Investigation of the diurnal variation in bone resorption for optimal drug delivery and efficacy in osteoporosis with oral calcitonin

M A Karsdal, I Byrjalsen, B J Riis, C Christiansen, M A Karsdal, I Byrjalsen, B J Riis, C Christiansen

Abstract

Background: Bone resorption displays marked diurnal variation. Reversible inhibition of bone resorption may result in best possible efficacy when bone resorption peaks. The aim of the study was to assess the pharmacokinetic (PK) and pharmacodynamic (PD) profiles of 0.8 mg of oral salmon calcitonin (sCT) and the effect of timing of drug intake.

Methods: The study was a randomized, double-blind, double-dummy, placebo-controlled, phase I study to assess the pharmacokinetic (PK) and pharmacodynamic (PD) profiles of 0.8 mg of oral sCT in healthy postmenopausal women. Totally 81 subjects were included, aimed at investigation of a morning dose given at 8:00 (n = 42), a pre-dinner dose given at 17:00 (n = 20), and an evening dose given at 22:00 (n = 19). Plasma sCT concentrations and bone resorption (C-terminal-telopeptide of collagen type I (CTX-I)) was assessed.

Results: Morning and pre-dinner dosing led to comparable concentration of sCT of 45 pg/ml, whereas there was a tendency towards lower Cmax for the evening dosing having a mean of 24 pg/ml. The maximum difference from placebo was observed 1 to 3 hours post-dose with a 40 to 50% suppression consequent to morning dose, and about 75% suppression after pre-dinner and evening dose, due to the increase bone resorption as a result of circadian variation.

Conclusion: The study suggests that orally administered 0.8 mg of salmon calcitonin was effective in suppression of serum CTX irrespective of time of dosing. The pre-dinner dosing resulted in optimum efficacy response corresponding to an overall suppression of bone resorption by 25%.

Trial registration: ClinicalTrials.gov NCT00411125.

Figures

Figure 1
Figure 1
Time course of plasma sCT in each time dose group. Full line shows the results of 0.8 mg of oral sCT and the dotted line that of placebo. Morning dose (n = 42); pre-dinner dose (n = 20); and evening dose (n = 19). Values given are geometric mean ± 1 SEM.
Figure 2
Figure 2
Cmax and AUC0–4 hrs of plasma sCT in the 4 hours following one single dose of 0.8 mg of oral sCT in each time dose group corrected for AUC of the placebo groups. Morning dose (n = 42); pre-dinner dose (n = 20); and evening dose (n = 19). Values given are geometric mean ± 1 SEM.
Figure 3
Figure 3
Time course of absolute levels of serum CTX in each time dose group. Closed circles show the results of 0.8 mg of oral sCT and the open circles that of placebo. The figures show results of the full follow-up period of 24 hours. Morning dose (n = 42); pre-dinner dose (n = 20); and evening dose (n = 19). Values given are geometric mean ± 1 SEM.
Figure 4
Figure 4
AUC of absolute (A) and relative (B) change in serum CTX in the 24 hours following one single dose of 0.8 mg of oral sCT in each time dose group corrected for placebo AUC of the individual subject. Morning dose (n = 42); pre-dinner dose (n = 20); and evening dose (n = 19). Values given are geometric mean ± 1 SEM. The level of significance denotes difference from placebo: **p < 0.01; *** p < 0.001.

