Selected Essential and Toxic Chemical Elements in Hypothyroidism-A Literature Review (2001-2021)

Anna Błażewicz, Patrycja Wiśniewska, Katarzyna Skórzyńska-Dziduszko, Anna Błażewicz, Patrycja Wiśniewska, Katarzyna Skórzyńska-Dziduszko

Abstract

Thyroid hormones are known for controlling metabolism of lipids, carbohydrates, proteins, minerals, and electrolytes and for regulating body temperature. Normal thyroid status depends on the chemical/elemental composition of body fluids and tissues, which changes depending on physiological state, lifestyle and environment. A deficiency or excess of certain essential chemical elements (selenium, zinc, copper, iron or fluorine) or exposure to toxic (cadmium or lead) or potentially toxic elements (manganese or chromium) interacts with thyroid hormone synthesis and may disturb thyroid homeostasis. In our review, accessible databases (Scopus, PubMed and Web of Science) were searched for articles from 2001-2021 on the influence of selected chemical elements on the development of hypothyroidism. Our review adopted some of the strengths of a systematic review. After non-eligible reports were rejected, 29 remaining articles were reviewed. The review found that disruption of the physiological levels of elements in the body adversely affects the functioning of cells and tissues, which can lead to the development of disease.

Keywords: chemical elements; hypothyroidism.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
PRISMA (Preferred Reporting Items for Systematic Reviews and Meta Analyses) flowchart.

References

    1. Zoeller R.T., Tan S.W., Tyl R.W. General Background on the Hypothalamic-Pituitary-Thyroid (HPT) Axis. Crit. Rev. Toxicol. 2007;37:11–53. doi: 10.1080/10408440601123446.
    1. Kostoglou-Athanassiou I., Ntalles K. Hypothyroidism-new aspects of an old disease. Hippokratia. 2010;14:82–87.
    1. Mullur R., Liu Y.Y., Brent G.A. Thyroid Hormone Regulation of Metabolism. Physiol. Rev. 2014;94:355–382. doi: 10.1152/physrev.00030.2013.
    1. Wassner A.J. Pediatric Hypothyroidism: Diagnosis and Treatment. Pediatr. Drugs. 2017;19:291–301. doi: 10.1007/s40272-017-0238-0.
    1. Rasic-Milutinovic Z., Jovanovic D., Bogdanovic G., Trifunovic J., Mutic J. Potential Influence of Selenium, Copper, Zinc and Cadmium on L-Thyroxine Substitution in Patients with Hashimoto Thyroiditis and Hypothyroidism. Exp. Clin. Endocrinol. Diabetes. 2017;125:79–85. doi: 10.1055/s-0042-116070.
    1. Chaker L., Bianco A.C., Jonklaas J., Peeters R.P. Hypothyroidism. Lancet. 2017;390:1550–1562. doi: 10.1016/S0140-6736(17)30703-1.
    1. Antonelli A., Ferrari S.M., Corrado A., Di Domenicantonio A., Fallahi P. Autoimmune Thyroid Disorders. Autoimmun. Rev. 2015;14:174–180. doi: 10.1016/j.autrev.2014.10.016.
    1. Mendes D., Alves C., Silverio N., Batel Marques F. Prevalence of Undiagnosed Hypothyroidism in Europe: A Systematic Review and Meta-Analysis. Eur. Thyroid J. 2019;8:130–143. doi: 10.1159/000499751.
    1. Khandelwal D., Tandon N. Overt and Subclinical Hypothyroidism: Who to Treat and How. Drugs. 2012;72:17–33. doi: 10.2165/11598070-000000000-00000.
    1. Almandoz J.P., Gharib H. Hypothyroidism: Etiology, Diagnosis, and Management. Med. Clin. N. Am. 2012;96:203–221. doi: 10.1016/j.mcna.2012.01.005.
    1. Duntas L. The Role of Iodine and Selenium in Autoimmune Thyroiditis. Horm. Metab. Res. 2015;47:721–726. doi: 10.1055/s-0035-1559631.
