Extended prone positioning duration for COVID-19-related ARDS: benefits and detriments

Thaïs Walter, Noémie Zucman, Jimmy Mullaert, Ingrid Thiry, Coralie Gernez, Damien Roux, Jean-Damien Ricard, Thaïs Walter, Noémie Zucman, Jimmy Mullaert, Ingrid Thiry, Coralie Gernez, Damien Roux, Jean-Damien Ricard

Abstract

Background: During the COVID-19 pandemic, many more patients were turned prone than before, resulting in a considerable increase in workload. Whether extending duration of prone position may be beneficial has received little attention. We report here benefits and detriments of a strategy of extended prone positioning duration for COVID-19-related acute respiratory distress syndrome (ARDS).

Methods: A eetrospective, monocentric, study was performed on intensive care unit patients with COVID-19-related ARDS who required tracheal intubation and who have been treated with at least one session of prone position of duration greater or equal to 24 h. When prone positioning sessions were initiated, patients were kept prone for a period that covered two nights. Data regarding the incidence of pressure injury and ventilation parameters were collected retrospectively on medical and nurse files of charts. The primary outcome was the occurrence of pressure injury of stage ≥ II during the ICU stay.

Results: For the 81 patients included, the median duration of prone positioning sessions was 39 h [interquartile range (IQR) 34-42]. The cumulated incidence of stage ≥ II pressure injuries was 26% [95% CI 17-37] and 2.5% [95% CI 0.3-8.8] for stages III/IV pressure injuries. Patients were submitted to a median of 2 sessions [IQR 1-4] and for 213 (94%) prone positioning sessions, patients were turned over to supine position during daytime, i.e., between 9 AM and 6 PM. This increased duration was associated with additional increase in oxygenation after 16 h with the PaO2/FiO2 ratio increasing from 150 mmHg [IQR 121-196] at H+ 16 to 162 mmHg [IQR 124-221] before being turned back to supine (p = 0.017).

Conclusion: In patients with extended duration of prone position up to 39 h, cumulative incidence for stage ≥ II pressure injuries was 26%, with 25%, 2.5%, and 0% for stage II, III, and IV, respectively. Oxygenation continued to increase significantly beyond the standard 16-h duration. Our results may have significant impact on intensive care unit staffing and patients' respiratory conditions.

Trial registration: Institutional review board 00006477 of HUPNVS, Université Paris Cité, APHP, with the reference: CER-2021-102, obtained on October 11th 2021. Registered at Clinicaltrials (NCT05124197).

Keywords: COVID-19-related ARDS; Mechanical ventilation; Pressure injuries; Prone positioning.

Conflict of interest statement

Jean-Damien Ricard: Fisher&Paykel covered travel expenses and provide high flow devices to a multicenter randomized control trial which JD Ricard is conducting on the use of nasal high flow in patients with acute hypercapnic respiratory failure. All remaining authors declare that they have no competing interests.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Flowchart of the study. COVID-19 = Coronavirus disease 2019, ARDS = Acute respiratory distress syndrome
Fig. 2
Fig. 2
Changes in physiological parameters. (a Compliance, b PaO2/FiO2, c driving pressure) during proning sessions
Fig. 3
Fig. 3
Flowchart O2-Responders during extended prone position sessions. O2-Responders = session with an increase of + 20 mmHg in the PaO2/FiO2 ratio. H = hour; n = number; SP = supine position

