Quantification of the Metabolic State in Cell-Model of Parkinson's Disease by Fluorescence Lifetime Imaging Microscopy

Sandeep Chakraborty, Fang-Shin Nian, Jin-Wu Tsai, Artashes Karmenyan, Arthur Chiou, Sandeep Chakraborty, Fang-Shin Nian, Jin-Wu Tsai, Artashes Karmenyan, Arthur Chiou

Abstract

Intracellular endogenous fluorescent co-enzymes, reduced nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD), play a pivotal role in cellular metabolism; quantitative assessment of their presence in living cells can be exploited to monitor cellular energetics in Parkinson's disease (PD), a neurodegenerative disorder. Here, we applied two-photon fluorescence lifetime imaging microscopy (2P-FLIM) to noninvasively measure the fluorescence lifetime components of NADH and FAD, and their relative contributions in MPP(+) (1-methyl-4-phenylpyridinium) treated neuronal cells, derived from PC12 cells treated with nerve growth factor (NGF), to mimic PD conditions. A systematic FLIM data analysis showed a statistically significant (p < 0.001) decrease in the fluorescence lifetime of both free and protein-bound NADH, as well as free and protein-bound FAD in MPP(+) treated cells. On the relative contributions of the free and protein-bound NADH and FAD to the life time, however, both the free NADH contribution and the corresponding protein-bound FAD contribution increase significantly (p < 0.001) in MPP(+) treated cells, compared to control cells. These results, which indicate a shift in energy production in the MPP(+) treated cells from oxidative phosphorylation towards anaerobic glycolysis, can potentially be used as cellular metabolic metrics to assess the condition of PD at the cellular level.

Figures

Figure 1. PC12 cells’ response to NGF…
Figure 1. PC12 cells’ response to NGF (nerve growth factor) treatment.
Differential interference contrast (DIC) microscopy images of (a) undifferentiated, and (b) differentiated PC12 cells after 200 ng/ml of NGF treatment for three days. The arrows in micrograph (b) point to the neuronal-like branching extended from PC12 cells after NGF treatment. Objective: 40x, NA 0.6, air. Scale bar: 20 μm.
Figure 2. Micrographs of average NADH fluorescence…
Figure 2. Micrographs of average NADH fluorescence lifetime.
Pseudocolor mapping of average fluorescence lifetime (τavg) of NADH of (a) the untreated differentiated PC12 cells, and of the cells treated with (b) 50, (c) 100, (d) 250, (e) 500, and (f) 1000 μM of MPP+. The color bar on the right represents the range of τavg. Scale bar: 20 μm.
Figure 3. Summary of the effect of…
Figure 3. Summary of the effect of MPP+ on NADH fluorescence lifetime components.
Average of all the data points (n = 75) from five experimental days of NADH lifetime measurements: (a) short, or free (τ1), (b) long, or protein-bound (τ2), (c) average (τavg) NADH lifetimes, and (d) the ratio of the relative contribution of free, and protein-bound NADH (a1/a2) for cells treated with different concentrations of MPP+. The error bars indicate standard error of the mean (SEM). A one-way ANOVA with LSD-post-hoc analysis was performed to define statistical significance. Statistical significance: **p < 0.001, for control (0 μM MPP+) vs. MPP+ treated cells; #p < 0.05, ##p < 0.001, for 50 μM MPP+ treatment vs. other MPP+ treated cells; Δp < 0.05, ΔΔp < 0.001, for 100 μM MPP+ treatment vs. other MPP+ treated cells; ◊p < 0.05, ◊◊p < 0.001, for 250 μM MPP+ treatment vs. other MPP+ treated cells; ●p < 0.05, ●●p < 0.001, for 500 vs. 1000 μM MPP+ treatment.
Figure 4. Average FAD fluorescence lifetime micrographs.
Figure 4. Average FAD fluorescence lifetime micrographs.
Pseudo-color mapping of FAD average fluorescence lifetime (τavg) at (a) 0, (b) 50, (c) 100, (d) 250, (e) 500, and (f) 1000 μM MPP+ treatment of differentiated PC12 cells. The color bar shows the range of the FAD average lifetime. Scale bar: 20 μm.
Figure 5. Summary of the effect of…
Figure 5. Summary of the effect of MPP+ on FAD fluorescence lifetime components.
Average and SEMs (error bars) of all the 75 data points from all the imaging sessions of five experimental days of fluorescence lifetime mapping: (a) short, or protein-bound (τ1), (b) long, or free (τ2), (c) average (τavg) FAD lifetimes, and (d) the ratio of the relative contribution of free, and protein-bound FAD (a2/a1) as a function of MPP+ concentration. A one-way ANOVA with LSD post-hoc analysis based statistical significance: *p < 0.05, **p < 0.001, for control (0 μM MPP+) vs. MPP+ treated cells; #p < 0.05 for 50 μM MPP+ treatment vs. Other MPP+ treated cells.

