS (22.6%), followed by ALK (6.6%), ROS1 (3.1%), BRAF (2.3%) and NRAS (0.6%). Interestingly, the cohort of Vietnamese patients with advanced adenocarcinoma had higher prevalence of EGFR mutations than the Caucasian MSK-IMPACT cohort. Compared to the East Asian cohort, it had lower EGFR but higher KRAS mutation prevalence. We found that KRAS mutations were more commonly detected in male patients while EGFR mutations was more frequently found in female. Moreover, younger patients (<61 years) had higher genetic rearrangements in ALK or ROS1. In conclusions, our study revealed mutation profiles of 6 driver genes in the largest cohort of NSCLC patients in Vietnam to date, highlighting significant differences in mutation prevalence to other cohorts.

Conflict of interest statement

The authors declare no competing interests.

Figures

Figure 1
Figure 1
The mutation composition in six major driver genes in 350 Vietnamese NSCLC patients. (A) Prevalence of mutations in 6 major driver genes determined by targeted capture sequencing. Cases with mutations occurring in more than one driver gene were counted as “co-mutation”. (B) Mutation frequency in cases harbouring co-mutations.
Figure 2
Figure 2
Distribution of mutation subtypes across 6 driver genes in Vietnamese NSCLC. (A–F) The mutation frequencies in particular subtypes of EGFR (A), KRAS (B), BRAF (C), NRAS (D), ALK (E) and ROS1 (F) genes were calculated as percentage of mutant cases in the total number of cases carrying mutations in the corresponding driver gene.
Figure 3
Figure 3
Comparison of driver gene mutation frequencies between Vietnamese NSCLC cohort with Caucasians and East Asians. Mutation frequency of each driver gene in the Vietnamese cohort was calculated among 220 patients with adenocarcinoma (AC) in late stages (III-IV) taking into account cases with co-mutation. For the Caucasian cohort, data were obtained from the MSK-IMPACT cohort (764 lung cancer cases with AC subtypes in metastatic stages (III-IV), Asian patients were excluded). For East Asia cohort, data we retrieved from a recent report profiling a similar panel of driver mutations in a Chinese cohort of 361 patients with AC in late stages (III-IV). NT: mutations were not tested.

