An Overview of Heart Rate Variability Metrics and Norms

Fred Shaffer, J P Ginsberg, Fred Shaffer, J P Ginsberg

Abstract

Healthy biological systems exhibit complex patterns of variability that can be described by mathematical chaos. Heart rate variability (HRV) consists of changes in the time intervals between consecutive heartbeats called interbeat intervals (IBIs). A healthy heart is not a metronome. The oscillations of a healthy heart are complex and constantly changing, which allow the cardiovascular system to rapidly adjust to sudden physical and psychological challenges to homeostasis. This article briefly reviews current perspectives on the mechanisms that generate 24 h, short-term (~5 min), and ultra-short-term (<5 min) HRV, the importance of HRV, and its implications for health and performance. The authors provide an overview of widely-used HRV time-domain, frequency-domain, and non-linear metrics. Time-domain indices quantify the amount of HRV observed during monitoring periods that may range from ~2 min to 24 h. Frequency-domain values calculate the absolute or relative amount of signal energy within component bands. Non-linear measurements quantify the unpredictability and complexity of a series of IBIs. The authors survey published normative values for clinical, healthy, and optimal performance populations. They stress the importance of measurement context, including recording period length, subject age, and sex, on baseline HRV values. They caution that 24 h, short-term, and ultra-short-term normative values are not interchangeable. They encourage professionals to supplement published norms with findings from their own specialized populations. Finally, the authors provide an overview of HRV assessment strategies for clinical and optimal performance interventions.

Keywords: biofeedback; complexity; heart rate variability; non-linear measurements; normative values; optimal performance.

