Generalization through the recurrent interaction of episodic memories: a model of the hippocampal system

Dharshan Kumaran, James L McClelland, Dharshan Kumaran, James L McClelland

Abstract

In this article, we present a perspective on the role of the hippocampal system in generalization, instantiated in a computational model called REMERGE (recurrency and episodic memory results in generalization). We expose a fundamental, but neglected, tension between prevailing computational theories that emphasize the function of the hippocampus in pattern separation (Marr, 1971; McClelland, McNaughton, & O'Reilly, 1995), and empirical support for its role in generalization and flexible relational memory (Cohen & Eichenbaum, 1993; Eichenbaum, 1999). Our account provides a means by which to resolve this conflict, by demonstrating that the basic representational scheme envisioned by complementary learning systems theory (McClelland et al., 1995), which relies upon orthogonalized codes in the hippocampus, is compatible with efficient generalization-as long as there is recurrence rather than unidirectional flow within the hippocampal circuit or, more widely, between the hippocampus and neocortex. We propose that recurrent similarity computation, a process that facilitates the discovery of higher-order relationships between a set of related experiences, expands the scope of classical exemplar-based models of memory (e.g., Nosofsky, 1984) and allows the hippocampus to support generalization through interactions that unfold within a dynamically created memory space.

Copyright 2012 APA, all rights reserved.

Figures

Figure 1. Schematic of model architecture, as…
Figure 1. Schematic of model architecture, as used in transitive inference task. Basic two-layer network (feature, conjunctive) connected bidirectionally and used in all simulations. Curved arrow indicates application of hedged softmax function to the conjunctive layer, which includes the C parameter regulating overall activity. Response layer included in model architecture in simulations of transitive inference, paired associate inference, and acquired equivalence tasks. For the transitive inference task, units in feature layers denote stimuli A–F; units in conjunctive layer correspond to the five trained stimulus pairings (i.e., AB, BC, CD, DE, EF); units in the response layer correspond to the network's choice (i.e., A–F). The conjunctive layer connected with the response layer through unidirectional excitatory and inhibitory connections—for example, the AB conjunctive unit excited the A response unit and inhibited the B response unit. External input presented to the feature layer. For details of the model architecture used in specific simulations, see the main text.
Figure 2. Illustration of the capacity of…
Figure 2. Illustration of the capacity of REMERGE (recurrency and episodic memory results in generalization) to exhibit the phenomenon of transitivity: simulated BD (top) and BE (middle) inference trials shown with network weights coding for premise pairs set to a value of 1.0; temperature parameter, τ, set to 0.25, C constant set to 1. Network performance during a simulated premise trial (BC) shown below with same parameters. Timecourse of network activity (y-axis: unit activation plotted in arbitrary units), across 300 cycles (x-axis). See the main text for details.
Figure 3. Illustration of the capacity of…
Figure 3. Illustration of the capacity of an interactive activation model (IAC) to exhibit the phenomenon of transitivity: Simulated B–D inference trial with network weights coding for premise pairs set to a value of 1.0; lateral inhibition set to –1 in conjunctive and response layers. Timecourse of network activity (y-axis: unit activation plotted in arbitrary units), across 300 cycles (x-axis). See the main text for details.
Figure 4. Simulating the emergence of a…
Figure 4. Simulating the emergence of a capacity for transitivity by increasing the strength of connection weights coding premise pairs. Performance (y-axis; Luce choice ratios expressed as a %) in premise pair trials (averaged across all pairs: dotted line), inference trials (averaged across close and distant inference pairs: solid line) plotted as a function of network weight strength. Lag generalization effect evident, whereby inferential performance at each weight strength is lower than performance on premise pairs. The magnitude of this effect is controlled by the temperature parameter, where relatively high values produce a smaller lag generalization effect (upper panel; parameters: τ = 0.45; C = 5; β = 0.3), and relatively lower values produce a greater lag generalization effect (lower panel; parameters: τ = 0.2; C = 5; β = 0.3).
Figure 5. Transitive inference task: Illustration of…
Figure 5. Transitive inference task: Illustration of failure of network to perform inference at lower weights strengths (w = 0.3) due to lack of graded pattern of activity over conjunctive and feature layers: τ = 0.25; C = 1. Note similar activities of units in the conjunctive layer (cf. performance of network with w = 1 illustrated in Figure 2).
Figure 6. Empirical (upper panel) and simulated…
Figure 6. Empirical (upper panel) and simulated data (lower panel) relating to the young subject group of the transitive inference experiment reported in Moses et al. (2006). Performance (y-axis; %) in premise pair trials (averaged across all pairs: dark gray bars), close inference pairs (light gray bars: B–D and C–E trials), and distant inference trials (medium gray bars: B–E trials) across five blocks of the experiment (x-axis). Parameters: τ = 0.45; C = 5; β = 0.3. Weight strengths for the five simulated blocks: 1.17, 1.32, 1.77, 2.09, 2.32. Error bars (empirical data) reflect standard errors of the mean. Model performance (expressed as % correct) derived directly from Luce choice ratios.
Figure 7. Empirical (upper panel) and simulated…
Figure 7. Empirical (upper panel) and simulated data (lower panel) relating to the behavioral findings reported in the paired associate inference experiment by Zeithamova and Preston (2010). Performance (y-axis; %) in premise pair trials (averaged across all pairs; e.g., A: B+ Y−: light gray bars), inference pairs (medium gray bars: e.g., A: C+ Z−) for “poor” and “good” subject groups (x-axis). Parameters: τ = 0.4; C = 15; β = 0.15, Weight strengths for poor and good groups, respectively: 1.47, 1.52. Error bars (empirical data) reflect standard errors of the mean. Model performance (expressed as % correct) derived directly from Luce choice ratios.
Figure 8. Empirical and simulated data relating…
Figure 8. Empirical and simulated data relating to the functional magnetic resonance imaging (fMRI) findings observed in the paired associate inference experiment reported in Zeithamova and Preston (2010). Upper panel (empirical data): Hippocampal activity (y-axis: % fMRI BOLD signal change) shown for different types of encoding (premise) trials (AB and BC), as a function of whether generalization in subsequent AC transfer trial during the test phase was unsuccessful (AC incorrect: dark gray bar) or successful (AC correct: light gray bar). Significantly greater activation was observed during BC (but not AB) trials when subsequent AC trials were correct, compared to incorrect. Right panel (simulated data): Activity in the conjunctive layer (y-axis: arbitrary units) within the network shown for AB and BC encoding trials, at different network weight strengths (w = 1.47 and w = 1.52, for AC incorrect and AC correct trials, respectively). Light gray part of bar denotes activity of AB conjunctive unit, and dark gray part denotes activity of BC unit. Other parameters set as in behavioral simulation of poor and good performing groups—that is, τ = 0.4; C = 15; β = 0.15. Data are taken from individual simulated trials, at different weight strengths. See the main text for details.