References

    1. Bray F, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer J. clinicians. 2018;68:394–424. doi: 10.3322/caac.21492.
    1. Sher T, Dy GK, Adjei AA. Small cell lung cancer. Mayo Clin. Proc. 2008;83:355–367. doi: 10.4065/83.3.355.
    1. Birring SS, Peake MD. Symptoms and the early diagnosis of lung cancer. Thorax. 2005;60:268–269. doi: 10.1136/thx.2004.032698.
    1. Tafe LJ, et al. Clinical Genotyping of Non-Small Cell Lung Cancers Using Targeted Next-Generation Sequencing: Utility of Identifying Rare and Co-mutations in Oncogenic Driver Genes. Neoplasia. 2016;18:577–583. doi: 10.1016/j.neo.2016.07.010.
    1. Lindeman NI, et al. Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. J. Thorac. oncology: Off. Publ. Int. Assoc. Study Lung Cancer. 2013;8:823–859. doi: 10.1097/JTO.0b013e318290868f.
    1. Mok TS, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N. Engl. J. Med. 2009;361:947–957. doi: 10.1056/NEJMoa0810699.
    1. Sequist LV, et al. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J. Clin. oncology: Off. J. Am. Soc. Clin. Oncol. 2013;31:3327–3334. doi: 10.1200/jco.2012.44.2806.
    1. Yu HA, et al. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. Clin. cancer research: an. Off. J. Am. Assoc. Cancer Res. 2013;19:2240–2247. doi: 10.1158/1078-0432.ccr-12-2246.
    1. Horn L, Pao W. EML4-ALK: honing in on a new target in non-small-cell lung cancer. J. Clin. Oncol. 2009;26:4232–4235. doi: 10.1200/JCO.2009.23.6661.
    1. Shaw A, et al. Clinical features and outcome of patients with non-small-cell lung cancer who. J. Clin. Oncol. 2009;26:4247–4253. doi: 10.1200/JCO.2009.22.6993.
    1. Odogwu L, et al. FDA Approval Summary: Dabrafenib and Trametinib for the Treatment of Metastatic. Oncologist. 2018;6:740–745. doi: 10.1634/theoncologist.2017-0642.
    1. Shaw A, et al. Crizotinib in ROS1-rearranged advanced non-small-cell lung cancer (NSCLC) Ann. Oncol. 2019;30:1121–1126. doi: 10.1093/annonc/mdz131.
    1. Kalemkerian G, Narula N, Kennedy E. Molecular Testing Guideline for the Selection of Lung Cancer Patients for. Oncol. Pract. 2018;14:323–327. doi: 10.1200/JOP.18.00035.
    1. Suda K, Tomizawa K, Mitsudomi T. Biological and clinical significance of KRAS mutations in lung cancer. Cancer Metastasis Rev. 2010;29:49–60. doi: 10.1007/s10555-010-9209-4.
    1. Roman M, et al. KRAS oncogene in non-small cell lung cancer: clinical perspectives on the treatment of an old target. Mol. Cancer. 2018;17:33. doi: 10.1186/s12943-018-0789-x.
    1. Ferrer I, et al. KRAS-Mutant non-small cell lung cancer: From biology to therapy. Lung Cancer. 2018;124:53–64. doi: 10.1016/j.lungcan.2018.07.013.
    1. Pennell N, Arcila M, Gandara D, West H. Biomarker Testing for Patients With Advanced Non-Small Cell Lung Cancer. Am. Soc. Clin. Oncol. Educ. Book. 2019;39:531–542. doi: 10.1200/EDBK_237863.
    1. IARC, I. A. f. R. o. C. Global Cancer Observatory—Vietnam Population fact sheets. (2018).
    1. Pham, T. et al. Cancers in Vietnam-Burden and Control Efforts: A Narrative Scoping Review. 26, 1073274819863802 (2019).
    1. Gainor JF, et al. ALK rearrangements are mutually exclusive with mutations in EGFR or KRAS: an analysis of 1,683 patients with non-small cell lung cancer. Clin. Cancer Res. 2013;19:4273–4281. doi: 10.1158/1078-0432.CCR-13-0318.
    1. Zehir A, et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat. Med. 2017;23:703–713. doi: 10.1038/nm.4333.
    1. Jordan EJ, et al. Prospective Comprehensive Molecular Characterization of Lung Adenocarcinomas for. Cancer Discov. 2017;7:596–609. doi: 10.1158/-16-1337.
    1. Wang R, et al. Comprehensive investigation of oncogenic driver mutations in Chinese non-small. Oncotarget. 2015;6:34300–34308.
    1. Li H, et al. Frequency of well-identified oncogenic driver mutations in lung adenocarcinoma of. Lung Cancer. 2013;79:8–13. doi: 10.1016/j.lungcan.2012.09.018.
