Serum Vascular Endothelial Growth Factor Levels Correlate with Severity of Retinopathy in Diabetic Patients: A Systematic Review and Meta-Analysis

Zhongwei Zhou, Huixiang Ju, Mingzhong Sun, Hongmei Chen, Zhongwei Zhou, Huixiang Ju, Mingzhong Sun, Hongmei Chen

Abstract

Background: Investigations regarding serum and plasma vascular endothelial growth factor (VEGF) levels in patients with diabetic retinopathy (DR) are conflicting. This meta-analysis is aimed at determining whether serum and plasma VEGF levels are associated with DR and its severity in diabetic patients.

Methods: PubMed and EMBASE were used to search for published studies, and serum and plasma VEGF levels were compared among DR, nonproliferative diabetic retinopathy (NPDR), proliferative diabetic retinopathy (PDR), and nondiabetic retinopathy (NDR) patients. Standardized mean differences (SMD) and 95% confidence interval (CI) were pooled using a random effects model.

Results: A total of 29 studies comprising 1805 DR (or NPDR or PDR) patients and 1699 NDR patients were included. ELISA was used to evaluate serum or plasma VEGF levels in all except for two studies included in this meta-analysis. Overall, serum VEGF levels were significantly higher in DR patients (SMD: 0.74, 95% CI: 0.44-1.03) than those in NDR patients, while plasma VEGF levels were not in the comparison (SMD: 0.40, 95% CI: -0.13-0.92). Similarly, NPDR (SMD: 0.51, 95% CI: 0.22-0.80) and PDR (SMD: 1.32, 95% CI: 0.79-1.85) patients had higher serum VEGF levels compared with NDR patients, but the difference was not significant in plasma samples (SMD: 0.24, 95% CI: -0.47-0.95; SMD: 0.37, 95% CI: -0.30-1.05). In addition, serum VEGF levels were higher in PDR patients than those in NPDR patients (SMD: 0.87, 95% CI: 0.41-1.33), but plasma VEGF levels were not (SMD: -0.00, 95% CI: -0.31-0.31). The subgroup and metaregression analysis revealed that the study location, study design, and publication year of a study have certain influence on heterogeneity between studies in serum or plasma samples.

Conclusions: VEGF levels in the serum instead of those in the plasma correlate to the presence and severity of DR in diabetic patients. Further large-scale studies are required to confirm these findings.

Figures

Figure 1
Figure 1
Flow chart of the study selection process.
Figure 2
Figure 2
Forest plot summarizing the relationship of serum and plasma VEGF level in DR patients with those in NDR patients: serum (a) and plasma (b).
Figure 3
Figure 3
Forest plot summarizing the relationship of serum and plasma VEGF level in NPDR patients with those in NDR patients: serum (a) and plasma (b).
Figure 4
Figure 4
Forest plot summarizing the relationship of serum and plasma VEGF level in PDR patients with those in NDR patients: serum (a) and plasma (b).
Figure 5
Figure 5
Forest plot summarizing the relationship of serum and plasma VEGF level in PDR patients with those in NPDR patients: serum (a) and plasma (b).
Figure 6
Figure 6
Metaregression analysis of the relationship between the publication year and the effect sizes in serum and plasma samples: serum (a) and plasma (b).
Figure 7
Figure 7
Sensitivity analysis of included studies: serum (a) and plasma (b).
Figure 8
Figure 8
Visual inspection of funnel plots evaluating potential publication bias of included studies: serum (a) and plasma (b).