Figure 9. Schematic of model architecture, as…
Figure 9. Schematic of model architecture, as used in the paired associative inference task. For the purposes of the simulation, two sets of paired associates were employed: The feature layer comprised six units denoting individual objects (A, B, C, X, Y, Z). The conjunctive layer comprised four units coding for premise pairs learnt during training (i.e., AB, BC, XY, YZ). Curved arrow indicates application of the hedged softmax function to this layer, including C parameter, which regulates the overall level of activity. Bidirectional excitatory connections were present between feature layer and conjunctive layer. Unidirectional excitatory connections were present between the conjunctive and response layer; the latter denoting the four objects that could be chosen during a given test trial (i.e., B, C, Y, Z). For further details, see the main text.
Figure 10. Acquired equivalence task: Empirical data…
Figure 10. Acquired equivalence task: Empirical data from Shohamy and Wagner (2008). Top left panel: performance (y-axis; %) shown for poor (left) and good generalizer groups (right) (x-axis). Premise performance (dark gray bar) reflects average across all premise trials. Generalization performance (light gray bar) relates to a F2–S2 trial. While premise pair performance was near ceiling in both poor and good groups (~90%), generalization performance was far superior in the good group (∼90% vs. ∼60%). Bottom left panel: significant correlation (r ∼0.5) between percentage change in left hippocampal BOLD signal between early and late phases of premise pair training (y-axis) and generalization performance (x-axis). Note that the actual percentage signal change magnitudes are not relevant in the current context and, therefore, are omitted for ease of interpretation. Bottom right panel illustrates that as a group, the good generalizers showed a significant increase in hippocampal activation between early and late phases of training, compared to the poor generalizers. Top right panel shows the relevant region of the left hippocampus, significant at a threshold of p < .05 (corrected for the volume of the hippocampus). Adapted with permission from “Integrating Memories in the Human Brain: Hippocampal-Midbrain Encoding of Overlapping Events,” by D. Shohamy and A. D. Wagner, 2008Neuron, 60
Figure 11. Acquired equivalence task: Shohamy and…
Figure 11. Acquired equivalence task: Shohamy and Wagner (2008). Simulated data. Top left panel: Simulation of behavioral data—performance (y-axis, Luce choice ratios expressed as a percentage) shown for poor (left) and good (right) generalizer groups (x-axis). Premise performance (dark gray bar) reflects average across all premise trials. While premise pair performance was significantly better in the good group, compared to the poor group, it was near ceiling in both the poor and good groups (c90%). Generalization performance (light gray bar) in contrast was far superior in the good group. Parameters: τ = 0.4; C = 10; β = 0.1. Weight strengths for poor and good groups, respectively: 1.31, 1.82. Bottom left panel: illustration of relationship between network weight strength (x-axis), premise performance (light gray line; averaged across all premise pairs), and generalization performance (dark gray line). Top right panel: Neural data. Simulation of empirical finding of a greater increase in hippocampal activity between early and late phases of training (shown in bottom right panel), in good generalizer group, during F2–S1 trial. Network parameters (τ = 0.4; C = 10) were fixed at the values used to simulate the behavioral data. Poor (dark gray bar) and good groups (light gray bar) are simulated by similar average weight strengths during the early training phase, in line with the observation that performance on premise pairs was similar in both groups (at around 70% level). In the late phase of training, good group was simulated by a network weight strength of 1.82, and poor group by a weight strength of 1.31, as in the simulation of behavioral performance. Bottom right panel: illustration of the relationship between network weight strength (x-axis) and activity in the conjunctive layer during an F2–S1 trial (y-axis; arbitrary units). Black line shows overall activity within conjunctive layer, medium gray line shows activity of the F2–S1 conjunctive unit, and light gray line shows summed activity of the F1–S1 and F1–S2 conjunctive units. Dashed vertical lines indicate simulated weight strength of the poor and good groups during late phase of training. Network parameters (τ = 0.4; C = 10) were fixed at the values used to simulate the behavioral data. Difference in conjunctive activity between the poor and good groups during the late phase of training is due primarily to the increase in direct activation of the F2–S1 unit (see the main text for details).
Figure 12. Empirical (upper panels) and simulated…
Figure 12. Empirical (upper panels) and simulated (lower panels) data relating to the experiment by Knowlton and Squire (1993). Performance (%) shown on y-axis and indexes probability of endorsing a test item as a category member (categorization task) or judging an item as old (recognition task). Dark gray bars = control group; light gray bars = amnesic group. Left panels show dissociation between relatively spared overall categorization performance (i.e., across all test pattern types) and impaired recognition performance. Right panels show endorsement probability for each test item type in the categorization task, illustrating prototypicality effect. Performance in the empirical study is collapsed across high and low distortions and was simulated by 1 distortion level (see the main text for details). Parameter settings for the simulation were as follows: control group (weight strength = 1.50, Ccategorization = 970, Crecognition = 700) and the amnesic group (weight strength = 0.83, Ccategorization = 70, Crecognition = 30), where C is the regulatory parameter entering into the hedged softmax function applied to the conjunctive layer. C was set at a level that ensured unbiased responding (i.e., equal numbers of hits and correct rejections). Temperature was fixed at 1 throughout the simulation.
Figure 13. Simulated data relating to the…
Figure 13. Simulated data relating to the experiment by Knowlton and Squire (1993)x-axis) and network performance on categorization (solid line) and recognition task (dashed line). Vertical dashed lines indicate weight strength used to simulate the performance of the group of amnesic and normal subjects. See the main text for details.
Figure 14. Illustration of replay activity in…
Figure 14. Illustration of replay activity in rodent hippocampus reflecting shortcut sequences (across the top of the maze), and a schematic of maze environment. Adapted with permission from “Hippocampal Replay Is Not a Simple Function of Experience,” by A. S. Gupta, M. A. van der Meer, D. S. Touretzky, and A. D. Redish, 2010Neuron, 65Gupta et al., 2010
Figure 15. Transitive inference task: empirical (upper…
Figure 15. Transitive inference task: empirical (upper panel) and simulated (lower panel) data from Ellenbogen et al.'s (2007) study. Performance of 20-min and 12-hr subject groups shown (x-axis) with performance (%) on y-axis. Groups differ as a function of the length and nature of the delay period interposed between training and testing. Premise performance (dark gray bar) averaged across all relevant pairs (i.e., A–B, B–C, … E–F). Inference performance (light gray bar) averaged over close (B–D, C–E) and distant inference (B–E) pairs. Parameters: τ = 0.2; C = 15; β = 0.3. Weight strengths for the 20-min and 12-hr groups, respectively: 1.29, 1.35. Error bars (empirical data) reflect standard error. Model performance (expressed as percentage correct) derived directly from Luce choice ratios (see the main text for details).