References

    1. European Centre for Disease Prevention and Control. Data on hospital and ICU admission rates and current occupancy for COVID-19. Accessed 16 March 2022.
    1. COVID-ICU Group on behalf of the REVA Network and the COVID-ICU Investigators Clinical characteristics and day-90 outcomes of 4244 critically ill adults with COVID-19: a prospective cohort study. Intensive Care Med. 2021;47(1):60–73. doi: 10.1007/s00134-020-06294-x.
    1. Marini JJ, Gattinoni L. Management of COVID-19 respiratory distress. JAMA. 2020;323(22):2329. doi: 10.1001/jama.2020.6825.
    1. Ziehr DR, Alladina J, Petri CR, Maley JH, Moskowitz A, Medoff BD, et al. Respiratory pathophysiology of mechanically ventilated patients with COVID-19: a cohort study. Am J Respir Crit Care Med. 2020;201(12):1560–1564. doi: 10.1164/rccm.202004-1163LE.
    1. Guérin C, Albert RK, Beitler J, Gattinoni L, Jaber S, Marini JJ, et al. Prone position in ARDS patients: why, when, how and for whom. Intensive Care Med. 2020;46(12):2385–2396. doi: 10.1007/s00134-020-06306-w.
    1. Belluck P. Low-tech way to help some Covid patients: flip them over. The New York Times. 2020 May 19;Section D:8–8.
    1. Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315(8):788. doi: 10.1001/jama.2016.0291.
    1. for the investigators of the APRONET Study Group, the REVA Network, the Réseau recherche de la Société Française d’Anesthésie-Réanimation (SFAR-recherche) and the ESICM Trials Group, Guérin C, Beuret P, Constantin JM, Bellani G, Garcia-Olivares P, et al. A prospective international observational prevalence study on prone positioning of ARDS patients: the APRONET (ARDS Prone Position Network) study. Intensive Care Med. 2018;44(1):22–37.
    1. Guérin C, Reignier J, Richard JC, Beuret P, Gacouin A, Boulain T, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368(23):2159–2168. doi: 10.1056/NEJMoa1214103.
    1. Papazian L, Aubron C, Brochard L, Chiche JD, Combes A, Dreyfuss D, et al. Formal guidelines: management of acute respiratory distress syndrome. Ann Intensive Care. 2019;9(1):69. doi: 10.1186/s13613-019-0540-9.
    1. for the Proseva trial group, Girard R, Baboi L, Ayzac L, Richard JC, Guérin C. The impact of patient positioning on pressure ulcers in patients with severe ARDS: results from a multicentre randomised controlled trial on prone positioning. Intensive Care Med. 2014;40(3):397–403.
    1. Sud S, Friedrich JO, Adhikari NKJ, Taccone P, Mancebo J, Polli F, et al. Effect of prone positioning during mechanical ventilation on mortality among patients with acute respiratory distress syndrome: a systematic review and meta-analysis. CMAJ. 2014;186(10):E381–E390. doi: 10.1503/cmaj.140081.
    1. Allman R, Goode P, Burst N, Bartolucci A, Thomas D. Pressure ulcers, hospital complications, and disease severity: impact on hospital costs and length of stay. Adv Wound Care. 1999;12(1):22–30.
    1. Manzano F, Pérez-Pérez AM, Martínez-Ruiz S, Garrido-Colmenero C, Roldan D, Jiménez-Quintana MM, et al. Hospital-acquired pressure ulcers and risk of hospital mortality in intensive care patients on mechanical ventilation: pressure ulcers, ventilation and mortality. J Eval Clin Pract. 2014;20(4):362–368. doi: 10.1111/jep.12137.
    1. Edsberg LE, Black JM, Goldberg M, McNichol L, Moore L, Sieggreen M. Revised national pressure ulcer advisory panel pressure injury staging system: revised pressure injury staging system. J Wound Ostomy Continence Nurs. 2016;43(6):585–597. doi: 10.1097/WON.0000000000000281.
    1. Gaudry S, Tuffet S, Lukaszewicz AC, Laplace C, Zucman N, Pocard M, et al. Prone positioning in acute respiratory distress syndrome after abdominal surgery: a multicenter retrospective study: SAPRONADONF (Study of Ards and PRONe position After abDOmiNal surgery in France) Ann Intensive Care. 2017;7(1):21. doi: 10.1186/s13613-017-0235-z.
    1. The ARDS Definition Task Force Acute respiratory distress syndrome: the Berlin definition. JAMA. 2012;307(23):2526–2533.
    1. Langemo D, Schoonhoven L, Carville K, Kadono T, Haesler E. Prevention and treatment of pressure ulcers: quick reference guide [Internet]. National Pressure Ulcer Advisory Panel, European Pressure Ulcer Advisory Panel, Pan Pacific Pressure Injury Alliance; 2014 [cited 2021 Dec 16] p. 72.
    1. Bamford P, Denmade C, Newmarch C, Shirley P, Singer B, Webb S, et al. Guidance for: prone positioning in adult critical care [Internet]. The Faculty of Intensive Care Medicine and Intensive Care Society; 2019 Nov [cited 2021 Nov 11] p. 40.