    1. Ragusa F., Fallahi P., Elia G., Gonnella D., Paparo S.R., Giusti C., Churilov L.P., Ferrari S.M., Antonelli A. Hashimotos’ Thyroiditis: Epidemiology, Pathogenesis, Clinic and Therapy. Best Pract. Res. Clin. Endocrinol. Metab. 2019;33:101367. doi: 10.1016/j.beem.2019.101367.
    1. McAninch E.A., Bianco A.C. The History and Future of Treatment of Hypothyroidism. Ann. Intern. Med. 2016;164:50–56. doi: 10.7326/M15-1799.
    1. Maenhaut C., Christophe D., Vassart G., Dumont J., Roger P.P., Opitz R. Ontogeny, Anatomy, Metabolism and Physiology of the Thyroid. In: Feingold K.R., Anawalt B., Boyce A., et al., editors. Endotext [Internet] , Inc.; South Dartmouth, MA, USA: 2000. [(accessed on 16 September 2021)]. Available online:
    1. Ventura M., Melo M., Carrilho F. Selenium and Thyroid Disease: From Pathophysiology to Treatment. Int. J. Endocrinol. 2017;2017:1–9. doi: 10.1155/2017/1297658.
    1. Baltaci A.K., Mogulkoc R., Baltaci S.B. Review: The role of zinc in the endocrine system. Pak. J. Pharm. Sci. 2019;32:231–239.
    1. Kandhro G.A., Kazi T.G., Afridi H.I., Kazi N., Arain M.B., Sarfraz R.A., Sirajuddin, Syed N., Baig J.A., Shah A.Q. Evaluation of Iron in Serum and Urine and Their Relation with Thyroid Function in Female Goitrous Patients. Biol. Trace Elem. Res. 2008;125:203–212. doi: 10.1007/s12011-008-8174-z.
    1. Soldin O.P., Aschner M. Effects of Manganese on Thyroid Hormone Homeostasis: Potential Links. NeuroToxicology. 2007;28:951–956. doi: 10.1016/j.neuro.2007.05.003.
    1. KheradPisheh Z., Mirzaei M., Mahvi A.H., Mokhtari M., Azizi R., Fallahzadeh H., Ehrampoush M.H. Impact of Drinking Water Fluoride on Human Thyroid Hormones: A Case-Control Study. Sci. Rep. 2018;8:2674. doi: 10.1038/s41598-018-20696-4.
    1. ARUP Laboratories. [(accessed on 10 June 2021)]. Available online:
    1. Mayo Clinic Laboratories. [(accessed on 10 June 2021)]. Available online:
    1. Błażewicz A., Dolliver W., Sivsammye S., Deol A., Randhawa R., Orlicz-Szczesna G., Błażewicz R. Determination of Cadmium, Cobalt, Copper, Iron, Manganese, and Zinc in Thyroid Glands of Patients with Diagnosed Nodular Goitre Using Ion Chromatography. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2009;878:34–38. doi: 10.1016/j.jchromb.2009.11.014.
    1. Ambroziak U., Hybsier S., Shahnazaryan U., Krasnodębska-Kiljańska M., Rijntjes E., Bartoszewicz Z., Bednarczuk T., Schomburg L. Severe Selenium Deficits in Pregnant Women Irrespective of Autoimmune Thyroid Disease in an Area with Marginal Selenium Intake. J. Trace Elem. Med. Biol. 2017;44:186–191. doi: 10.1016/j.jtemb.2017.08.005.
    1. Page M.J., McKenzie J.E., Bossuyt P.M., Boutron I., Hoffmann T.C., Mulrow C.D., Shamseer L., Tetzlaff J.M., Akl E.A., Brennan S.E., et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. J. Clin. Endocrinol. 2021;134:178–189. doi: 10.1016/j.jclinepi.2021.03.001.