Figure 16. Transitive inference task: Illustration showing…
Figure 16. Transitive inference task: Illustration showing that the network no longer favors B over E in a BE trial, following the addition of the F+ A− premise pair to the existing set of premise pairs—which effectively transforms the linear hierarchical arrangement of stimuli into a circular configuration (see the main text for details). Parameters: τ = 0.25; C = 1. Weight strength = 1 (i.e., as in simulation shown in Figure 2).
Figure A1. The 5–4 category learning task:…
Figure A1. The 5–4 category learning task: probability of assigning each of 16 test stimuli (x-axis) to Category A (y-axis) according to the generalized context model (GCM; dotted line) and REMERGE (recurrency, and episodic memory results in generalization; solid line). Data relating to GCM are drawn from the intermediate setting of the sensitivity parameter (i.e., 5), described in Nosofsky (2000). Parameters in REMERGE include the following: τ = 0.65; C = 1; β = 0.25. Note that REMERGE also provides an adequate fit to empirical data summarized in a meta-analysis of 30 empirical studies (J. D. Smith & Minda, 2000; though see Nosofsky, 2000Table A1 in the Appendix for a description of the 5–4 category structure.
Figure A2. Recognition memory simulation: performance of…
Figure A2. Recognition memory simulation: performance of recurrent and feedforward network, indexed by measure of signal strength (d-prime) based on difference in feature layer activity for studied and lure items, shown for network temperatures across the range 0.1 to 2.0 (in increments of 0.1). Note the relatively similar performance of recurrent and feedforward networks, across a relatively large range of network temperatures. See the main text for details.

References

    1. Amaral D. G., & Lavenex P. (2006). Hippocampal neuroanatomy. In Bliss T., Andersen P., Amaral D. G., Morris R. G., & O'Keefe J. (Eds.), The hippocampus book (pp. 37–115). Oxford, England: Oxford University Press.
    1. Ashby F. G., & Maddox W. T. (2005). Human category learning. Annual Review of Psychology, 56, 149–178. doi:10.1146/annurev.psych.56.091103.070217
    1. Bartlett F. C. (1932). Remembering: An experimental and social study. Cambridge, England: Cambridge University Press.
    1. Becker S. (2005). A computational principle for hippocampal learning and neurogenesis. Hippocampus, 15, 722–738. doi:10.1002/hipo.20095
    1. Bowers J. S. (2009). On the biological plausibility of grandmother cells: Implications for neural network theories in psychology and neuroscience. Psychological Review, 116, 220–251. doi:10.1037/a0014462
    1. Brawn T. P., Nusbaum H. C., & Margoliash D. (2010). Sleep-dependent consolidation of auditory discrimination learning in adult starlings. The Journal of Neuroscience, 30, 609–613. doi:10.1523/JNEUROSCI.4237-09.2010
    1. Breslow L. (1981). A reevaluation of the literature on the development of transitive inferences. Psychological Bulletin, 89, 325–351. doi:10.1037/0033-2909.89.2.325
    1. Brown M. W., & Aggleton J. P. (2001). Recognition memory: What are the roles of the perirhinal cortex and hippocampus? Nature Reviews Neuroscience, 2, 51–61. doi:10.1038/35049064
    1. Buckmaster C. A., Eichenbaum H., Amaral D. G., Suzuki W. A., & Rapp P. R. (2004). Entorhinal cortex lesions disrupt the relational organization of memory in monkeys. The Journal of Neuroscience, 24, 9811–9825. doi:10.1523/JNEUROSCI.1532-04.2004
    1. Bunsey M., & Eichenbaum H. (1996, January 18). Conservation of hippocampal memory function in rats and humans. Nature, 379, 255–257. doi:10.1038/379255a0
    1. Burgess N. (2006). Computational models of the spatial and mnemonic functions of the hippocampus. In Bliss T., Andersen P., Amaral D. G., Morris R. G., & O'Keefe J. (Eds.), The hippocampus book (pp. 715–751). Oxford, England: Oxford University Press.
    1. Buzsáki G. (1986). Hippocampal sharp waves: Their origin and significance. Brain Research, 398, 242–252. doi:10.1016/0006-8993(86)91483-6
    1. Buzsáki G. (1989). Two-stage model of memory trace formation: A role for “noisy” brain states. Neuroscience, 31, 551–570. doi:10.1016/0306-4522(89)90423-5
    1. Buzsáki G. (1996). The hippocampo-neocortical dialogue. Cerebral Cortex, 6, 81–92. doi:10.1093/cercor/6.2.81
    1. Buzsáki G. (2005). Theta rhythm of navigation: Link between path integration and landmark navigation, episodic and semantic memory. Hippocampus, 15, 827–840. doi:10.1002/hipo.20113
    1. Cai D. J., Mednick S. A., Harrison E. M., Kanady J. C., & Mednick S. C. (2009). REM, not incubation, improves creativity by priming associative networks. Proceedings of the National Academy of Sciences, USA, 106, 10130–10134. doi:10.1073/pnas.0900271106
    1. Clelland C. D., Choi M., Romberg C., Clemenson G. D. Jr., Fragniere A., Tyers P., . . . Bussey T. J. (2009, July 10). A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science, 325, 210–213. doi:10.1126/science.1173215
    1. Cohen N. J., & Eichenbaum H. (1993). Memory, amnesia, and the hippocampal system. Cambridge, MA: MIT Press.
    1. Coutureau E., Killcross A. S., Good M., Marshall V. J., Ward-Robinson J., & Honey R. C. (2002). Acquired equivalence and distinctiveness of cues: II. Neural manipulations and their implications. Journal of Experimental Psychology: Animal Behavior Processes, 28, 388–396. doi:10.1037/0097-7403.28.4.388
    1. Criss A. H., & McClelland J. L. (2006). Differentiating the differentiation models: A comparison of the retrieving effectively from memory model (REM) and the subjective likelihood model (SLiM). Journal of Memory and Language, 55, 447–460. doi:10.1016/j.jml.2006.06.003
    1. Davis H. (1992). Transitive inference in rats (Rattus norvegicus). Journal of Comparative Psychology, 106, 342–349. doi:10.1037/0735-7036.106.4.342
    1. Daw N. D., Niv Y., & Dayan P. (2005). Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nature Neuroscience, 8, 1704–1711. doi:10.1038/nn1560
    1. Delius J. D., & Sieman M. (1998). Transitive responding in animals and humans: Exaptation rather than adaptation. Behavioural Processes, 42, 107–137. doi:10.1016/S0376-6357(97)00072-7
    1. Deng W., Aimone J. B., & Gage F. H. (2010). New neurons and new memories: How does adult hippocampal neurogenesis affect learning and memory? Nature Reviews Neuroscience, 11, 339–350. doi:10.1038/nrn2822
    1. Desimone R. (1998). Visual attention mediated by biased competition in extrastriate visual cortex. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 353, 1245–1255. doi:10.1098/rstb.1998.0280