References

    1. Pringsheim T., Jette N., Frolkis A. & Steeves T. D. L. The prevalence of Parkinson’s disease: a systematic review and meta-analysis. Mov. Disord. 29(13), 1583–1590 (2014).
    1. Bereczki D. The description of all four cardinal signs of Parkinson’s disease in a Hungarian medical text published in 1690. Parkinsonism Relat. Disord. 16(4), 290–293 (2010).
    1. Dauer W. & Przedborski S. Parkinson’s disease: mechanisms and models. Neuron 39, 889–909 (2003).
    1. Lang A. E. & Lozano A. M. Parkinson’s disease: first of two parts. N. Engl. J. Med. 339(15), 1044–1052 (1998).
    1. Winkhofer K. F. & Haass C. Mitochondrial dysfunction in Parkinson’s disease. Biochim. Biophys. Acta 1802, 29–44 (2010).
    1. Schapira A. H. V. Evidence for mitochondrial dysfunction in Parkinson’s disease- a critical appraisal. Mov. Disord. 9(2), 125–138 (1994).
    1. Schultz J. B. & Beal M. F. Mitochondrial dysfunction in movement disorders. Curr. Opin. Neurol. 7(4), 333–339 (1994).
    1. Bove J. & Perier C. Neurotoxin-based models of Parkinson’s disease. Neuroscience 211, 51–76 (2012).
    1. Martinez T. N. & Greenamyre J. T. Toxin models of mitochondrial dysfunction in Parkinson’s disease. Antioxid. Redox Signal 16(9), 920–934 (2012).
    1. Przedborski S. & Vila M. MPTP: a review of its mechanisms and neurotoxicity. Clin. Neurosci. Res. 1, 407–418 (2001).
    1. Przedborski S., Tieu K., Perier C. & Vila M. J. Bioenerg. MPTP as a mitochondrial neurotoxic model of Parkinson’s disease. Biomembr. 36(4), 375–379 (2004).
    1. Lehninger A. L. Phosphorylation coupled to oxidation of dihydrodiphosphopyridine nucleotide. J. Biol. Chem. 190, 345–359 (1951).
    1. Kim H. J. & Winge D. R. Emerging concepts in the flavinylation of succinate dehydrogenase. Biochim. Biophys. Acta. 1827(5), 627–636 (2013).
    1. Sazanov L. A. A giant molecular proton pump: structure and mechanism of respiratory complex I. Nat. Rev. Mol. Cell Biol. 16, 375–388 (2015).
    1. Kearny E. B. Studies on Succinic dehydrogenase. J. Biol. Chem. 235(3), 865–877 (1960).
    1. Chance B. & Williams G. R. The respiratory chain and oxidative phosphorylation. Adv. Enzymol. Relat. Subj. Biochem. 17, 65–134 (1956).
    1. Heikal A. A. Intracellular coenzymes as natural biomarkers for metabolic activities and mitochondrial anomalies. Biomark. Med. 4(2), 241–263 (2010).
    1. Chance B., Cohen P., Jobsis F. & Schoener B. Intracellular oxidation-reduction state in vivo. Science 137, 499–508 (1962).
    1. Skala M. C. et al. In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia. Proc. Natl. Acad. Sci. USA 104(49), 19494–19499 (2007).
    1. Quinn K. P. et al. Quantitative metabolic imaging using endogenous fluorescence to detect stem cell differentiation. Sci. Rep. 3, 3432 (2013).
    1. Williamson D. H., Lund P. & Krebs H. A. The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem. J. 103(2), 514–527 (1967).
    1. Skala M. & Ramanujam N. Multiphoton redox ratio imaging for metabolic monitoring in vivo. Methods Mol. Biol. 594, 155–162 (2010).