References

    1. Stitt A. W., Curtis T. M., Chen M., et al. The progress in understanding and treatment of diabetic retinopathy. Progress in Retinal and Eye Research. 2016;51:156–186. doi: 10.1016/j.preteyeres.2015.08.001.
    1. Wu H., Wu H., Shi L., et al. The association of haptoglobin gene variants and retinopathy in type 2 diabetic patients: a meta-analysis. Journal of Diabetes Research. 2017;2017:10. doi: 10.1155/2017/2195059.2195059
    1. Grigsby J., Betts B., Vidro-Kotchan E., Culbert R., Tsin A. A possible role of acrolein in diabetic retinopathy: involvement of a VEGF/TGFβ signaling pathway of the retinal pigment epithelium in hyperglycemia. Current Eye Research. 2012;37(11):1045–1053. doi: 10.3109/02713683.2012.713152.
    1. Le Y. Z. VEGF production and signaling in Müller glia are critical to modulating vascular function and neuronal integrity in diabetic retinopathy and hypoxic retinal vascular diseases. Vision Research. 2017;139:108–114. doi: 10.1016/j.visres.2017.05.005.
    1. Giocanti-Auregan A., Vacca O., Bénard R., et al. Altered astrocyte morphology and vascular development in dystrophin-Dp71-null mice. Glia. 2016;64(5):716–729. doi: 10.1002/glia.22956.
    1. Kennedy A., Frank R. N. The influence of glucose concentration and hypoxia on VEGF secretion by cultured retinal cells. Current Eye Research. 2011;36(2):168–177. doi: 10.3109/02713683.2010.521968.
    1. Gong C. Y., Lu B., Sheng Y. C., Yu Z. Y., Zhou J. Y., Ji L. L. The development of diabetic retinopathy in Goto-Kakizaki rat and the expression of angiogenesis-related signals. The Chinese Journal of Physiology. 2016;59(2):100–108. doi: 10.4077/cjp.2016.bae383.
    1. Zhang Z. H., Chen Q. Z., Jiang F., et al. Changes in TL1A levels and associated cytokines during pathogenesis of diabetic retinopathy. Molecular Medicine Reports. 2017;15(2):573–580. doi: 10.3892/mmr.2016.6048.
    1. Baharivand N., Zarghami N., Panahi F., Dokht Ghafari M. Y., Mahdavi Fard A., Mohajeri A. Relationship between vitreous and serum vascular endothelial growth factor levels, control of diabetes and microalbuminuria in proliferative diabetic retinopathy. Clinical Ophthalmology. 2012;6:185–191. doi: 10.2147/OPTH.S27423.
    1. Wang J., Chen S., Jiang F., et al. Vitreous and plasma VEGF levels as predictive factors in the progression of proliferative diabetic retinopathy after vitrectomy. PLoS One. 2014;9(10, article e110531) doi: 10.1371/journal.pone.0110531.
    1. Ma Y., Zhang Y., Zhao T., Jiang Y. R. Vascular endothelial growth factor in plasma and vitreous fluid of patients with proliferative diabetic retinopathy patients after intravitreal injection of bevacizumab. American Journal of Ophthalmology. 2012;153(2):307–313.e2. doi: 10.1016/j.ajo.2011.08.006.
    1. Cancarini A., Costagliola C., Dell'omo R., et al. Effect of intravitreal bevacizumab on serum, aqueous, and vitreous humor levels of erythropoietin in patients with proliferative diabetic retinopathy. Minerva Endocrinologica. 2014;39(4):305–311.
    1. Kim S. H., Weiss C., Hoffmann U., Borggrefe M., Akin I., Behnes M. Advantages and limitations of current biomarker research: from experimental research to clinical application. Current Pharmaceutical Biotechnology. 2017;18(6):445–455. doi: 10.2174/1389201018666170601091205.
    1. Higgins J. P., Thompson S. G., Deeks J. J., Altman D. G. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–560. doi: 10.1136/bmj.327.7414.557.
    1. Hozo S. P., Djulbegovic B., Hozo I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Medical Research Methodology. 2005;5(1, article 13) doi: 10.1186/1471-2288-5-13.