    1. Diekelmann S., & Born J. (2010). The memory function of sleep. Nature Reviews Neuroscience, 11, 114–126.
    1. Duncan J. (2001). An adaptive coding model of neural function in prefrontal cortex. Nature Reviews Neuroscience, 2, 820–829. doi:10.1038/35097575
    1. Dusek J. A., & Eichenbaum H. (1997). The hippocampus and memory for orderly stimulus relations. Proceedings of the National Academy of Sciences, USA, 94, 7109–7114. doi:10.1073/pnas.94.13.7109
    1. Ego-Stengel V., & Wilson M. A. (2010). Disruption of ripple-associated hippocampal activity during rest impairs spatial learning in the rat. Hippocampus, 20, 1–10.
    1. Eichenbaum H. (1999). The hippocampus and mechanisms of declarative memory. Behavioural Brain Research, 103, 123–133. doi:10.1016/S0166-4328(99)00044-3
    1. Eichenbaum H. (2004). Hippocampus: Cognitive processes and neural representations that underlie declarative memory. Neuron, 44, 109–120. doi:10.1016/j.neuron.2004.08.028
    1. Eichenbaum H., Dudchenko P., Wood E., Shapiro M., & Tanila H. (1999). The hippocampus, memory, and place cells: Is it spatial memory or a memory space? Neuron, 23, 209–226. doi:10.1016/S0896-6273(00)80773-4
    1. Eichenbaum H., Stewart C., & Morris R. G. (1990). Hippocampal representation in place learning. Journal of Neuroscience, 10, 3531–3542.
    1. Eichenbaum H., Yonelinas A. P., & Ranganath C. (2007). The medial temporal lobe and recognition memory. Annual Review of Neuroscience, 30, 123–152. doi:10.1146/annurev.neuro.30.051606.094328
    1. Ellenbogen J. M., Hu P. T., Payne J. D., Titone D., & Walker M. P. (2007). Human relational memory requires time and sleep. Proceedings of the National Academy of Sciences, USA, 104, 7723–7728. doi:10.1073/pnas.0700094104
    1. Ferbinteanu J., & Shapiro M. L. (2003). Prospective and retrospective memory coding in the hippocampus. Neuron, 40, 1227–1239. doi:10.1016/S0896-6273(03)00752-9
    1. Flusberg S. J., Thibodeau P. H., Sternberg D. A., & Glick J. J. (2011). A connectionist approach to embodied conceptual metaphor. Frontiers in Psychology, 1, 197.
    1. Fortin N. J., Wright S. P., & Eichenbaum H. (2004, September 9). Recollection-like memory retrieval in rats is dependent on the hippocampus. Nature, 431, 188–191. doi:10.1038/nature02853
    1. Foster D. J., & Wilson M. A. (2006, March 30). Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature, 440, 680–683. doi:10.1038/nature04587
    1. Frank M. J., Rudy J. W., Levy W. B., & O'Reilly R. C. (2005). When logic fails: Implicit transitive inference in humans. Memory & Cognition, 33, 742–750. doi:10.3758/BF03195340
    1. Frank M. J., Rudy J. W., & O'Reilly R. C. (2003). Transitivity, flexibility, conjunctive representations, and the hippocampus: II. A computational analysis. Hippocampus, 13, 341–354. doi:10.1002/hipo.10084
    1. French R. M. (1999). Catastrophic forgetting in connectionist networks. Trends in Cognitive Sciences, 3, 128–135. doi:10.1016/S1364-6613(99)01294-2
    1. Gilbert P. E., Kesner R. P., & Lee I. (2001). Dissociating hippocampal subregions: Double dissociation between dentate gyrus and CA1. Hippocampus, 11, 626–636. doi:10.1002/hipo.1077
    1. Gillan D. J. (1981). Reasoning in the chimpanzee: II. Transitive inference. Journal of Experimental Psychology: Animal Behavior Processes, 7, 150–164. doi:10.1037/0097-7403.7.2.150
    1. Girardeau G., Benchenane K., Wiener S. I., Buzsáki G., & Zugaro M. B. (2009). Selective suppression of hippocampal ripples impairs spatial memory. Nature Neuroscience, 12, 1222–1223. doi:10.1038/nn.2384
    1. Gluck M. A., & Myers C. E. (1993). Hippocampal mediation of stimulus representation: A computational theory. Hippocampus, 3, 491–516. doi:10.1002/hipo.450030410
    1. Greene A. J., Spellman B. A., Dusek J. A., Eichenbaum H. B., & Levy W. B. (2001). Relational learning with and without awareness: Transitive inference using nonverbal stimuli in humans. Memory & Cognition, 29, 893–902. doi:10.3758/BF03196418
    1. Grossberg S. (1978). A theory of visual coding, memory, and development. In Leeuwenberg E. L. J. & Buffart H. F. J. M. (Eds.), Formal theories of visual perception (pp. 7–26). New York, NY: Wiley.
    1. Grossberg S. (1987). Competitive learning: From interactive activation to adaptive resonance. Cognitive Science, 11, 23–63. doi:10.1111/j.1551-6708.1987.tb00862.x
    1. Gupta A. S., van der Meer M. A., Touretzky D. S., & Redish A. D. (2010). Hippocampal replay is not a simple function of experience. Neuron, 65, 695–705. doi:10.1016/j.neuron.2010.01.034
    1. Hassabis D., Kumaran D., Vann S. D., & Maguire E. A. (2007). Patients with hippocampal amnesia cannot imagine new experiences. Proceedings of the National Academy of Sciences, USA, 104, 1726–1731. doi:10.1073/pnas.0610561104
    1. Hassabis D., & Maguire E. A. (2007). Deconstructing episodic memory with construction. Trends in Cognitive Sciences, 11, 299–306. doi:10.1016/j.tics.2007.05.001
    1. Hasselmo M. E. (1993). Acetylcholine and learning in a cortical associative memory network. Neural Computation, 5, 32–44. doi:10.1162/neco.1993.5.1.32
    1. Hasselmo M. E. (1999). Neuromodulation: Acetylcholine and memory consolidation. Trends in Cognitive Sciences, 3, 351–359. doi:10.1016/S1364-6613(99)01365-0
    1. Hasselmo M. E. (2005). What is the function of hippocampal theta rhythm? Linking behavioral data to phasic properties of field potential and unit recording data. Hippocampus, 15, 936–949. doi:10.1002/hipo.20116
    1. Hasselmo M. E., & Bower J. M. (1992). Cholinergic suppression specific to intrinsic not afferent fiber synapses in rat piriform (olfactory) cortex. Journal of Neurophysiology, 67, 1222–1229.