References

    1. Sexton PM, Findlay DM, Martin TJ. Calcitonin. Curr Med Chem. 1999;6:1067–1093.
    1. Deftos LJ. Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism. 6. Chapter 18. 2006. Calcitonin; pp. 115–117.
    1. Suzuki H, Nakamura I, Takahashi N, Ikuhara T, Matsuzaki K, Isogai Y, et al. Calcitonin-induced changes in the cytoskeleton are mediated by a signal pathway associated with protein kinase A in osteoclasts. Endocrinology. 1996;137:4685–4690. doi: 10.1210/en.137.11.4685.
    1. Shyu JF, Shih C, Tseng CY, Lin CH, Sun DT, Liu HT, et al. Calcitonin induces podosome disassembly and detachment of osteoclasts by modulating Pyk2 and Src activities. Bone. 2007;40:1329–1342. doi: 10.1016/j.bone.2007.01.014.
    1. Sorensen MG, Henriksen K, Schaller S, Henriksen DB, Nielsen FC, Dziegiel MH, et al. Characterization of osteoclasts derived from CD14+ monocytes isolated from peripheral blood. J Bone Miner Metab. 2007;25:36–45. doi: 10.1007/s00774-006-0725-9.
    1. Tanko LB, Bagger YZ, Alexandersen P, Devogelaer JP, Reginster JY, Chick R, et al. Safety and efficacy of a novel salmon calcitonin (sCT) technology-based oral formulation in healthy postmenopausal women: acute and 3-month effects on biomarkers of bone turnover. J Bone Miner Res. 2004;19:1531–1538. doi: 10.1359/JBMR.040715.
    1. Chesnut CH, III, Silverman S, Andriano K, Genant H, Gimona A, Harris S, et al. A randomized trial of nasal spray salmon calcitonin in postmenopausal women with established osteoporosis: the prevent recurrence of osteoporotic fractures study. PROOF Study Group. Am J Med. 2000;109:267–276. doi: 10.1016/S0002-9343(00)00490-3.
    1. Bagger YZ, Tanko LB, Alexandersen P, Karsdal MA, Olson M, Mindeholm L, et al. Oral salmon calcitonin induced suppression of urinary collagen type II degradation in postmenopausal women: A new potential treatment of osteoarthritis. Bone. 2005;37:425–430. doi: 10.1016/j.bone.2005.04.032.
    1. Sondergaard BC, Ostergaard S, Christiansen C, Karsdal MA. The Effect of Oral Calcitonin on Cartilage Turnover and Surface Erosion in the Ovariectomized Rat Model. Arthritis Rheum. 2007;56:2674–2678. doi: 10.1002/art.22797.
    1. Karsdal MA, Sondergaard BC, Arnold M, Christiansen C. Calcitonin affects both bone and cartilage: a dual action treatment for osteoarthritis? Ann N Y Acad Sci. 2007;1117:181–195. doi: 10.1196/annals.1402.041.
    1. Streubel A, Siepmann J, Bodmeier R. Gastroretentive drug delivery systems. Expert Opin Drug Deliv. 2006;3:217–233. doi: 10.1517/17425247.3.2.217.
    1. Shareef MA, Khar RK, Ahuja A, Ahmad FJ, Raghava S. Colonic drug delivery: an updated review. AAPS PharmSci. 2003;5:E17. doi: 10.1208/ps050217.
    1. van den Mooter G. Colon drug delivery. Expert Opin Drug Deliv. 2006;3:111–125. doi: 10.1517/17425247.3.1.111.
    1. Smoum R, Rubinstein A, Srebnik M. Chitosan-pentaglycine-phenylboronic acid conjugate: a potential colon-specific platform for calcitonin. Bioconjug Chem. 2006;17:1000–1007. doi: 10.1021/bc050357y.
    1. Bernkop-Schnurch A, Hoffer MH, Kafedjiiski K. Thiomers for oral delivery of hydrophilic macromolecular drugs. Expert Opin Drug Deliv. 2004;1:87–98. doi: 10.1517/17425247.1.1.87.
    1. Garcia-Fuentes M, Torres D, Alonso MJ. New surface-modified lipid nanoparticles as delivery vehicles for salmon calcitonin. Int J Pharm. 2005;296:122–132. doi: 10.1016/j.ijpharm.2004.12.030.
    1. Lamprecht A, Yamamoto H, Takeuchi H, Kawashima Y. pH-sensitive microsphere delivery increases oral bioavailability of calcitonin. J Control Release. 2004;98:1–9. doi: 10.1016/j.jconrel.2004.02.001.
    1. Guggi D, Kast CE, Bernkop-Schnurch A. In vivo evaluation of an oral salmon calcitonin-delivery system based on a thiolated chitosan carrier matrix. Pharm Res. 2003;20:1989–1994. doi: 10.1023/B:PHAM.0000008047.82334.7d.
    1. Wang J, Chow D, Heiati H, Shen WC. Reversible lipidization for the oral delivery of salmon calcitonin. J Control Release. 2003;88:369–380. doi: 10.1016/S0168-3659(03)00008-7.
    1. Sakuma S, Suzuki N, Sudo R, Hiwatari K, Kishida A, Akashi M. Optimized chemical structure of nanoparticles as carriers for oral delivery of salmon calcitonin. Int J Pharm. 2002;239:185–195. doi: 10.1016/S0378-5173(02)00113-8.
    1. Lee YH, Sinko PJ. Oral delivery of salmon calcitonin. Adv Drug Deliv Rev. 2000;42:225–238. doi: 10.1016/S0169-409X(00)00063-6.
    1. Torres-Lugo M, Peppas NA. Transmucosal delivery systems for calcitonin: a review. Biomaterials. 2000;21:1191–1196. doi: 10.1016/S0142-9612(00)00011-9.