    1. van Dijk G. M., Maneva M., Colpani V., et al. The association between vasomotor symptoms and metabolic health in peri- and postmenopausal women: a systematic review. Maturitas. 2015;80(2):140–147. doi: 10.1016/j.maturitas.2014.11.016.
    1. Masi A., Quintana D. S., Glozier N., Lloyd A. R., Hickie I. B., Guastella A. J. Cytokine aberrations in autism spectrum disorder: a systematic review and meta-analysis. Molecular Psychiatry. 2015;20(4):440–446. doi: 10.1038/mp.2014.59.
    1. Ioannidis J. P., Patsopoulos N. A., Evangelou E. Uncertainty in heterogeneity estimates in meta-analyses. BMJ. 2007;335(7626):914–916. doi: 10.1136/bmj.39343.408449.80.
    1. Ju H. B., Zhang F. X., Wang S., et al. Effects of fenofibrate on inflammatory cytokines in diabetic retinopathy patients. Medicine. 2017;96(31, article e7671) doi: 10.1097/MD.0000000000007671.
    1. Lu Q., Zou W., Chen B., Zou C., Zhao M., Zheng Z. ANGPTL-4 correlates with vascular endothelial growth factor in patients with proliferative diabetic retinopathy. Graefe's Archive for Clinical and Experimental Ophthalmology. 2016;254(7):1281–1288. doi: 10.1007/s00417-015-3187-8.
    1. Choudhuri S., Chowdhury I. H., Das S., et al. Role of NF-κB activation and VEGF gene polymorphisms in VEGF up regulation in non-proliferative and proliferative diabetic retinopathy. Molecular and Cellular Biochemistry. 2015;405(1-2):265–279. doi: 10.1007/s11010-015-2417-z.
    1. Zehetner C., Kirchmair R., Kralinger M., Kieselbach G. Correlation of vascular endothelial growth factor plasma levels and glycemic control in patients with diabetic retinopathy. Acta Ophthalmologica. 2013;91(6):e470–e473. doi: 10.1111/aos.12081.
    1. Chaturvedi N., Fuller J. H., Pokras F., Rottiers R., Papazoglou N., Aiello L. P. Circulating plasma vascular endothelial growth factor and microvascular complications of type 1 diabetes mellitus: the influence of ACE inhibition. Diabetic Medicine. 2001;18(4):288–294. doi: 10.1046/j.1464-5491.2001.00441.x.
    1. Suguro T., Watanabe T., Kodate S., et al. Increased plasma urotensin-II levels are associated with diabetic retinopathy and carotid atherosclerosis in type 2 diabetes. Clinical Science. 2008;115(11):327–334. doi: 10.1042/CS20080014.
    1. Zou H. L., Wang Y., Gang Q., Zhang Y., Sun Y. Plasma level of miR-93 is associated with higher risk to develop type 2 diabetic retinopathy. Graefe's Archive for Clinical and Experimental Ophthalmology. 2017;255(6):1159–1166. doi: 10.1007/s00417-017-3638-5.
    1. Zhou Z. W., Ju H. X., Sun M. Z., et al. Serum fetuin-A levels are independently correlated with vascular endothelial growth factor and C-reactive protein concentrations in type 2 diabetic patients with diabetic retinopathy. Clinica Chimica Acta. 2016;455:113–117. doi: 10.1016/j.cca.2016.02.003.
    1. Paine S. K., Mondal L. K., Borah P. K., Bhattacharya C. K., Mahanta J. Pro- and antiangiogenic VEGF and its receptor status for the severity of diabetic retinopathy. Molecular Vision. 2017;23:356–363.
    1. Nalini M., Raghavulu B. V., Annapurna A., et al. Correlation of various serum biomarkers with the severity of diabetic retinopathy. Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2017;11(Supplement 1):S451–S454. doi: 10.1016/j.dsx.2017.03.034.
    1. Kaviarasan K., Jithu M., Arif Mulla M., et al. Low blood and vitreal BDNF, LXA4 and altered Th1/Th2 cytokine balance are potential risk factors for diabetic retinopathy. Metabolism. 2015;64(9):958–966. doi: 10.1016/j.metabol.2015.04.005.
    1. Du J., Li R., Xu L., et al. Increased serum chemerin levels in diabetic retinopathy of type 2 diabetic patients. Current Eye Research. 2016;41(1):114–120. doi: 10.3109/02713683.2015.1004718.