    1. Kasischke K. A., Vishwasrao H. D., Fisher P. J., Zipfel W. R. & Webb W. W. Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis. Science 305(5680), 99–103 (2004).
    1. Ostrander J. H. Optical redox ratio differentiates breast cancer cell lines based on estrogen receptor status. Cancer Res. 70(11), 4759–4766 (2010).
    1. Becker W. Fluorescence lifetime imaging- techniques and applications. J. Microsc. 247(2), 119–136 (2012).
    1. Berezin Y. & Achilefu S. Fluorescence lifetime measurements and biological imaging. Chem. Rev. 110, 2641–2648 (2010).
    1. McGown L. B. & Nithipatikom K. Molecular fluorescence and phosphorescence. Appl. Spectrosc. Rev. 35(4), 353–393 (2000).
    1. Jablonski A. Über den Mechanisms des Photolumineszenz von Farbstoffphosphoren. Z. Phys. 94, 38–46 (1935).
    1. Chen Y. E. & Periasamy A. Characterization of two-photon excitation fluorescence lifetime imaging microscopy for protein localization. Microscopy Res. Tech. 63, 72–80 (2004).
    1. Lakowicz J. R., Szmacinski H., Nowaczyk K. & Johnson M. L. Fluorescence lifetime imaging of free and protein-bound NADH. Proc. Natl. Acad. Sci. USA 89, 1271–1275 (1992).
    1. Nakashima N., Yoshihara K., Tanaka F. & Yagi K. Picosecond fluorescence lifetime of the coenzyme of D-amino acid oxidase. J. Biol. Chem. 255(11), 5261–5263 (1980).
    1. Maeda-Yorita K. & Aki K. Effect of nicotinamide adenine dinucleotide on the oxidation-reduction potentials of lipoamide dehydrogenase from pig heart. J. Biochem. (Tokyo) 96, 683–690 (1984).
    1. Westerink R. H. S. & Ewing A. G. The PC12 cell as model for neurosecretion. Acta Physiol. (Oxf.) 192(2), 273–285 (2008).
    1. Zhou T., Xu B., Que H., Lv S. & Liu S. Neurons derived from PC12 cells have the potential to develop synapses with primary neurons from rat cortex. Acta Neurobiol. Exp. 66, 105–112 (2006).
    1. Grau C. M. & Greene L. A. Use of PC12 cells and rat superior cervical ganglion sympathetic neurons as models for neuroprotective assays relevant to Parkinson’s disease. Methods Mol. Biol. 846, 201–211 (2012).
    1. Greene L. A. & Tischler A. S. Establishment of noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc. Natl. Acad. Sci. USA 73(7), 2424–2428 (1976).
    1. Benninger R. K. P. & Piston D. W. Two-photon excitation microscopy of the study of living cells and tissues. Curr. Protoc. Cell Biol. 59, 4 Unit:4.1124 (2013).
    1. Plotegher N. et al. NADH fluorescence lifetime is an endogenous reporter of α-synuclein aggregation in live cells. FASEB J. 29, 2484–2494 (2015).
    1. Mizuno Y., Sone N. & Saitoh T. Effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and 1-methyl-4-phenylpyridinium ion on activities of the enzymes in the electron transport system in mouse brain. J. Neurochem. 48, 1787–1793 (1987).
    1. Rutter J., Winge D. R. & Schiffman J. D. Succinate dehydrogenase-assembly, regulation and role in human disease. Mitochondrion 10, 393–401 (2010).
    1. Sun F. et al. Crystal structure of mitochondrial respiratory membrane protein complex II. Cell 121, 1043–1057 (2005).
