Zinc absorption from micronutrient powder is low but is not affected by iron in Kenyan infants

Fabian Esamai, Edward Liechty, Justus Ikemeri, Jamie Westcott, Jennifer Kemp, Diana Culbertson, Leland V Miller, K Michael Hambidge, Nancy F Krebs, Fabian Esamai, Edward Liechty, Justus Ikemeri, Jamie Westcott, Jennifer Kemp, Diana Culbertson, Leland V Miller, K Michael Hambidge, Nancy F Krebs

Abstract

Interference with zinc absorption is a proposed explanation for adverse effects of supplemental iron in iron-replete children in malaria endemic settings. We examined the effects of iron in micronutrient powder (MNP) on zinc absorption after three months of home fortification with MNP in maize-based diets in rural Kenyan infants. In a double blind design, six-month-old, non-anemic infants were randomized to MNP containing 5 mg zinc, with or without 12.5 mg of iron (MNP + Fe and MNP − Fe, respectively); a control (C) group received placebo powder. After three months, duplicate diet collections and zinc stable isotopes were used to measure intake from MNP + non-breast milk foods and fractional absorption of zinc (FAZ) by dual isotope ratio method; total absorbed zinc (TAZ, mg/day) was calculated from intake × FAZ. Mean (SEM) TAZ was not different between MNP + Fe (n = 10) and MNP - Fe (n = 9) groups: 0.85 (0.22) and 0.72 (0.19), respectively, but both were higher than C (n = 9): 0.24 (0.03) (p = 0.04). Iron in MNP did not significantly alter zinc absorption, but despite intakes over double estimated dietary requirement, both MNP groups' mean TAZ barely approximated the physiologic requirement for age. Impaired zinc absorption may dictate need for higher zinc doses in vulnerable populations.

Trial registration: ClinicalTrials.gov NCT02101723.

Figures

Figure 1
Figure 1
Consort diagram. MNP, micronutrient powder.
Figure 2
Figure 2
Box and whisker plots of trimmed mean data for (A) fractional absorption of Zinc (FAZ) from micronutrient powder (MNP) meals; (B) total absorbed zinc (TAZ) from MNP meals and (C) exchangeable zinc pool (EZP) after 3 months on intervention. “+” indicates mean value. Different superscripts denote significant differences between groups (ANOVA).