    1. Hasselmo M. E., & Schnell E. (1994). Laminar selectivity of the cholinergic suppression of synaptic transmission in rat hippocampal region CA1: Computational modeling and brain slice physiology. Journal of Neuroscience, 14, 3898–3914.
    1. Heckers S., Zalesak M., Weiss A. P., Ditman T., & Titone D. (2004). Hippocampal activation during transitive inference in humans. Hippocampus, 14, 153–162. doi:10.1002/hipo.10189
    1. Hinton G. E., McClelland J. L., & Rumelhart D. E. (1986). Distributed representations. In McClelland J. L., Rumelhart D. E., & the PDP Research Group (Eds.), Parallel distributed processing: Explorations in the microstructure of cognition: Psychological and biological models (Vol. 2, pp. 77–109). Cambridge, MA: MIT Press.
    1. Hinton G. E., & Sejnowksi T. J. (1983). Optimal perceptual inference. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 448–453). Retrieved from
    1. Hintzman D. L. (1986). “Schema abstraction” in a multiple-trace memory model. Psychological Review, 93, 411–428. doi:10.1037/0033-295X.93.4.411
    1. Hintzman D. L. (2001). Similarity, global matching, and judgments of frequency. Memory & Cognition, 29, 547–556. doi:10.3758/BF03200456
    1. Hopfield J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences, USA, 79, 2554–2558. doi:10.1073/pnas.79.8.2554
    1. Howard M. W., Fotedar M. S., Datey A. V., & Hasselmo M. E. (2005). The temporal context model in spatial navigation and relational learning: Toward a common explanation of medial temporal lobe function across domains. Psychological Review, 112, 75–116. doi:10.1037/0033-295X.112.1.75
    1. Hummel J. E., & Holyoak K. J. (2003). A symbolic-connectionist theory of relational inference and generalization. Psychological Review, 110, 220–264. doi:10.1037/0033-295X.110.2.220
    1. Hunsaker M. R., Rosenberg J. S., & Kesner R. P. (2008). The role of the dentate gyrus, CA3a, b, and CA3c for detecting spatial and environmental novelty. Hippocampus, 18, 1064–1073. doi:10.1002/hipo.20464
    1. Ji D., & Wilson M. A. (2007). Coordinated memory replay in the visual cortex and hippocampus during sleep. Nature Neuroscience, 10, 100–107. doi:10.1038/nn1825
    1. Johnson A., & Redish A. D. (2005). Hippocampal replay contributes to within session learning in a temporal difference reinforcement learning model. Neural Networks, 18, 1163–1171. doi:10.1016/j.neunet.2005.08.009
    1. Kahana M. J. (1996). Associative retrieval processes in free recall. Memory & Cognition, 24, 103–109. doi:10.3758/BF03197276
    1. Káli S., & Dayan P. (2004). Off-line replay maintains declarative memories in a model of hippocampal-neocortical interactions. Nature Neuroscience, 7, 286–294. doi:10.1038/nn1202
    1. Kempermann G. (2002). Why new neurons? Possible functions for adult hippocampal neurogenesis. The Journal of Neuroscience, 22, 635–638.
    1. Kesner R. P., & Hopkins R. O. (2006). Mnemonic functions of the hippocampus: A comparison between animals and humans. Biological Psychology, 73, 3–18. doi:10.1016/j.biopsycho.2006.01.004
    1. Kitchener E. G., & Squire L. R. (2000). Impaired verbal category learning in amnesia. Behavioral Neuroscience, 114, 907–911. doi:10.1037/0735-7044.114.5.907
    1. Kloosterman F., van Haeften T., & Lopes da Silva F. H. (2004). Two reentrant pathways in the hippocampal-entorhinal system. Hippocampus, 14, 1026–1039. doi:10.1002/hipo.20022
    1. Knowlton B. J., & Squire L. R. (1993, December 10). The learning of categories: Parallel brain systems for item memory and category knowledge. Science, 262, 1747–1749. doi:10.1126/science.8259522
    1. Kumaran D., Hassabis D., Spiers H. J., Vann S. D., Vargha-Khadem F., & Maguire E. A. (2007). Impaired spatial and non-spatial configural learning in patients with hippocampal pathology. Neuropsychologia, 45, 2699–2711. doi:10.1016/j.neuropsychologia.2007.04.007
    1. Kumaran D., Summerfield J. J., Hassabis D., & Maguire E. A. (2009). Tracking the emergence of conceptual knowledge during human decision making. Neuron, 63, 889–901. doi:10.1016/j.neuron.2009.07.030
    1. Lee A. K., & Wilson M. A. (2002). Memory of sequential experience in the hippocampus during slow wave sleep. Neuron, 36, 1183–1194. doi:10.1016/S0896-6273(02)01096-6
    1. Leutgeb J. K., Leutgeb S., Moser M. B., & Moser E. I. (2007, February 16). Pattern separation in the dentate gyrus and CA3 of the hippocampus. Science, 315, 961–966. doi:10.1126/science.1135801
    1. Leutgeb S., Leutgeb J. K., Treves A., Moser M. B., & Moser E. I. (2004, August 27). Distinct ensemble codes in hippocampal areas CA3 and CA1. Science, 305, 1295–1298. doi:10.1126/science.1100265
    1. Lisman J. E. (1999). Relating hippocampal circuitry to function: Recall of memory sequences by reciprocal dentate-CA3 interactions. Neuron, 22, 233–242. doi:10.1016/S0896-6273(00)81085-5
    1. Luce R. D. (1959). Individual choice behavior: A theoretical analysis. New York, NY: Wiley.
    1. Marr D. (1971). Simple memory: A theory for archicortex. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 262, 23–81. doi:10.1098/rstb.1971.0078
    1. McClelland J. L. (1981). Retrieving general and specific information from stored knowledge of the specifics. In Proceedings of the Third Annual Conference of the Cognitive Science Society (pp. 170–172). Retrieved from
    1. McClelland J. L. (1991). Stochastic interactive processes and the effect of context on perception. Cognitive Psychology, 23, 1–44. doi:10.1016/0010-0285(91)90002-6
    1. McClelland J. L. (1998). Connectionist models and Bayesian inference. In Oaksford M. & Chater N. (Eds.), Rational models of cognition (pp. 21–53). Oxford, England: Oxford University Press.