    1. Dogan S, et al. Molecular epidemiology of EGFR and KRAS mutations in 3,026 lung adenocarcinomas. Clin. Cancer Res. 2012;18:6169–6177. doi: 10.1158/1078-0432.CCR-11-3265.
    1. Bae NC, et al. EGFR, ERBB2, and KRAS mutations in Korean non-small cell lung cancer patients. Cancer Genet. Cytogenet. 2007;173:107–113. doi: 10.1016/j.cancergencyto.2006.10.007.
    1. Shi Y, et al. A prospective, molecular epidemiology study of EGFR mutations in Asian patients. J. Thorac. Oncol. 2014;9:154–162. doi: 10.1097/JTO.0000000000000033.
    1. Zhang Q, et al. Prevalence of ROS1 fusion in Chinese patients with non-small cell lung cancer. Thorac. Cancer. 2019;10:47–53. doi: 10.1111/1759-7714.12899.
    1. Ke L, Xu M, Jiang X, Sun X. Epidermal Growth Factor Receptor (EGFR) Mutations and Anaplastic Lymphoma Kinase/Oncogene or C-Ros Oncogene 1 (ALK/ROS1) Fusions Inflict Non-Small Cell Lung Cancer (NSCLC) Female Patients Older Than 60 Years of Age. Med. Sci. Monit. 2018;24:9364–9369. doi: 10.12659/MSM.911333.
    1. Liang H, et al. The role of liquid biopsy in predicting post-operative recurrence of non-small cell lung cancer. J. Thorac. Dis. 2018;10:S838–s845. doi: 10.21037/jtd.2018.04.08.
    1. Absenger G, Terzic J, Bezan A. ASCO update: lung cancer. Memo. 2017;10:224–227. doi: 10.1007/s12254-017-0373-x.
    1. Nguyen KH, et al. Comparison of Genomic Driver Oncogenes in Vietnamese Patients With Non-Small-Cell. J. Glob. Oncol. 2018;4:1–9.
    1. Zhuang X, et al. Clinical features and therapeutic options in non-small cell lung cancer patients with concomitant mutations of EGFR, ALK, ROS1, KRAS or BRAF. Cancer Med. 2019;8:2858–2866. doi: 10.1002/cam4.2508.
    1. Campbell JD, et al. Comparison of Prevalence and Types of Mutations in Lung Cancers Among Black and White Populations. JAMA Oncol. 2017;3:801–809. doi: 10.1001/jamaoncol.2016.6108.
    1. Li K, Yang M, Liang N, Li S. Determining EGFR-TKI sensitivity of G719X and other uncommon EGFR mutations in non-small cell lung cancer: Perplexity and solution (Review) Oncol. Rep. 2017;37:1347–1358. doi: 10.3892/or.2017.5409.
    1. Gazdar AF. Activating and resistance mutations of EGFR in non-small-cell lung cancer: role in clinical response to EGFR tyrosine kinase inhibitors. Oncogene. 2009;Suppl 1:S24–31. doi: 10.1038/onc.2009.198.
    1. Boch Christian, Kollmeier Jens, Roth Andreas, Stephan-Falkenau Susann, Misch Daniel, Grüning Wolfram, Bauer Torsten Thomas, Mairinger Thomas. The frequency of EGFR and KRAS mutations in non-small cell lung cancer (NSCLC): routine screening data for central Europe from a cohort study. BMJ Open. 2013;3(4):e002560. doi: 10.1136/bmjopen-2013-002560.
    1. Paik PK, et al. Clinical characteristics of patients with lung adenocarcinomas harboring BRAF mutations. J. Clin. Oncol. 2011;29:2046–2051. doi: 10.1200/JCO.2010.33.1280.
    1. Ross JC, et al. ALK Fusions in a Wide Variety of Tumor Types Respond to Anti-ALK Targeted Therapy. Oncologist. 2017;22:1444–1450. doi: 10.1634/theoncologist.2016-0488.
    1. AACR Project GENIE: Powering Precision Medicine through an International. Cancer Discov. 2017;7:818–831. doi: 10.1158/-17-0151.
    1. Rikova K, et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell. 2007;131:1190–1203. doi: 10.1016/j.cell.2007.11.025.
    1. Soria JC, et al. Osimertinib in Untreated EGFR-Mutated Advanced Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2018;378:113–125. doi: 10.1056/NEJMoa1713137.
    1. Ahn MJ, et al. Osimertinib in patients with T790M mutation-positive, advanced non-small cell lung cancer: Long-term follow-up from a pooled analysis of 2 phase 2 studies. Cancer. 2019;125:892–901. doi: 10.1002/cncr.31891.
    1. Vyse, S. & Huang, P. H. Targeting EGFR exon 20 insertion mutations in non-small cell lung cancer. Signal Transduct Target Ther. 4, 10.1038/s41392-41019-40038-41399. (2019).
    1. Yasuda H, et al. Structural, biochemical, and clinical characterization of epidermal growth factor receptor (EGFR) exon 20 insertion mutations in lung cancer. Sci. Transl. Med. 2013;5:216ra177. doi: 10.1126/scitranslmed.3007205.