    1. Grimm S. Respiratory chain complex II as general sensor for apoptosis. Biochim. Biophys. Acta-Bioenerg. 1827, 565–572 (2013).
    1. Bird D. K. et al. Metabolic mapping of MCF10A breast cells via multiphoton fluorescence lifetime imaging of the coenzyme NADH. Cancer Res. 65(19), 8766–8733 (2005).
    1. Schneckenburger H., Wagner M., Weber P., Strauss W. S. L. & Sailer R. Autofluorescence lifetime imaging of cultivated cells using a UV picosecond laser diode. J. Fluorescence 14(5), 649–654 (2004).
    1. Gafni A. & Brand L. Fluorescence decay studies of reduced nicotinamide adenine dinucleotide in solution and bound to liver alcohol dehydrogenase. Biochemistry 15(15), 3165–3171 (1976).
    1. Jameson D. M., Thomas V. & Zhou D. M. Time-resolved fluorescence studies on NADH bound to mitochondrial malate dehydrogenase. Biochim. Biophys. Acta 994, 187–190 (1989).
    1. Vishwasrao H. D., Heikal A. A., Kasischke K. A. & Webb W. W. Conformational dependence of intracellular NADH on metabolic state revealed by associated fluorescence anisotropy. J. Biol. Chem. 280(26), 25119–25126 (2005).
    1. Soldner F. et al. MPP+ inhibits proliferation of PC12 cells by a p21WAF1/Cip1-dependent pathway and induces cell death in cells lacking p21WAF1/Cip1. Exp. Cell Res. 250(1), 75–85 (1999).
    1. Williams Z. R., Goodman C. B. & Soliman K. F. Anaerobic glycolysis protection against 1-methy-4-phenyl-pyridinium (MPP+) toxicity in C6 glioma cells. Neurochem. Res. 32, 1071–1080 (2007).
    1. Schweitzer D. et al. J. Biomed. Opt. 9, 1214–1222 (2004).
    1. Huang S., Heikal A. A. & Webb W. W. Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein. Biophys. J. 82, 2811–2825 (2002).
    1. Patterson G. H., Knobel S. M., Arkhammar P. & Thastrup O. & Piston, D. W. Separation of the glucose-stimulated cytoplasmic and mitochondrial NAD(P)H responses in pancreatic islet β cells. Proc. Natl. Acad. Sci. USA 97(10), 5203–5207 (2000).
    1. Li D., Zheng W. & Qu J. Y. Time-resolved spectroscopic imaging reveals the fundamentals of cellular NADH fluorescence. Opt. Lett. 33(20), 2365–2367 (2008).
    1. Conklin M. W., Provenzano P. P., Eliceiri K. W., Sullivan R. & Keely P. J. Fluorescence lifetime imaging of endogenous fluorophores in histopathology sections reveals differences between normal and tumor epithelium in carcinoma in situ of the breast. Cell Biocehm. Biophys. 53(3), 145–157 (2009).
    1. Xu C., Williams R. M., Zipfel W. & Webb W. W. Multiphoton excitation cross-sections of molecular fluorophores. Bioimaging 4, 198–207 (1996).
    1. Levitt J. M., McLaughlin-Dublin M. E., Münger K. & Georgakoudi I. Automated biochemical, morphological, and organizational assessment of precancerous changes from endogenous two-photon fluorescence changes. Plos One 6(9), e24765 (2011).
    1. Wang H.-W., Wei Y.-H. & Guo H.-W. Reduced nicotinamide adenine dinucleotide (NADH) fluorescence for the detection of cell death. Anti-cancer Agents Med. Chem. 9, 1012–1017 (2009).
    1. Konig K. & Riemann I. High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution. J. Biomed. Opt. 8, 432–439 (2003).

Source: PubMed

3
S'abonner