    1. Hang H., Yuan S., Yang Q., Yuan D., Liu Q. Multiplex bead array assay of plasma cytokines in type 2 diabetes mellitus with diabetic retinopathy. Molecular Vision. 2014;20:1137–1145.
    1. Ran R., Du L., Zhang X., et al. Elevated hydrogen sulfide levels in vitreous body and plasma in patients with proliferative diabetic retinopathy. Retina. 2014;34(10):2003–2009. doi: 10.1097/IAE.0000000000000184.
    1. Fan X. H., Wu Q. H., Li Y., et al. Association of polymorphisms in the vascular endothelial growth factor gene and its serum levels with diabetic retinopathy in Chinese patients with type 2 diabetes: a cross-sectional study. Chinese Medical Journal. 2014;127(4):651–657.
    1. Jain A., Saxena S., Khanna V. K., Shukla R. K., Meyer C. H. Status of serum VEGF and ICAM-1 and its association with external limiting membrane and inner segment-outer segment junction disruption in type 2 diabetes mellitus. Molecular Vision. 2013;19:1760–1768.
    1. Fulgencio Cunha A. A., Bosco A. A., Veloso C. A., Volpe C. M., Chaves M. M., Nogueira-Machado J. A. Suppressive effect of aqueous humor from person with type 2 diabetes with or without retinopathy on reactive oxygen species generation. Diabetes Research and Clinical Practice. 2013;100(1):69–73. doi: 10.1016/j.diabres.2013.01.018.
    1. Takamiya Y., Oikawa Y., Hirose H., Shimada A., Itoh H. Higher level of serum vascular endothelial growth factor in type 2 diabetic patients with diabetic retinopathy hospitalized for hyperglycemic state. Diabetology International. 2011;2(1):19–25. doi: 10.1007/s13340-011-0019-x.
    1. Koleva-Georgieva D. N., Sivkova N. P., Terzieva D. Serum inflammatory cytokines IL-1β, IL-6, TNF-α and VEGF have influence on the development of diabetic retinopathy. Folia Medica. 2011;53(2):44–50.
    1. Marek N., Raczyńska K., Siebert J., et al. Decreased angiogenin concentration in vitreous and serum in proliferative diabetic retinopathy. Microvascular Research. 2011;82(1):1–5. doi: 10.1016/j.mvr.2011.04.006.
    1. Mahdy R. A., Nada W. M. Evaluation of the role of vascular endothelial growth factor in diabetic retinopathy. Ophthalmic Research. 2011;45(2):87–91. doi: 10.1159/000317062.
    1. Zakareia F. A., Alderees A. A., Al Regaiy K. A., Alrouq F. A. Correlation of electroretinography b-wave absolute latency, plasma levels of human basic fibroblast growth factor, vascular endothelial growth factor, soluble fatty acid synthase, and adrenomedullin in diabetic retinopathy. Journal of Diabetes and its Complications. 2010;24(3):179–185. doi: 10.1016/j.jdiacomp.2008.12.007.
    1. Ozturk B. T., Bozkurt B., Kerimoglu H., Okka M., Kamis U., Gunduz K. Effect of serum cytokines and VEGF levels on diabetic retinopathy and macular thickness. Molecular Vision. 2009;15:1906–1914.
    1. Skopiński P., Szaflik J., Partyka I., et al. Serum in vivo angiogenic activity and some pro-angiogenic cytokine levels in diabetes mellitus type 2 (DM2) patients with or without background retinopathy. Central-European Journal of Immunology. 2007;32(2):48–52.
    1. Lee I. G., Chae S. L., Kim J. C. Involvement of circulating endothelial progenitor cells and vasculogenic factors in the pathogenesis of diabetic retinopathy. Eye. 2006;20(5):546–552. doi: 10.1038/sj.eye.6701920.
    1. Shimada K., Baba T., Neugebauer S., et al. Plasma vascular endothelial growth factor in Japanese type 2 diabetic patients with and without nephropathy. Journal of Diabetes and its Complications. 2002;16(6):386–390. doi: 10.1016/S1056-8727(02)00162-9.