    1. Benamer S., Aberkane L., Benamar M.A. Study of Blood Selenium Level in Thyroid Pathologies by Instrumental Neutron Activation Analysis. Instrum. Sci. Technol. 2006;34:417–423. doi: 10.1080/10739140600648837.
    1. Blasig S., Kühnen P., Schuette A., Blankenstein O., Mittag J., Schomburg L. Positive Correlation of Thyroid Hormones and Serum Copper in Children with Congenital Hypothyroidism. J. Trace Elem. Med. Biol. 2016;37:90–95. doi: 10.1016/j.jtemb.2016.05.007.
    1. Cayir A., Doneray H., Kurt N., Orbak Z., Kaya A., Turan M.I., Yildirim A. Thyroid Functions and Trace Elements in Pediatric Patients with Exogenous Obesity. Biol. Trace Elem. Res. 2014;157:95–100. doi: 10.1007/s12011-013-9880-8.
    1. Erdal M., Sahin M., Hasimi A., Uckaya G., Kutlu M., Saglam K. Trace Element Levels in Hashimoto Thyroiditis Patients with Subclinical Hypothyroidism. Biol. Trace Elem. Res. 2008;123:1–7. doi: 10.1007/s12011-008-8117-8.
    1. Federige M.A.F., Romaldini J.H., Miklos A.B.P.P., Koike M.K., Takei K., Portes E.D.S. Serum Selenium and Selenoprotein-p Levels in Autoimmune Thyroid Diseases Patients in a Select Center: A Transversal Study. Arch. Endocrinol. Metab. 2017;61:600–607. doi: 10.1590/2359-3997000000309.
    1. Guo X., Zhou L., Xu J., Liu Z., Liu J., Yan C. Prenatal Maternal Low Selenium, High Thyrotropin, and Low Birth Weights. Biol. Trace Elem. Res. 2021;199:18–25. doi: 10.1007/s12011-020-02124-9.
    1. Hanif S., Ilyas A., Shah M.H. Statistical Evaluation of Trace Metals, TSH and T4 in Blood Serum of Thyroid Disease Patients in Comparison with Controls. Biol. Trace Elem. Res. 2018;183:58–70. doi: 10.1007/s12011-017-1137-5.
    1. Khatiwada S., Gelal B., Baral N., Lamsal M. Association between Iron Status and Thyroid Function in Nepalese Children. Thyroid Res. 2016;9:2. doi: 10.1186/s13044-016-0031-0.
    1. Khatun S., Santhini G., Malligai E., Kumar H.V. Evaluation of Serum Zinc, Copper Level and Their Correlation with Cu/Zn Ratio and FT3/FT4 Ratio in Hypothyroidism. J. Clin. Diagn. Res. 2019;13:BC08–BC010. doi: 10.7860/JCDR/2019/41685.12992.
    1. Mehl S., Sun Q., Görlich C.L., Hackler J., Kopp J.F., Renko K., Mittag J., Schwerdtle T., Schomburg L. Cross-Sectional Analysis of Trace Element Status in Thyroid Disease. J. Trace Elem. Med. Biol. 2020;58:126430. doi: 10.1016/j.jtemb.2019.126430.
    1. Memon N.S., Kazi T.G., Afridi H.I., Baig J.A., Sahito O.M., Baloch S., Waris M. Correlation of Manganese with Thyroid Function in Females Having Hypo- and Hyperthyroid Disorders. Biol. Trace Elem. Res. 2015;167:165–171. doi: 10.1007/s12011-015-0277-8.
    1. Nisa F.U., Mumtaz A., Ullah M.I., Atif M., Sami W. Determination of Serum Zinc and Magnesium Levels in Patients with Hypothyroidism. Trace Elem. Electrolytes. 2014;31:43–47. doi: 10.5414/TEX01311.