    1. Malkov D, Angelo R, Wang HZ, Flanders E, Tang H, Gomez-Orellana I. Oral delivery of insulin with the eligen technology: mechanistic studies. Curr Drug Deliv. 2005;2:191–197. doi: 10.2174/1567201053586001.
    1. Mustata G, Dinh SM. Approaches to oral drug delivery for challenging molecules. Crit Rev Ther Drug Carrier Syst. 2006;23:111–135.
    1. Mlynek GM, Calvo LJ, Robinson JR. Carrier-enhanced human growth hormone absorption across isolated rabbit intestinal tissue. Int J Pharm. 2000;197:13–21. doi: 10.1016/S0378-5173(99)00322-1.
    1. Wu SJ, Robinson JR. Transcellular and lipophilic complex-enhanced intestinal absorption of human growth hormone. Pharm Res. 1999;16:1266–1272. doi: 10.1023/A:1014809916407.
    1. Schlemmer A, Hassager C, Jensen SB, Christiansen C. Marked diurnal variation in urinary excretion of pyridinium cross-links in premenopausal women. J Clin Endocrinol Metab. 1992;74:476–480. doi: 10.1210/jc.74.3.476.
    1. Gertz BJ, Clemens JD, Holland SD, Yuan W, Greenspan S. Application of a new serum assay for type I collagen cross-linked N-telopeptides: assessment of diurnal changes in bone turnover with and without alendronate treatment. Calcif Tissue Int. 1998;63:102–106. doi: 10.1007/s002239900497.
    1. Qvist P, Christgau S, Pedersen BJ, Schlemmer A, Christiansen C. Circadian variation in the serum concentration of C-terminal telopeptide of type I collagen (serum CTx): effects of gender, age, menopausal status, posture, daylight, serum cortisol, and fasting. Bone. 2002;31:57–61. doi: 10.1016/S8756-3282(02)00791-3.
    1. Schaller S, Henriksen K, Hoegh-Andersen P, Sondergaard BC, Sumer EU, Tanko LB, et al. In vitro, ex vivo, and in vivo methodological approaches for studying therapeutic targets of osteoporosis and degenerative joint diseases: how biomarkers can assist? Assay Drug Dev Technol. 2005;3:553–580. doi: 10.1089/adt.2005.3.553.
    1. Schaller S, Henriksen K, Sveigaard C, Heegaard AM, Helix N, Stahlhut M, et al. The chloride channel inhibitor n53736 prevents bone resorption in ovariectomized rats without changing bone formation. J Bone Miner Res. 2004;19:1144–1153. doi: 10.1359/JBMR.040302.
    1. Ravn P, Hosking D, Thompson D, Cizza G, Wasnich RD, McClung M, et al. Monitoring of alendronate treatment and prediction of effect on bone mass by biochemical markers in the early postmenopausal intervention cohort study. J Clin Endocrinol Metab. 1999;84:2363–2368. doi: 10.1210/jc.84.7.2363.
    1. Rosenquist C, Fledelius C, Christgau S, Pedersen BJ, Bonde M, Qvist P, et al. Serum CrossLaps One Step ELISA. First application of monoclonal antibodies for measurement in serum of bone-related degradation products from C-terminal telopeptides of type I collagen. Clin Chem. 1998;44:2281–2289.
    1. Bjarnason NH, Henriksen EE, Alexandersen P, Christgau S, Henriksen DB, Christiansen C. Mechanism of circadian variation in bone resorption. Bone. 2002;30:307–313. doi: 10.1016/S8756-3282(01)00662-7.
    1. Karsdal MA, Henriksen K, Sorensen MG, Gram J, Schaller S, Dziegiel MH, et al. Acidification of the osteoclastic resorption compartment provides insight into the coupling of bone formation to bone resorption. Am J Pathol. 2005;166:467–476.
    1. Karsdal MA, Martin TJ, Bollerslev J, Christiansen C, Henriksen K. Are nonresorbing osteoclasts sources of bone anabolic activity? J Bone Miner Res. 2007;22:487–494. doi: 10.1359/jbmr.070109.
    1. Karsdal MA, Qvist P, Christiansen C, Tanko LB. Optimising antiresorptive therapies in postmenopausal women: why do we need to give due consideration to the degree of suppression? Drugs. 2006;66:1909–1918. doi: 10.2165/00003495-200666150-00002.
    1. Karsdal MA, Hjorth P, Henriksen K, Kirkegaard T, Nielsen KL, Lou H, et al. Transforming growth factor-beta controls human osteoclastogenesis through the p38 MAPK and regulation of RANK expression. J Biol Chem. 2003;278:44975–44987. doi: 10.1074/jbc.M303905200.
    1. Christgau S. Circadian variation in serum CrossLaps concentration is reduced in fasting individuals. Clin Chem. 2000;46:431.
    1. Byrjalsen I, Leeming DJ, Qvist P, Christiansen C, Karsdal MA. Bone turnover and bone collagen maturation in osteoporosis: effects of antiresorptive therapies. Osteoporos Int. 2008;19:339–348. doi: 10.1007/s00198-007-0462-5.
    1. Henriksen K, Tanko LB, Qvist P, Delmas PD, Christiansen C, Karsdal MA. Assessment of osteoclast number and function: application in the development of new and improved treatment modalities for bone diseases. Osteoporos Int. 2007;18:681–685. doi: 10.1007/s00198-006-0286-8.

Source: PubMed

3
S'abonner