    1. Garrido P, et al. Treating KRAS-mutant NSCLC: latest evidence and clinical consequences. Ther. Adv. Med. Oncol. 2017;9:589–597. doi: 10.1177/1758834017719829.
    1. Leal, L. F. et al. Mutational profile of Brazilian lung adenocarcinoma unveils association of EGFR. Sci Rep. 9, 3209. 3210.1038/s41598-41019-39965-x (2019).
    1. Kris MG, et al. Identification of driver mutations in tumor specimens from 1,000 patients with lung adenocarcinoma: The NCI’s Lung Cancer Mutation Consortium (LCMC) J. Clin. Oncol. 2011;29:CRA7506–CRA7506. doi: 10.1200/jco.2011.29.18_suppl.cra7506.
    1. Russo GL, et al. Concomitant EML4-ALK rearrangement and EGFR mutation in non-small cell lung cancer patients: a literature review of 100 cases. Oncotarget. 2017;8:59889–59900.
    1. Zhang YL, et al. The prevalence of EGFR mutation in patients with non-small cell lung cancer: a systematic review and meta-analysis. Oncotarget. 2016;7:78985–78993.
    1. Zandwijk NV, et al. EGFR and KRAS mutations as criteria for treatment with tyrosine kinase inhibitors: retro- and prospective observations in non-small-cell lung cancer. Ann. Oncol. 2007;18:99–103. doi: 10.1093/annonc/mdl323.
    1. Pao W, et al. KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PLoS Med. 2005;2:e17. doi: 10.1371/journal.pmed.0020017.
    1. Loriot Y, Mordant P, Deutsch E, Olaussen KA, Soria JC. Are RAS mutations predictive markers of resistance to standard chemotherapy? Nature reviews. Clin. Oncol. 2009;6:528–534. doi: 10.1038/nrclinonc.2009.106.
    1. Pesek M, et al. Dominance of EGFR and insignificant KRAS mutations in prediction of tyrosine-kinase therapy for NSCLC patients stratified by tumor subtype and smoking status. Anticancer. Res. 2009;29:2767–2773.
    1. Roberts PJ, Stinchcombe TE. KRAS mutation: should we test for it, and does it matter? J. Clin. oncology: Off. J. Am. Soc. Clin. Oncol. 2013;31:1112–1121. doi: 10.1200/jco.2012.43.0454.
    1. Tao L, et al. The prognostic value of KRAS mutation subtypes and PD-L1 expression in patients with lung adenocarcinoma. J. Clin. Oncol. 2019;37:e20022–e20022. doi: 10.1200/JCO.2019.37.15_suppl.e20022.
    1. Minamimoto R, et al. Prediction of EGFR and KRAS mutation in non-small cell lung cancer using quantitative 18F FDG-PET/CT metrics. Oncotarget. 2017;8:52792–52801. doi: 10.18632/oncotarget.17782.
    1. Chaft JE, et al. Coexistence of PIK3CA and other oncogene mutations in lung adenocarcinoma-rationale for comprehensive mutation profiling. Mol. Cancer Ther. 2012;11:485–491. doi: 10.1158/1535-7163.MCT-11-0692.
    1. Rao, G. et al. Inhibition of AKT1 signaling promotes invasion and metastasis of non-small cell lung cancer cells with K-RAS or EGFR mutations. Sci Rep. 7, 7066. 7010.1038/s41598-41017-06128-41599 (2017).
    1. Chuang JC, et al. ERBB2-Mutated Metastatic Non-Small Cell Lung Cancer: Response and Resistance to Targeted Therapies. J. Thorac. Oncol. 2017;12:833–842. doi: 10.1016/j.jtho.2017.01.023.
    1. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinforma. 2009;25:1754–1760. doi: 10.1093/bioinformatics/btp324.
    1. Cibulskis K, et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat. Biotechnol. 2013;31:213–219. doi: 10.1038/nbt.2514.
    1. Li H, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–2079. doi: 10.1093/bioinformatics/btp352.
    1. Newman AM, et al. FACTERA: a practical method for the discovery of genomic rearrangements at breakpoint resolution. Bioinforma. 2014;30:3390–3393. doi: 10.1093/bioinformatics/btu549.
    1. Bio-Rad Laboratories, I. Rare Mutation Detection Best Practices Guidelines.
    1. Deprez L, et al. Validation of a digital PCR method for quantification of DNA copy number concentrations by using a certified reference material. Biomol. Detect. Quantif. 2016;9:29–39. doi: 10.1016/j.bdq.2016.08.002.

Source: PubMed

3
S'abonner