    1. Nourbakhsh M., Ahmadpour F., Chahardoli B., Malekpour-Dehkordi Z., Nourbakhsh M., Hosseini-Fard S.R., Doustimotlagh A., Golestani A., Razzaghy-Azar M. Selenium and Its Relationship with Selenoprotein P and Glutathione Peroxidase in Children and Adolescents with Hashimoto’s Thyroiditis and Hypothyroidism. J. Trace Elem. Med. Biol. 2016;34:10–14. doi: 10.1016/j.jtemb.2015.10.003.
    1. Przybylik-Mazurek E., Zagrodzki P., Kuźniarz-Rymarz S., Hubalewska-Dydejczyk A. Thyroid Disorders-Assessments of Trace Elements, Clinical, and Laboratory Parameters. Biol. Trace Elem. Res. 2011;141:65–75. doi: 10.1007/s12011-010-8719-9.
    1. Rezaei M., Javadmoosavi S.Y., Mansouri B., Azadi N.A., Mehrpour O., Nakhaee S. Thyroid Dysfunction: How Concentration of Toxic and Essential Elements Contribute to Risk of Hypothyroidism, Hyperthyroidism, and Thyroid Cancer. Environ. Sci. Pollut. Res. 2019;26:35787–35796. doi: 10.1007/s11356-019-06632-7.
    1. Rostami R., Nourooz-Zadeh S., Mohammadi A., Khalkhali H.R., Ferns G., Nourooz-Zadeh J. Serum Selenium Status and Its Interrelationship with Serum Biomarkers of Thyroid Function and Antioxidant Defense in Hashimoto’s Thyroiditis. Antioxidants. 2020;9:1–14. doi: 10.3390/antiox9111070.
    1. Shaik N., Shanbhog R., Nandlal B., Tippeswamy H. Fluoride and Thyroid Function in Children Resident of Naturally Fluoridated Areas Consuming Different Levels of Fluoride in Drinking Water: An Observational Study. Contemp. Clin. Dent. 2019;10:24–30. doi: 10.4103/ccd.ccd_108_18.
    1. Singh N., Verma K.G., Verma P., Sidhu G.K., Sachdeva S. A Comparative Study of Fluoride Ingestion Levels, Serum Thyroid Hormone & TSH Level Derangements, Dental Fluorosis Status among School Children from Endemic and Non-Endemic Fluorosis Areas. Springerplus. 2014;3:1–5. doi: 10.1186/2193-1801-3-7.
    1. Stojsavljević A., Trifković J., Rasić-Milutinović Z., Jovanović D., Bogdanović G., Mutić J., Manojlović D. Determination of Toxic and Essential Trace Elements in Serum of Healthy and Hypothyroid Respondents by ICP-MS: A Chemometric Approach for Discrimination of Hypothyroidism. J. Trace Elem. Med. Biol. 2018;48:134–140. doi: 10.1016/j.jtemb.2018.03.020.
    1. Verni E.R., Nahan K., Lapiere A.V., Martinez L.D., Gil R.A., Landero-Figueroa J.A. Metalloprotein and Multielemental Content Profiling in Serum Samples from Diabetic and Hypothyroid Persons Based on PCA Analysis. Microchem. J. 2018;137:258–265. doi: 10.1016/j.microc.2017.10.021.
    1. Zagrodzki P., Przybylik-Mazurek E. Selenium and Hormone Interactions in Female Patients with Hashimoto Disease and Healthy Subjects. Endocr. Res. 2010;35:24–34. doi: 10.3109/07435800903551974.
    1. Osterode W., Zettinig G., Pötzi C., Männer G. Increased Lead Excretion in Hypothyroid Patients after Levothyroxine Medication. J. Toxicol. Environ. Health-Part A. 2002;65:649–654. doi: 10.1080/15287390252900340.
    1. Stojsavljević A., Rovčanin B., Jagodić J., Radojković D.D., Paunović I., Gavrović-Jankulović M., Manojlović D. Significance of Arsenic and Lead in Hashimoto’s Thyroiditis Demonstrated on Thyroid Tissue, Blood, and Urine Samples. Environ. Res. 2020;186:109538. doi: 10.1016/j.envres.2020.109538.