    1. McClelland J. L. (2011). Memory as a constructive process: The parallel-distributed processing approach. In Nalbantian P., Matthew P., & McClelland J. L. (Eds.), The memory process: Neuroscientific and humanist perspectives (pp. 129–152). Cambridge, MA: MIT Press.
    1. McClelland J. L., Botvinick M. M., Noelle D. C., Plaut D. C., Rogers T. T., Seidenberg M. S., & Smith L. B. (2010). Letting structure emerge: Connectionist and dynamical systems approaches to cognition. Trends in Cognitive Sciences, 14, 348–356. doi:10.1016/j.tics.2010.06.002
    1. McClelland J. L., & Chappell M. (1998). Familiarity breeds differentiation: A subjective-likelihood approach to the effects of experience in recognition memory. Psychological Review, 105, 724–760. doi:10.1037/0033-295X.105.4.734-760
    1. McClelland J. L., & Goddard N. H. (1996). Considerations arising from a complementary learning systems perspective on hippocampus and neocortex. Hippocampus, 6, 654–665. doi:10.1002/(SICI)1098-1063(1996)6:6<654::AID-HIPO8>;2-G
    1. McClelland J. L., McNaughton B. L., & O'Reilly R. C. (1995). Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychological Review, 102, 419–457. doi:10.1037/0033-295X.102.3.419
    1. McClelland J. L., & Rogers T. T. (2003). The parallel distributed processing approach to semantic cognition. Nature Reviews Neuroscience, 4, 310–322. doi:10.1038/nrn1076
    1. McClelland J. L., & Rumelhart D. E. (1981). An interactive activation model of context effects in letter perception: I. An account of the basic findings. Psychological Review, 88, 375–407. doi:10.1037/0033-295X.88.5.375
    1. McCloskey M., & Cohen N. J. (1989). Catastrophic forgetting in connectionist networks: The problem of sequential learning. In Bower G. H. (Ed.), The psychology of learning and motivation (Vol. 20, pp. 109–165). New York, NY: Academic Press.
    1. McGonigle B. O., & Chalmers M. (1977, June 23). Are monkeys logical? Nature, 267, 694–696. doi:10.1038/267694a0
    1. McHugh T. J., Jones M. W., Quinn J. J., Balthasar N., Coppari R., Elmquist J. K., . . . Tonegawa S. (2007, July 6). Dentate gyrus NMDA receptors mediate rapid pattern separation in the hippocampal network. Science, 317, 94–99. doi:10.1126/science.1140263
    1. McNaughton B. L., & Morris R. G. (1987). Hippocampal synaptic enhancement and information storage within a distributed memory system. Trends in Neurosciences, 10, 408–415. doi:10.1016/0166-2236(87)90011-7
    1. Medin D. L. (1975). A theory of context in discrimination learning. In Bower G. H. (Ed.), Psychology of learning and motivation (Vol. 9, pp. 269–315). New York, NY: Academic Press.
    1. Medin D. L., & Schaffer M. M. (1978). Context theory of classification. Psychological Review, 85, 207–238. doi:10.1037/0033-295X.85.3.207
    1. Miller E. K., & Cohen J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167–202. doi:10.1146/annurev.neuro.24.1.167
    1. Mirman D., Khaitan P., Bolger D. J., & McClelland J. L. (in press). Interactive activation and mutual constraint satisfaction in perception and cognition. Cognitive Science.
    1. Moita M. A., Rosis S., Zhou Y., LeDoux J. E., & Blair H. T. (2003). Hippocampal place cells acquire location-specific responses to the conditioned stimulus during auditory fear conditioning. Neuron, 37, 485–497. doi:10.1016/S0896-6273(03)00033-3
    1. Molter C., Sato N., & Yamaguchi Y. (2007). Reactivation of behavioral activity during sharp waves: A computational model for two stage hippocampal dynamics. Hippocampus, 17, 201–209. doi:10.1002/hipo.20258
    1. Moses S. N., Villate C., & Ryan J. D. (2006). An investigation of learning strategy supporting transitive inference performance in humans compared to other species. Neuropsychologia, 44, 1370–1387. doi:10.1016/j.neuropsychologia.2006.01.004
    1. Murphy G. L. (2004). The big book of concepts. Cambridge, MA: MIT Press.
    1. Murphy R. A., Mondragon E., & Murphy V. A. (2008, March 28). Rule learning by rats. Science, 319, 1849–1851. doi:10.1126/science.1151564
    1. Myers C. E., & Scharfman H. E. (2011). Pattern separation in the dentate gyrus: A role for the CA3 backprojection. Hippocampus, 21, 1190–1215. doi:10.1002/hipo.20828
    1. Myers C. E., Shohamy D., Gluck M. A., Grossman S., Kluger A., Ferris S., . . . Schwartz R. (2003). Dissociating hippocampal versus basal ganglia contributions to learning and transfer. Journal of Cognitive Neuroscience, 15, 185–193. doi:10.1162/089892903321208123
    1. Nakashiba T., Cushman J. D., Pelkey K. A., Renaudineau S., Buhl D. L., McHugh T. J., . . . Tonegawa S. (2012). Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion. Cell, 149, 188–201. doi:10.1016/j.cell.2012.01.046
    1. Norman K. A., & O'Reilly R. C. (2003). Modeling hippocampal and neocortical contributions to recognition memory: A complementary-learning-systems approach. Psychological Review, 110, 611–646. doi:10.1037/0033-295X.110.4.611
    1. Nosofsky R. M. (1984). Choice, similarity, and the context theory of classification. Journal of Experimental Psychology: Learning, Memory, and Cognition, 10, 104–114. doi:10.1037/0278-7393.10.1.104
    1. Nosofsky R. M. (2000). Exemplar representation without generalization? Comment on Smith and Minda's “Thirty categorization results in search of a model.” Journal of Experimental Psychology: Learning, Memory, and Cognition, 26, 1735–1743.
    1. Nosofsky R. M., Little D. R., & James T. W. (2012). Activation in the neural network responsible for categorization and recognition reflects parameter changes. Proceedings of the National Academy of Sciences, USA, 109, 333–338. doi:10.1073/pnas.1111304109
    1. Nosofsky R. M., & Zaki S. R. (1998). Dissociations between categorization and recognition in amnesic and normal individuals: An exemplar-based interpretation. Psychological Science, 9, 247–255. doi:10.1111/1467-9280.00051
    1. Nystrom L. E., & McClelland J. L. (1992). Trace synthesis in cued recall. Journal of Memory and Language, 31, 591–614. doi:10.1016/0749-596X(92)90030-2
    1. O'Keefe J., & Nadel L. (1978). The hippocampus as a cognitive map. Oxford, England: Oxford University Press.
    1. O'Neill J., Pleydell-Bouverie B., Dupret D., & Csicsvari J. (2010). Play it again: Reactivation of waking experience and memory. Trends in Neurosciences, 33, 220–229. doi:10.1016/j.tins.2010.01.006
    1. O'Reilly R. C., & McClelland J. L. (1994). Hippocampal conjunctive encoding, storage, and recall: Avoiding a trade-off. Hippocampus, 4, 661–682. doi:10.1002/hipo.450040605
    1. O'Reilly R. C., & Munakata Y. (2000). Computational explorations in cognitive neuroscience: Understanding the mind by simulating the brain. Cambridge, MA: MIT Press.