References

    1. Sazawal S., Black R.E., Ramsan M., Chwaya H.M., Stoltzfus R.J., Dutta A., Dhingra U., Kabole I., Deb S., Othman M.K., et al. Effects of routine prophylactic supplementation with iron and folic acid on admission to hospital and mortality in preschool children in a high malaria transmission setting: Community-based, randomised, placebo-controlled trial. Lancet. 2006;367:133–143. doi: 10.1016/S0140-6736(06)67962-2.
    1. World Health Organization Conclusions and recommendations of the WHO Consultation on prevention and control of iron deficiency in infants and young children in malaria-endemic areas. Food Nutr. Bull. 2007;28:621–627.
    1. Pasricha S.R., Drakesmith H., Black J., Hipgrave D., Biggs B.A. Control of iron deficiency anemia in low- and middle-income countries. Blood. 2013;121:2607–2617. doi: 10.1182/blood-2012-09-453522.
    1. Iannotti L.L., Tielsch J.M., Black M.M., Black R.E. Iron supplementation in early childhood: Health benefits and risks. Am. J. Clin. Nutr. 2006;84:1261–1276.
    1. Fischer Walker C., Kordas K., Stoltzfus R.J., Black R.E. Interactive effects of iron and zinc on biochemical and functional outcomes in supplementation trials. Am. J. Clin. Nutr. 2005;82:5–12.
    1. Hambidge K.M., Krebs N.F., Sibley L., English J. Acute effects of iron therapy on zinc status during pregnancy. Obstet. Gynecol. 1987;70:593–596.
    1. Hambidge K.M., Krebs N.F., Jacobs M.A., Favier A., Guyette L., Ikle D.N. Zinc nutritional status during pregnancy: A longitudinal study. Am. J. Clin. Nutr. 1983;37:429–442.
    1. O’Brien K.O., Zavaleta N., Caulfield L.E., Yang D.X., Abrams S.A. Influence of prenatal iron and zinc supplements on supplemental iron absorption, red blood cell iron incorporation, and iron status in pregnant Peruvian women. Am. J. Clin. Nutr. 1999;69:509–515.
    1. Fung E.B., Ritchie L.D., Woodhouse L.R., Roehl R., King J.C. Zinc absorption in women during pregnancy and lactation: A longitudinal study. Am. J. Clin. Nutr. 1997;66:80–88.
    1. Chung C.S., Nagey D.A., Veillon C., Patterson K.Y., Jackson R.T., Moser-Veillon P.B. A single 60-mg iron dose decreases zinc absorption in lactating women. J. Nutr. 2002;132:1903–1905.
    1. Harvey L.J., Dainty J.R., Hollands W.J., Bull V.J., Hoogewerff J.A., Foxall R.J., McAnena L., Strain J.J., Fairweather-Tait S.J. Effect of high-dose iron supplements on fractional zinc absorption and status in pregnant women. Am. J. Clin. Nutr. 2007;85:131–136.
    1. O’Brien K.O., Zavaleta N., Caulfield L.E., Wen J., Abrams S.A. Prenatal iron supplements impair zinc absorption in pregnant Peruvian women. J. Nutr. 2000;130:2251–2255.
    1. Davidsson L., Almgren A., Sandstrom B., Hurrell R.F. Zinc absorption in adult humans: The effect of iron fortification. Br. J. Nutr. 1995;74:417–425. doi: 10.1079/BJN19950145.
    1. Fairweather-Tait S.J., Wharf S.G., Fox T.E. Zinc absorption in infants fed iron-fortified weaning food. Am. J. Clin. Nutr. 1995;62:785–789.
    1. Miller L.V., Krebs N.F., Hambidge K.M. Mathematical model of zinc absorption: Effects of dietary calcium, protein and iron on zinc absorption. Br. J. Nutr. 2013;109:695–700. doi: 10.1017/S000711451200195X.
    1. Friel J.K., Naake V.L., Jr., Miller L.V., Fennessey P.V., Hambidge K.M. The analysis of stable isotopes in urine to determine the fractional absorption of zinc. Am. J. Clin. Nutr. 1992;55:473–477.
    1. Miller L.V., Hambidge K.M., Naake V.L., Hong Z., Westcott J.L., Fennessey P.V. Size of the zinc pools that exchange rapidly with plasma zinc in humans: Alternative techniques for measuring and relation to dietary zinc intake. J. Nutr. 1994;124:268–276.
    1. Goudar S.S., Carlo W.A., McClure E.M., Pasha O., Patel A., Esamai F., Chomba E., Garces A., Althabe F., Kodkany B., et al. The Maternal and Newborn Health Registry Study of the global network for womenʼs and childrenʼs health research. Int. J. Gynaecol. Obstetr. 2012;118:190–193. doi: 10.1016/j.ijgo.2012.04.022.
    1. Krebs N.F., Reidinger C.J., Miller L.V., Hambidge K.M. Zinc homeostasis in breast-fed infants. Pediatr. Res. 1996;39:661–665. doi: 10.1203/00006450-199604000-00017.
    1. Jalla S., Westcott J., Steirn M., Miller L.V., Bell M., Krebs N.F. Zinc absorption and exchangeable zinc pool sizes in breast-fed infants fed meat or cereal as first complementary food. J. Pediatr. Gastroenterol. Nutr. 2002;34:35–41. doi: 10.1097/00005176-200201000-00009.
    1. Gisore P., Shipala E., Otieno K., Rono B., Marete I., Tenge C., Mabeya H., Bucher S., Moore J., Liechty E., et al. Community based weighing of newborns and use of mobile phones by village elders in rural settings in Kenya: A decentralised approach to health care provision. BMC Pregnancy Childbirth. 2012;12 doi: 10.1186/1471-2393-12-15.
    1. Krebs N.F., Westcott J.E., Culbertson D.L., Sian L., Miller L.V., Hambidge K.M. Comparison of complementary feeding strategies to meet zinc requirements of older breastfed infants. Am. J. Clin. Nutr. 2012;96:30–35. doi: 10.3945/ajcn.112.036046.
    1. Krebs N., Miller L.V., Naake V.L., Lei S., Westcott J.E., Fennessey P.V. The use of stable isotope techniques to assess zinc metabolism. J. Nutr. Biochem. 1995;6:292–307. doi: 10.1016/0955-2863(95)00043-Y.