    1. Khorasani E., Mirhafez S.R., Niroumand S. Assessment of the Selenium Status in Hypothyroid Children from North East of Iran. J. Biol. Today’s World. 2017;6:21–26. doi: 10.15412/J.JBTW.01060201.
    1. Krassas G.E., Pontikides N., Tziomalos K., Tzotzas T., Zosin I., Vlad M., Luger A., Gessl A., Marculescu R., Toscano V., et al. Selenium Status in Patients with Autoimmune and Non-Autoimmune Thyroid Diseases from Four European Countries. Expert Rev. Endocrinol. Metab. 2014;9:685–692. doi: 10.1586/17446651.2014.960845.
    1. Maouche N., Meskine D., Alamir B., Koceir E.A. Trace Elements Profile Is Associated with Insulin Resistance Syndrome and Oxidative Damage in Thyroid Disorders: Manganese and Selenium Interest in Algerian Participants with Dysthyroidism. J. Trace Elem. Med. Biol. 2015;32:112–121. doi: 10.1016/j.jtemb.2015.07.002.
    1. Malin A.J., Riddell J., McCague H., Till C. Fluoride Exposure and Thyroid Function among Adults Living in Canada: Effect Modification by Iodine Status. Environ. Int. 2018;121:667–674. doi: 10.1016/j.envint.2018.09.026.
    1. Liu N., Liu P., Xu Q., Zhu L., Zhao Z., Wang Z., Li Y., Feng W., Zhu L. Elements in Erythrocytes of Population with Different Thyroid Hormone Status. Biol. Trace Elem. Res. 2001;84:37–43. doi: 10.1385/BTER:84:1-3:037.
    1. Chung H.R. Iodine and thyroid function. Ann. Pediatr. Endocrinol. Metab. 2014;19:8–12. doi: 10.6065/apem.2014.19.1.8.
    1. Carayanniotis G. Molecular Parameters Linking Thyroglobulin Iodination with Autoimmune Thyroiditis. Hormones. 2011;10:27–35. doi: 10.14310/horm.2002.1290.
    1. Kieliszek M., Błażejak S. Selenium: Significance, and outlook for supplementation. Nutrition. 2013;29:713–718. doi: 10.1016/j.nut.2012.11.012.
    1. Köhrle J. Selenium and the control of thyroid hormone metabolism. Thyroid. 2005;15:841–853. doi: 10.1089/thy.2005.15.841.
    1. Drutel A., Archambeaud F., Caron P. Selenium and the Thyroid Gland: More Good News for Clinicians. Clin. Endocrinol. 2013;78:155–164. doi: 10.1111/cen.12066.
    1. Luongo C., Dentice M., Salvatore D. Deiodinases and Their Intricate Role in Thyroid Hormone Homeostasis. Nat. Rev. Endocrinol. 2019;15:479–488. doi: 10.1038/s41574-019-0218-2.
    1. Mantovani G., Isidori A.M., Moretti C., Di Dato C., Greco E., Ciolli P., Bonomi M., Petrone L., Fumarola A., Campagna G., et al. Selenium Supplementation in the Management of Thyroid Autoimmunity during Pregnancy: Results of the “SERENA Study”, a Randomized, Double-Blind, Placebo-Controlled Trial. Endocrine. 2019;66:542–550. doi: 10.1007/s12020-019-01958-1.
    1. Severo J.S., Morais J.B.S., de Freitas T.E.C., Andrade A.L.P., Feitosa M.M., Fontenelle L.C., de Oliveira A.R.S., Cruz K.J.C., do Nascimento Marreiro D. The Role of Zinc in Thyroid Hormones Metabolism. Int. J. Vitam. Nutr. Res. 2019;89:80–88. doi: 10.1024/0300-9831/a000262.
    1. Institute of Medicine (US) Panel on Micronutrients . Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. National Academies Press; Washington, DC, USA: 2001.