    1. Pressure ulcers: prevention and management [Internet]. National Institute for Health Care Excellence; 2014 Apr [cited 2021 Nov 11] p. 30.
    1. COVID-19 Treatment Guidelines Panel. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. National Institutes of Health. . Accessed [2021/12/15].
    1. Acute Respiratory Distress Syndrome Network investigators Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342(18):1301–1308. doi: 10.1056/NEJM200005043421801.
    1. Gattinoni L, Vagginelli F, Carlesso E, Taccone P, Conte V, Chiumello D, et al. Decrease in PaCO2 with prone position is predictive of improved outcome in acute respiratory distress syndrome*. Critical Care Med. 2003;31(12):2727–2733. doi: 10.1097/01.CCM.0000098032.34052.F9.
    1. Albert RK, Keniston A, Baboi L, Ayzac L, Guérin C. Prone position–induced improvement in gas exchange does not predict improved survival in the acute respiratory distress syndrome. Am J Respir Crit Care Med. 2014;189(4):494–496. doi: 10.1164/rccm.201311-2056LE.
    1. Gleissman H, Forsgren A, Andersson E, Lindqvist E, Lipka Falck A, Cronhjort M, et al. Prone positioning in mechanically ventilated patients with severe acute respiratory distress syndrome and coronavirus disease 2019. Acta Anaesthesiol Scand. 2021;65(3):360–363. doi: 10.1111/aas.13741.
    1. Miller C, O’Sullivan J, Jeffrey J, Power D. Brachial plexus neuropathies during the COVID-19 pandemic: a retrospective case series of 15 patients in critical care. Phys Ther. 2021;101(1):pzaa191. doi: 10.1093/ptj/pzaa191.
    1. PRONA-COVID Group, Langer T, Brioni M, Guzzardella A, Carlesso E, Cabrini L, et al. Prone position in intubated, mechanically ventilated patients with COVID-19: a multi-centric study of more than 1000 patients. Crit Care. 2021;25(1):128.
    1. Weiss TT, Cerda F, Scott JB, Kaur R, Sungurlu S, Mirza SH, et al. Prone positioning for patients intubated for severe acute respiratory distress syndrome (ARDS) secondary to COVID-19: a retrospective observational cohort study. Br J Anaesth. 2021;126(1):48–55. doi: 10.1016/j.bja.2020.09.042.
    1. de Groot RI, Dekkers OM, Herold IH, de Jonge E, Arbous SM. Risk factors and outcome after unplanned extubations on the ICU, a case-control study. Crit Care. 2011;15(1):R19. doi: 10.1186/cc9964.
    1. Merrer J, De Jonghe B, Golliot F, Lefrant JY, Raffy B, Barre E, et al. Complications of femoral and subclavian venous catheterization in critically ill patients: a randomized controlled trial. JAMA. 2001;286(6):700. doi: 10.1001/jama.286.6.700.
    1. Mancebo J, Fernández R, Blanch L, Rialp G, Gordo F, Ferrer M, et al. A multicenter trial of prolonged prone ventilation in severe acute respiratory distress syndrome. Am J Respir Crit Care Med. 2006;173(11):1233–1239. doi: 10.1164/rccm.200503-353OC.
    1. Doussot A, Ciceron F, Cerutti E, Salomon du Mont L, Thines L, Capellier G, et al. Prone positioning for severe acute respiratory distress syndrome in COVID-19 patients by a dedicated team: a safe and pragmatic reallocation of medical and surgical work force in response to the outbreak. Ann Surg. 2020;272(6):e311–e315. doi: 10.1097/SLA.0000000000004265.
    1. Yang S, Lu J, Zeng J, Wang L, Li Y. Prevalence and risk factors of work-related musculoskeletal disorders among intensive care unit nurses in China. Workplace Health Saf. 2019;67(6):275–287. doi: 10.1177/2165079918809107.
    1. Fonseca NR, Fernandes RCP. Factors related to musculoskeletal disorders in nursing workers. Rev Latino-Am Enfermagem. 2010;18(6):1076–1083. doi: 10.1590/S0104-11692010000600006.
    1. Douglas IS, Rosenthal CA, Swanson DD, Hiller T, Oakes J, Bach J, et al. Safety and outcomes of prolonged usual care prone position mechanical ventilation to treat acute coronavirus disease 2019 hypoxemic respiratory failure*. Crit Care Med. 2021;49(3):490–502. doi: 10.1097/CCM.0000000000004818.
    1. Mentzelopoulos SD. Prone position reduces lung stress and strain in severe acute respiratory distress syndrome. Eur Respir J. 2005;25(3):534–544. doi: 10.1183/09031936.05.00105804.
    1. Pelosi P, Bottino N, Chiumello D, Caironi P, Panigada M, Gamberoni C, et al. Sigh in supine and prone position during acute respiratory distress syndrome. Am J Respir Crit Care Med. 2003;167(4):521–527. doi: 10.1164/rccm.200203-198OC.
    1. Ait-Oufella H, Bourcier S, Alves M, Galbois A, Baudel JL, Margetis D, et al. Alteration of skin perfusion in mottling area during septic shock. Ann Intensive Care. 2013;3(1):31. doi: 10.1186/2110-5820-3-31.

Source: PubMed

3
S'abonner