    1. R Development Core Team R: A Language and Environment for Statistical Computing. [(accessed on 17 July 2014)]. Available online: .
    1. Sandstrom B., Davidsson L., Cederblad A., Lonnerdal B. Oral iron, dietary ligands and zinc absorption. J. Nutr. 1985;115:411–414.
    1. Food and Nutrition Board Institute of Medicine . Dietary Reference Intakes for Vitamin A, Vitamin K, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium and Zinc. National Academy Press; Washington, DC, USA: 2001. pp. 442–501.
    1. Zlotkin S.H., Schauer C., Owusu Agyei S., Wolfson J., Tondeur M.C., Asante K.P., Newton S., Serfass R.E., Sharieff W. Demonstrating zinc and iron bioavailability from intrinsically labeled microencapsulated ferrous fumarate and zinc gluconate Sprinkles in young children. J. Nutr. 2006;136:920–925.
    1. Sheng X.Y., Hambidge K.M., Zhu X.X., Ni J.X., Bailey K.B., Gibson R.S., Krebs N.F. Major variables of zinc homeostasis in Chinese toddlers. Am. J. Clin. Nutr. 2006;84:389–394.
    1. Kodkany B.S., Bellad R.M., Mahantshetti N.S., Westcott J.E., Krebs N.F., Kemp J.F., Hambidge K.M. Biofortification of pearl millet with iron and zinc in a randomized controlled trial increases absorption of these minerals above physiologic requirements in young children. J. Nutr. 2013;143:1489–1493. doi: 10.3945/jn.113.176677.
    1. Brown K.H., Engle-Stone R., Krebs N.F., Peerson J.M. Dietary intervention strategies to enhance zinc nutrition: Promotion and support of breastfeeding for infants and young children. Food Nutr. Bull. 2009;30:144–171.
    1. Abrams S.A., Wen J., Stuff J.E. Absorption of calcium, zinc, and iron from breast milk by five- to seven-month-old infants. Pediatr. Res. 1997;41:384–390. doi: 10.1203/00006450-199703000-00014.
    1. Lindenmayer G.W., Stoltzfus R.J., Prendergast A.J. Interactions between zinc deficiency and environmental enteropathy in developing countries. Adv. Nutr. 2014;5:1–6. doi: 10.3945/an.113.004838.
    1. Manary M.J., Abrams S.A., Griffin I.J., Quimper M.M., Shulman R.J., Hamzo M.G., Chen Z.S., Maleta K., Manary M.J. Perturbed zinc homeostasis in rural 3–5-year-old Malawian children is associated with abnormalities in intestinal permeability attributed to tropical enteropathy. Pediatr. Res. 2010;67:671–675. doi: 10.1203/PDR.0b013e3181da44dc.
    1. Hambidge K.M., Miller L.V., Westcott J.E., Sheng X., Krebs N.F. Zinc bioavailability and homeostasis. Am. J. Clin. Nutr. 2010;91:1478–1483. doi: 10.3945/ajcn.2010.28674I.
    1. Hambidge K.M., Krebs N.F., Westcott J.E., Miller L.V. Changes in zinc absorption during development. J. Pediatr. 2006;149:64–68. doi: 10.1016/j.jpeds.2006.06.054.
    1. Miller L.V., Hambidge K.M., Westcott J.L., Krebs N.F. (University of Colorado School of Medicine, Aurora, CO, USA). 2014 Unpublished work.
    1. Prentice A.M., Doherty C.P., Abrams S.A., Cox S.E., Atkinson S.H., Verhoef H., Armitage A.E., Drakesmith H. Hepcidin is the major predictor of erythrocyte iron incorporation in anemic African children. Blood. 2012;119:1922–1928. doi: 10.1182/blood-2011-11-391219.
    1. Pasricha S.R., Hayes E., Kalumba K., Biggs B. Effect of daily iron supplementation on health in children aged 4–23 months: A systematic review and meta-analysis of randomised controlled trials. Lancet Glob. Health. 2013;1:77–86. doi: 10.1016/S2214-109X(13)70046-9.
    1. Soofi S., Cousens S., Iqbal S.P., Akhund T., Khan J., Ahmed I., Zaidi A.K., Bhutta Z.A. Effect of provision of daily zinc and iron with several micronutrients on growth and morbidity among young children in Pakistan: A cluster-randomised trial. Lancet. 2013;382:29–40. doi: 10.1016/S0140-6736(13)60437-7.
    1. Krebs N.F., Sherlock L.G., Westcott J., Culbertson D., Hambidge K.M., Feazel L.M., Robertson C.E., Frank D.N. Effects of different complementary feeding regimens on iron status and enteric microbiota in breastfed infants. J. Pediatr. 2013;163:416–423. doi: 10.1016/j.jpeds.2013.01.024.
    1. Zimmermann M.B., Chassard C., Rohner F., NʼGoran E.K., Nindjin C., Dostal A., Utzinger J., Ghattas H., Lacroix C., Hurrell R.F. The effects of iron fortification on the gut microbiota in African children: A randomized controlled trial in Cote dʼIvoire. Am. J. Clin. Nutr. 2010;92:1406–1415. doi: 10.3945/ajcn.110.004564.
    1. Jaeggi T., Moretti D., Kvalsvig J., Holding P.A., Tjalsma H., Kortman G.A., Joosten I., Mwangi A., Zimmermann M.B. Iron status and systemic inflammation, but not gut inflammation, strongly predict gender-specific concentrations of serum hepcidin in infants in rural Kenya. PLoS One. 2013;8 doi: 10.1371/journal.pone.0057513.
    1. Jaeggi T., Kortman G.A., Moretti D., Chassard C., Holding P., Dostal A., Boekhorst J., Timmerman H.M., Swinkels D.W., Tjalsma H., et al. Iron fortification adversely affects the gut microbiome, increases pathogen abundance and induces intestinal inflammation in Kenyan infants. Gut. 2014;63 doi: 10.1136/gutjnl-2014-307720.
    1. World Health Organization . Trace Elements in Human Nutrition and Health. World Health Organization; Geneva, Switzerland: 1996. pp. 72–104.
    1. International Zinc Nutrition Consultative Group . Overview of Zinc Nutrition. International Nutrition Foundation for United Nations University Press; Boston, MA, USA: 2004.

Source: PubMed

3
S'abonner