    1. O'Reilly R. C., & Rudy J. W. (2001). Conjunctive representations in learning and memory: Principles of cortical and hippocampal function. Psychological Review, 108, 311–345. doi:10.1037/0033-295X.108.2.311
    1. Page M. (2000). Connectionist modelling in psychology: A localist manifesto. Behavioral and Brain Sciences, 23, 443–467. doi:10.1017/S0140525X00003356
    1. Palmeri T. J., & Flannery M. A. (1999). Learning about categories in the absence of training: Profound amnesia and the relationship between perceptual categorization and recognition memory. Psychological Science, 10, 526–530. doi:10.1111/1467-9280.00200
    1. Plaut D. C., & McClelland J. L. (2010). Locating object knowledge in the brain: Comment on Bowers's (2009) attempt to revive the grandmother cell hypothesis. Psychological Review, 117, 284–288. doi:10.1037/a0017101
    1. Polyn S. M., & Kahana M. J. (2008). Memory search and the neural representation of context. Trends in Cognitive Sciences, 12, 24–30. doi:10.1016/j.tics.2007.10.010
    1. Polyn S. M., Norman K. A., & Kahana M. J. (2009). A context maintenance and retrieval model of organizational processes in free recall. Psychological Review, 116, 129–156. doi:10.1037/a0014420
    1. Posner M. I., & Keele S. W. (1968). On the genesis of abstract ideas. Journal of Experimental Psychology, 77, 353–363. doi:10.1037/h0025953
    1. Preston A. R., Shrager Y., Dudukovic N. M., & Gabrieli J. D. (2004). Hippocampal contribution to the novel use of relational information in declarative memory. Hippocampus, 14, 148–152. doi:10.1002/hipo.20009
    1. Quiroga R. Q., Kreiman G., Koch C., & Fried I. (2008). Sparse but not “grandmother-cell” coding in the medial temporal lobe. Trends in Cognitive Sciences, 12, 87–91. doi:10.1016/j.tics.2007.12.003
    1. Quiroga R. Q., Reddy L., Kreiman G., Koch C., & Fried I. (2005, June 23). Invariant visual representation by single neurons in the human brain. Nature, 435, 1102–1107. doi:10.1038/nature03687
    1. Rogers T. T., & McClelland J. L. (2004). Semantic cognition: A parallel distributed processing approach. Cambridge, MA: MIT Press.
    1. Rogers T. T., & McClelland J. L. (2008). Précis of semantic cognition: A parallel distributed processing approach. Behavioral and Brain Sciences, 31, 689–714. doi:10.1017/S0140525X0800589X
    1. Rolls E. T., & Kesner R. P. (2006). A computational theory of hippocampal function, and empirical tests of the theory. Progress in Neurobiology, 79, 1–48. doi:10.1016/j.pneurobio.2006.04.005
    1. Rudy J. W., & Sutherland R. J. (1989). The hippocampal formation is necessary for rats to learn and remember configural discriminations. Behavioural Brain Research, 34(1-2), 97–109. doi:10.1016/S0166-4328(89)80093-2
    1. Rumelhart D. E. (1990). Brain style computation: Learning and generalization. In Zornetzer S. F., Davis J. L., & Lau C. (Eds.), An introduction to electronic and neural networks (pp. 405–420). San Diego, CA: Academic Press.
    1. Rumelhart D. E., & Todd P. M. (1993). Learning and connectionist representations. In Meyer D. M. & Kornblum S. (Eds.), Attention and performance XIV: Synergies in experimental psychology (pp. 3–30). Cambridge, MA: MIT Press.
    1. Ryan J. D., Moses S. N., & Villate C. (2009). Impaired relational organization of propositions, but intact transitive inference, in aging: Implications for understanding underlying neural integrity. Neuropsychologia, 47, 338–353. doi:10.1016/j.neuropsychologia.2008.09.006
    1. Schacter D. L., & Addis D. R. (2007). The cognitive neuroscience of constructive memory: Remembering the past and imagining the future. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 362, 773–786. doi:10.1098/rstb.2007.2087
    1. Scoville W. B., & Milner B. (1957). Loss of recent memory after bilateral hippocampal lesions. Journal of Neurology, Neurosurgery & Psychiatry, 20, 11–21. doi:10.1136/jnnp.20.1.11
    1. Shepard R. N. (1987, September 11). Toward a universal law of generalization for psychological science. Science, 237, 1317–1323. doi:10.1126/science.3629243
    1. Shi L., Griffiths T. L., Feldman N. H., & Sanborn A. N. (2010). Exemplar models as a mechanism for performing Bayesian inference. Psychonomic Bulletin & Review, 17, 443–464. doi:10.3758/PBR.17.4.443
    1. Shiffrin R. M., & Steyvers M. (1997). Models of recognition memory: REM-retrieving effectively from memory. Psychonomic Bulletin & Review, 4, 145–166. doi:10.3758/BF03209391
    1. Shohamy D., & Wagner A. D. (2008). Integrating memories in the human brain: Hippocampal-midbrain encoding of overlapping events. Neuron, 60, 378–389. doi:10.1016/j.neuron.2008.09.023
    1. Skaggs W. E., & McNaughton B. L. (1996, March 29). Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience. Science, 271, 1870–1873. doi:10.1126/science.271.5257.1870
    1. Skaggs W. E., & McNaughton B. L. (1998). Spatial firing properties of hippocampal CA1 populations in an environment containing two visually identical regions. The Journal of Neuroscience, 18, 8455–8466.
    1. Smith C., & Squire L. R. (2005). Declarative memory, awareness, and transitive inference. The Journal of Neuroscience, 25, 10138–10146. doi:10.1523/JNEUROSCI.2731-05.2005
    1. Smith J. D., & Minda J. P. (2000). Thirty categorization results in search of a model. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26, 3–27. doi:10.1037/0278-7393.26.1.3
    1. Squire L. R. (1992). Memory and the hippocampus: A synthesis from findings with rats, monkeys, and humans. Psychological Review, 99, 195–231. doi:10.1037/0033-295X.99.2.195
    1. Squire L. R., Cohen N. J., & Nadel L. (1984). The medial temporal region and memory consolidation: A new hypothesis. In Weingartner H. & Parker E. (Eds.), Memory consolidation (pp. 185–210). Hillsdale, NJ: Erlbaum.