    1. Paulazo M.A., Klecha A.J., Sterle H.A., Valli E., Torti H., Cayrol F., Barreiro Arcos M.L., Cremaschi G.A. Hypothyroidism-Related Zinc Deficiency Leads to Suppression of T Lymphocyte Activity. Endocrine. 2019;66:266–277. doi: 10.1007/s12020-019-01936-7.
    1. Katz N., Rader D.J. Manganese Homeostasis: From Rare Single-Gene Disorders to Complex Phenotypes and Diseases. J. Clin. Invest. 2019;129:5082–5085. doi: 10.1172/JCI133120.
    1. Talebi S., Ghaedi E., Sadeghi E., Mohammadi H., Hadi A., Clark C.C.T., Askari G. Trace Element Status and Hypothyroidism: A Systematic Review and Meta-Analysis. Biol. Trace Elem. Res. 2020;197:1–14. doi: 10.1007/s12011-019-01963-5.
    1. Crinnion W.J., Pizzorno J.E. Clinical Environmental Medicine: Identification and Natural Treatment of Diseases Caused by Common Pollutants. Elsevier Inc.; Amsterdam, The Netherlands: 2019.
    1. Wilbur S., Abadin H., Fay M., Yu D., Tencza B., Ingerman L., Klotzbach J., James S., Toxicological Profile for Chromium . Toxicological Profile for Chromium. U.S. Department of Health and Human Services, Public Health Service. Agency for Toxic Substances and Disease Registry (ATSDR); Atlanta, GA, USA: [(accessed on 10 June 2021)]. Available online:
    1. Sijko M., Janasik B., Wąsowicz W., Kozłowska L. Can the effects of chromium compounds exposure be modulated by vitamins and microelements? Int. J. Occup. Med. Environ. Health. 2021;34:461–490. doi: 10.13075/ijomeh.1896.01706.
    1. Kuo H.W., Wu M.L. Effects of chromic acid exposure on immunological parameters among electroplating workers. Int. Arch. Occup. Environ. Health. 2002;75:186–190. doi: 10.1007/s004200100268.
    1. Mahmood T., Qureshi I.Z., Javed Iqba M. Histopathological and biochemical changes in rat thyroid following acute exposure to hexavalent chromium. Histol. Histopathol. 2010;25:1355–1370.
    1. Dayan A.D., Paine A.J. Mechanisms of chromium toxicity, carcinogenicity and allergenicity: Review of the literature from 1985 to 2000. Hum. Exp. Toxicol. 2001;20:439–451. doi: 10.1191/096032701682693062.
    1. Hasan H.G., Mahmood T.J., Ismael P.A. Studies on the Relationship Between Chromium(III) ion and Thyroid Peroxidase Activity in Sera of Patients with Thyroid Dysfunction, Ibn. Al-Haitham J. Pure Appl. Sci. 2011;24:120–127.
    1. Peckham S., Lowery D., Spencer S. Are Fluoride Levels in Drinking Water Associated with Hypothyroidism Prevalence in England? A Large Observational Study of GP Practice Data and Fluoride Levels in Drinking Water. J. Epidemiol. Comm. Health. 2015;69:619–624. doi: 10.1136/jech-2014-204971.
    1. Xiang Q., Chen L., Liang Y., Wu M., Chen B. Fluoride and Thyroid Function in Children in Two Villages in China. J. Toxicol. Environ. Health Sci. 2009;1:054–059.
    1. Hosur M.B., Puranik R.S., Vanaki S., Puranik S.R. Study of Thyroid Hormones Free Triiodothyronine (FT3), Free Thyroxine (FT4) and Thyroid Stimulating Hormone (TSH) in Subjects with Dental Fluorosis. Eur. J. Dent. 2012;6:184–190. doi: 10.1055/s-0039-1698949.
    1. Pekcici R., Kavlakoğlu B., Yilmaz S., Şahin M., Delibaşi T. Effects of lead on thyroid functions in lead-exposed workers. Open Med. 2010;5:215–218. doi: 10.2478/s11536-009-0092-8.