    1. Endo M., Yanagisawa K., Tsuchida K., et al. Increased levels of vascular endothelial growth factor and advanced glycation end products in aqueous humor of patients with diabetic retinopathy. Hormone and Metabolic Research. 2001;33(5):317–322. doi: 10.1055/s-2001-15122.
    1. Shinoda K., Ishida S., Kawashima S., et al. Comparison of the levels of hepatocyte growth factor and vascular endothelial growth factor in aqueous fluid and serum with grades of retinopathy in patients with diabetes mellitus. The British Journal of Ophthalmology. 1999;83(7):834–837. doi: 10.1136/bjo.83.7.834.
    1. Burgos R., Simo R., Audí L., et al. Vitreous levels of vascular endothelial growth factor are not influenced by its serum concentrations in diabetic retinopathy. Diabetologia. 1997;40(9):1107–1109. doi: 10.1007/s001250050794.
    1. Lee J. K., Hong Y. J., Han C. J., Hwang D. Y., Hong S. I. Clinical usefulness of serum and plasma vascular endothelial growth factor in cancer patients: which is the optimal specimen? International Journal of Oncology. 2000;17(1):149–152.
    1. Botelho F., Pina F., Lunet N. VEGF and prostatic cancer: a systematic review. European Journal of Cancer Prevention. 2010;19(5):385–392. doi: 10.1097/CEJ.0b013e32833b48e1.
    1. Etulain J., Mena H. A., Negrotto S., Schattner M. Stimulation of PAR-1 or PAR-4 promotes similar pattern of VEGF and endostatin release and pro-angiogenic responses mediated by human platelets. Platelets. 2015;26(8):799–804. doi: 10.3109/09537104.2015.1051953.
    1. Bae S. H., Lee J., Roh K. H., Kim J. Platelet activation in patients with diabetic retinopathy. Korean Journal of Ophthalmology. 2003;17(2):140–144. doi: 10.3341/kjo.2003.17.2.140.
    1. Citirik M., Beyazyildiz E., Simsek M., Beyazyildiz O., Haznedaroglu I. C. MPV may reflect subcinical platelet activation in diabetic patients with and without diabetic retinopathy. Eye. 2015;29(3):376–379. doi: 10.1038/eye.2014.298.
    1. Yilmaz T., Yilmaz A. Relationship between altered platelet morphological parameters and retinopathy in patients with type 2 diabetes mellitus. Journal of Ophthalmology. 2016;2016:5. doi: 10.1155/2016/9213623.9213623
    1. Ajlan R. S., Silva P. S., Sun J. K. Vascular endothelial growth factor and diabetic retinal disease. Seminars in Ophthalmology. 2016;31(1-2):40–48. doi: 10.3109/08820538.2015.1114833.
    1. Rubsam A., Parikh S., Fort P. E. Role of inflammation in diabetic retinopathy. International Journal of Molecular Sciences. 2018;19(4) doi: 10.3390/ijms19040942.
    1. Ramakrishnan S., Anand V., Roy S. Vascular endothelial growth factor signaling in hypoxia and inflammation. Journal of Neuroimmune Pharmacology. 2014;9(2):142–160. doi: 10.1007/s11481-014-9531-7.
    1. Wang J., Xu X., Elliott M. H., Zhu M., Le Y. Z. Muller cell-derived VEGF is essential for diabetes-induced retinal inflammation and vascular leakage. Diabetes. 2010;59(9):2297–2305. doi: 10.2337/db09-1420.
    1. Solanki A., Bhatt L. K., Johnston T. P., Prabhavalkar K. S. Targeting matrix metalloproteinases for diabetic retinopathy: the way ahead? Current Protein & Peptide Science. 2018;20(4):324–333. doi: 10.2174/1389203719666180914093109.
    1. Ebrahem Q., Chaurasia S. S., Vasanji A., et al. Cross-talk between vascular endothelial growth factor and matrix metalloproteinases in the induction of neovascularization in vivo. The American Journal of Pathology. 2010;176(1):496–503. doi: 10.2353/ajpath.2010.080642.
    1. Giebel S. J., Menicucci G., McGuire P. G., Das A. Matrix metalloproteinases in early diabetic retinopathy and their role in alteration of the blood-retinal barrier. Laboratory Investigation. 2005;85(5):597–607. doi: 10.1038/labinvest.3700251.

Source: PubMed

3
S'abonner