    1. Squire L. R., & Knowlton B. J. (1995). Learning about categories in the absence of memory. Proceedings of the National Academy of Sciences, USA, 92, 12470–12474. doi:10.1073/pnas.92.26.12470
    1. Squire L. R., Stark C. E., & Clark R. E. (2004). The medial temporal lobe. Annual Review of Neuroscience, 27, 279–306. doi:10.1146/annurev.neuro.27.070203.144130
    1. Stickgold R., Scott L., Rittenhouse C., & Hobson A. J. (1999). Sleep-induced changes in associative memory. Journal of Cognitive Neuroscience, 11, 182–193.
    1. Tanila H. (1999). Hippocampal place cells can develop distinct representations of two visually identical environments. Hippocampus, 9, 235–246. doi:10.1002/(SICI)1098-1063(1999)9:3<235::AID-HIPO4>;2-3
    1. Tenenbaum J. B., de Silva V., & Langford J. C. (2000, December 22). A global geometric framework for nonlinear dimensionality reduction. Science, 290, 2319–2323. doi:10.1126/science.290.5500.2319
    1. Treves A., & Rolls E. T. (1992). Computational constraints suggest the need for two distinct input systems to the hippocampal CA3 network. Hippocampus, 2, 189–199. doi:10.1002/hipo.450020209
    1. Treves A., & Rolls E. T. (1994). Computational analysis of the role of the hippocampus in memory. Hippocampus, 4, 374–391. doi:10.1002/hipo.450040319
    1. Tse D., Langston R. F., Kakeyama M., Bethus I., Spooner P. A., Wood E. R., . . . Morris R. G. M. (2007, April 6). Schemas and memory consolidation. Science, 316, 76–82. doi:10.1126/science.1135935
    1. Tse D., Takeuchi T., Kakeyama M., Kajii Y., Okuno H., Tohyama C., . . . Morris R. G. M. (2011, August 12). Schema-dependent gene activation and memory encoding in neocortex. Science, 333, 891–895. doi:10.1126/science.1205274
    1. Tucker M. A., & Fishbein W. (2008). Enhancement of declarative memory performance following a daytime nap is contingent on strength of initial task acquisition. Sleep, 31, 197–203.
    1. Usher M., & McClelland J. L. (2001). The time course of perceptual choice: The leaky, competing accumulator model. Psychological Review, 108, 550–592. doi:10.1037/0033-295X.108.3.550
    1. Van Elzakker M., O'Reilly R. C., & Rudy J. W. (2003). Transitivity, flexibility, conjunctive representations, and the hippocampus: I. An empirical analysis. Hippocampus, 13, 334–340. doi:10.1002/hipo.10083
    1. van Strien N. M., Cappaert N. L., & Witter M. P. (2009). The anatomy of memory: An interactive overview of the parahippocampal-hippocampal network. Nature Reviews Neuroscience, 10, 272–282. doi:10.1038/nrn2614
    1. Vazdarjanova A., & Guzowski J. F. (2004). Differences in hippocampal neuronal population responses to modifications of an environmental context: Evidence for distinct, yet complementary, functions of CA3 and CA1 ensembles. The Journal of Neuroscience, 24, 6489–6496. doi:10.1523/JNEUROSCI.0350-04.2004
    1. von Fersen L., Wynne C. D., Delius J. D., & Staddon J. E. (1991). Transitive inference formation in pigeons. Journal of Experimental Psychology: Animal Behavior Processes, 17, 334–341. doi:10.1037/0097-7403.17.3.334
    1. Wagner A. D., Schacter D. L., Rotte M., Koutstaal W., Maril A., Dale A. M., . . . Buckner R. L. (1998, August 21). Building memories: Remembering and forgetting of verbal experiences as predicted by brain activity. Science, 281, 1188–1191. doi:10.1126/science.281.5380.1188
    1. Wais P. E., Wixted J. T., Hopkins R. O., & Squire L. R. (2006). The Hippocampus supports both the recollection and the familiarity components of recognition memory. Neuron, 49, 459–466. doi:10.1016/j.neuron.2005.12.020
    1. Walker M. P., & Stickgold R. (2010). Overnight alchemy: Sleep-dependent memory evolution. Nature Reviews Neuroscience, 11, 218. doi:10.1038/nrn2762–c1
    1. Wamsley E. J., Tucker M., Payne J. D., Benavides J. A., & Stickgold R. (2010). Dreaming of a learning task is associated with enhanced sleep-dependent memory consolidation. Current Biology, 20, 850–855. doi:10.1016/j.cub.2010.03.027
    1. Waydo S., Kraskov A., Quian Quiroga R., Fried I., & Koch C. (2006). Sparse representation in the human medial temporal lobe. The Journal of Neuroscience, 26, 10232–10234. doi:10.1523/JNEUROSCI.2101-06.2006
    1. Wilson M. A., & McNaughton B. L. (1994, July 29). Reactivation of hippocampal ensemble memories during sleep. Science, 265, 676–679. doi:10.1126/science.8036517
    1. Wixted J. T. (2004). The psychology and neuroscience of forgetting. Annual Review of Psychology, 55, 235–269. doi:10.1146/annurev.psych.55.090902.141555
    1. Wixted J. T., & Squire L. R. (2010). The role of the human hippocampus in familiarity-based and recollection-based recognition memory. Behavioural Brain Research, 215, 197–208. doi:10.1016/j.bbr.2010.04.020
    1. Wood E. R., Dudchenko P. A., & Eichenbaum H. (1999, February 18). The global record of memory in hippocampal neuronal activity. Nature, 397, 613–616. doi:10.1038/17605
    1. Wu X., & Levy W. B. (2001). Simulating symbolic distance effects in the transitive inference problem. Neurocomputing, 38-40, 1603–1610. doi:10.1016/S0925-2312(01)00512-4
    1. Zaki S. R. (2004). Is categorization performance really intact in amnesia? A meta-analysis. Psychonomic Bulletin & Review, 11, 1048–1054. doi:10.3758/BF03196735
    1. Zeithamova D., & Preston A. R. (2010). Flexible memories: Differential roles for medial temporal lobe and prefrontal cortex in cross-episode binding. The Journal of Neuroscience, 30, 14676–14684. doi:10.1523/JNEUROSCI.3250-10.2010
    1. Zeithamova D., Schlichting M. L., & Preston A. R. (2012). The hippocampus and inferential reasoning: Building memories to navigate future decisions. Frontiers in Human Neuroscience, 6, 70. doi:10.3389/fnhum.2012.00070

Source: PubMed

3
S'abonner