    1. Hormozi M., Mirzaei R., Nakhaee A., Izadi S., Dehghan H.J. The biochemical effects of occupational exposure to lead and cadmium on markers of oxidative stress and antioxidant enzymes activity in the blood of glazers in tile industry. Toxicol. Ind. Health. 2018;34:459–467. doi: 10.1177/0748233718769526.
    1. Fahim Y., Sharaf N., Hasani I., Ragab E., Abdelhakim H. Assessment of Thyroid Function and Oxidative Stress State in Foundry Workers Exposed to Lead. J. Health Pollut. 2020;10:200903. doi: 10.5696/2156-9614-10.27.200903.
    1. Krieg E.F. A Meta-Analysis of Studies Investigating the Effects of Occupational Lead Exposure on Thyroid Hormones. Am. J. Ind. Med. 2016;59:583–590. doi: 10.1002/ajim.22591.
    1. Singh B., Chandran V., Bandhu H.K., Mittal B.R., Bhattacharya A., Jindal S.K., Varma S. Impact of lead exposure on pituitary-thyroid axis in humans. Biometals. 2000;13:187–192. doi: 10.1023/A:1009201426184.
    1. Sherif M.M., Mohammed Y.S., Zedan H.A.E. Toxic Effect of Some Heavy Metals (Cadmium and Lead) on Thyroid Function. Egypt. J. Hosp. Med. 2017;69:2512–2515. doi: 10.12816/0041703.
    1. Buha A., Matovic V., Antonijevic B., Bulat Z., Curcic M., Renieri E.A., Tsatsakis A.M., Schweitzer A., Wallace D. Overview of Cadmium Thyroid Disrupting Effects and Mechanisms. Int. J. Mol. Sci. 2018;19:1501. doi: 10.3390/ijms19051501.
    1. Uetani M., Kobayashi E., Suwazono Y., Honda R., Nishijo M., Nakagawa H., Kido T., Nogawa K. Tissue cadmium (Cd) concentrations of people living in a Cd polluted area, Japan. BioMetals. 2006;19:521–525. doi: 10.1007/s10534-005-5619-0.
    1. Monteiro C., Ferreira de Oliveira J.M.P., Pinho F., Bastos V., Oliveira H., Peixoto F., Santos C. Biochemical and transcriptional analyses of cadmium-induced mitochondrial dysfunction and oxidative stress in human osteoblasts. J. Toxicol. Environ. Health Part A. 2018;81:705–717. doi: 10.1080/15287394.2018.1485122.
    1. Jain R.B., Choi Y.S. Interacting effects of selected trace and toxic metals on thyroid function. Int. J. Environ. Health Res. 2016;26:75–91. doi: 10.1080/09603123.2015.1020416.
    1. Zimmermann M.B., Boelaert K. Iodine Deficiency and Thyroid Disorders. Lancet Diabetes Endocrinol. 2015;3:286–295. doi: 10.1016/S2213-8587(14)70225-6.
    1. Zhao H., Tian Y., Liu Z., Li X., Feng M., Huang T. Correlation Between Iodine Intake and Thyroid Disorders: A Cross-Sectional Study from the South of China. Biol. Trace Elem. Res. 2014;162:87–94. doi: 10.1007/s12011-014-0102-9.
    1. Yeliosof O., Silverman L.A. Veganism as a Cause of Iodine Deficient Hypothyroidism. J. Pediatr. Endocrinol. Metab. 2018;31:91–94. doi: 10.1515/jpem-2017-0082.
    1. Ikomi C., Cole C.R., Vale E., Golekoh M., Khoury J.C., Jones N.H.Y. Hypothyroidism and Iodine Deficiency in Children on Chronic Parenteral Nutrition. Pediatrics. 2018;141:e20173046. doi: 10.1542/peds.2017-3046.

Source: PubMed

3
S'abonner