References

    1. McCraty R, Shaffer F. Heart rate variability: new perspectives on physiological mechanisms, assessment of self-regulatory capacity, and health risk. Glob Adv Health Med (2015) 4:46–61.10.7453/gahmj.2014.073
    1. Gevirtz RN, Lehrer PM, Schwartz MS. Cardiorespiratory biofeedback. 4th ed In: Schwartz MS, Andrasik F, editors. Biofeedback: A Practitioner’s Guide. New York: The Guilford Press; (2016). p. 196–213.
    1. Goldberger AL. Is the normal heartbeat chaotic or homeostatic? News Physiol Sci (1991) 6:87–91.
    1. Beckers F, Verheyden B, Aubert AE. Aging and nonlinear heart rate control in a healthy population. Am J Physiol Heart Circ Physiol (2006) 290:H2560–70.10.1152/ajpheart.00903.2005
    1. Vaillancourt DE, Newell KM. Changing complexity in human behavior and physiology through aging and disease. Neurobiol Aging (2002) 23:1–11.10.1016/S0197-4580(01)00247-0
    1. Stein PK, Domitrovich PP, Hui N, Rautaharju P, Gottfdiener J. J Cardiovasc Electrophysiol (2005) 16:954–9.10.1111/j.1540-8167.2005.40788.x
    1. Lane RD, Reiman EM, Ahem GL, Thayer JF. Activity in medial prefrontal cortex correlates with vagal component of heart rate variability during emotion. Brain Cognit (2001) 47:97–100.
    1. Tarvainen MP, Lipponen J, Niskanen JP, Ranta-Aho P. Kubios HRV Version 3 – User’s Guide. Kuopio: University of Eastern Finland; (2017).
    1. Kuusela T. Methodological aspects of heart rate variability analysis. In: Kamath MV, Watanabe MA, Upton ARM, editors. Heart Rate Variability (HRV) Signal Analysis. Boca Raton, FL: CRC Press; (2013). p. 9–42.
    1. Kleiger RE, Stein PK, Bigger JT, Jr. Heart rate variability: measurement and clinical utility. Ann Noninvasive Electrocardiol (2005) 10:88–101.10.1111/j.1542-474X.2005.10101.x
    1. Task Force Report. Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation (1996) 93:1043–65.10.1161/01.CIR.93.5.1043
    1. Shaffer F, McCraty R, Zerr CL. A healthy heart is not a metronome: an integrative review of the heart’s anatomy and heart rate variability. Front Psychol (2014) 5:1040.10.3389/fpsyg.2014.01040
    1. Stein PK, Reddy A. Non-linear heart rate variability and risk stratification in cardiovascular disease. Indian Pacing Electrophysiol J (2005) 5:210–20.
    1. Karemaker JM. Counterpoint: respiratory sinus arrhythmia is due to the baroreflex mechanism. J Appl Psychol (2009) 106:1742–3.10.1152/japplphysiol.91107.2008a
    1. Tortora GJ, Derrickson BH. Principles of Anatomy and Physiology. 15th ed New York: John Wiley and Sons, Inc; (2017).
    1. Olshansky B, Sabbah HN, Hauptman PJ, Colucci WS. Parasympathetic nervous system and heart failure: pathophysiology and potential implications for therapy. Circulation (2008) 118:863–71.10.1161/CIRCULATIONAHA.107.760405
    1. Nunan D, Sandercock GRH, Brodie DA. A quantitative systematic review of normal values for short-term heart rate variability in healthy adults. Pacing Clin Electrophysiol (2010) 33:1407–17.10.1111/j.1540-8159.2010.02841.x
    1. Gellhorn E. Autonomic Imbalance and the Hypthalamus: Implications for Physiology, Medicine, Psychology, and Neuropsychiatry. London: Oxford University Press; (1957).
    1. Nada T, Nomura M, Iga A, Kawaguchi R, Ochi Y, Saito K, et al. Autonomic nervous function in patients with peptic ulcer studied by spectral analysis of heart rate variability. J Med (2001) 32:333–47.
    1. Ballard RD. Sleep, respiratory physiology, and nocturnal asthma. Chronobiol Int (1999) 5:565–80.10.3109/07420529908998729
    1. Billman GE. The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance. Front Physiol (2013) 4:26.10.3389/fphys.2013.00026
    1. Billman GE, Huikuri HV, Sacha J, Trimmel K. An introduction to heart rate variability: methodological considerations and clinical applications. Front Physiol (2015) 6:55.10.3389/fphys.2015.00055
    1. Eckberg DL, Sleight P. Human Baroreflexes in Health and Disease. Oxford: Clarendon Press; (1992).
    1. Gevirtz RN, Lehrer P. Resonant frequency heart rate biofeedback. 3rd ed In: Schwartz MS, Andrasik F, editors. Biofeedback: A Practitioner’s Guide. New York: The Guilford Press; (2003). p. 245–50.
    1. Lehrer PM, Vaschillo E. The future of heart rate variability biofeedback. Biofeedback (2008) 36:11–4.
    1. Vaschillo E, Lehrer P, Rishe N, Konstantinov M. Heart rate variability biofeedback as a method for assessing baroreflex function: a preliminary study of resonance in the cardiovascular system. Appl Psychophysiol Biofeedback (2002) 27:1–27.10.1023/A:1014587304314
    1. Bigger JT, Jr, Albrecht P, Steinman RC, Rolnitzky LM, Fleiss JL, Cohen RJ. Comparison of time- and frequency domain-based measures of cardiac parasympathetic activity in Holter recordings after myocardial infarction. Am J Cardiol (1989) 64:536–8.10.1016/0002-9149(89)90436-0
    1. Fei L, Copie X, Malik M, Camm AJ. Short- and long-term assessment of heart rate variability for risk stratification after acute myocardial infarction. Am J Cardiol (1996) 77:681–4.10.1016/S0002-9149(97)89199-0
    1. Nolan J, Batin PD, Andrews R, Lindsay SJ, Brooksby P, Mullen M, et al. Prospective study of heart rate variability and mortality in chronic heart failure: results of the United Kingdom heart failure evaluation and assessment of risk trial (UK-heart). Circulation (1998) 98:1510–6.10.1161/01.CIR.98.15.1510
    1. Salahuddin L, Cho J, Jeong MG, Kim D. Ultra short term analysis of heart rate variability for monitoring mental stress in mobile settings. Conf Proc IEEE Eng Med Biol Soc (2007) 2007:4656–9.
    1. Baek HJ, Cho CH, Cho J, Woo JM. Reliability of ultra-short-term analysis as a surrogate of standard 5-min analysis of heart rate variability. Telemed J E Health (2015) 21:404–14.10.1089/tmj.2014.0104
    1. Umetani K, Singer DH, McCraty R, Atkinson M. Twenty-four hour time domain heart rate variability and heart rate: relations to age and gender over nine decades. J Am Coll Cardiol (1998) 31:593–601.10.1016/S0735-1097(97)00554-8
    1. Grant CC, van Rensburg DC, Strydom N, Viljoen M. Importance of tachogram length and period of recording during noninvasive investigation of the autonomic nervous system. Ann Noninvasive Electrocardiol (2011) 16:131–9.10.1111/j.1542-474X.2011.00422.x
    1. Kleiger RE, Miller JP, Bigger JT, Jr, Moss AJ. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol (1987) 59:256–62.10.1016/0002-9149(87)90795-8
    1. Otzenberger H, Gronfier C, Simon C, Charloux A, Ehrhart J, Piquard F, et al. Dynamic heart rate variability: a tool for exploring sympathovagal balance continuously during sleep in men. Am J Physiol (1998) 275(3 Pt 2):H946–50.
    1. Esco MR, Flatt AA. Ultra-short-term heart rate variability indexes at rest and post-exercise in athletes: evaluating the agreement with accepted recommendations. J Sports Sci Med (2014) 13:535–41.
    1. Ciccone AB, Siedlik JA, Wecht JM, Deckert JA, Nguyen ND, Weir JP. Reminder: RMSSD and SD1 are identical heart rate variability metrics. Muscle Nerve (2017).10.1002/mus.25573
    1. Burr RL, Motzer SA, Chen W, Cowan MJ, Shulman RJ, Heitkemper MM. Heart rate variability and 24-hour minimum heart rate. Biol Res Nurs (2006) 7(4):256–67.10.1177/1099800405285268
    1. Schipke JD, Arnold G, Pelzer M. Effect of respiration rate on short-term heart rate variability. J Clin Basic Cardiol (1999) 2:92–5.
    1. Pentillä J, Helminen A, Jarti T, Kuusela T, Huikuri HV, Tulppo MP, et al. Time domain, geometrical and frequency domain analysis of cardiac vagal outflow: effects of various respiratory patterns. Clin Phys (2001) 21:365–76.10.1046/j.1365-2281.2001.00337.x
    1. Hill LK, Siebenbrock A. Are all measures created equal? Heart rate variability and respiration – biomed 2009. Biomed Sci Instrum (2009) 45:71–6.
    1. DeGiorgio CM, Miller P, Meymandi S, Chin A, Epps J, Gordon S, et al. RMSSD, a measure of vagus-mediated heart rate variability, is associated with risk factors for SUDEP: the SUDEP-7 inventory. Epilepsy Behav (2010) 19(78–81):78–81.10.1016/j.yebeh.2010.06.011
    1. Jovic A, Bogunovic N. Electrocardiogram analysis using a combination of statistical, geometric, and nonlinear heart rate variability features. Artif Intell Med (2011) 51:175–86.10.1016/j.artmed.2010.09.005
    1. Bigger JT, Jr, Fleiss JL, Steinman RC, Rolnitzky LM, Kleiger RE, Rottman JN. Frequency domain measures of heart period variability and mortality after myocardial infarction. Circulation (1992) 85:164–71.10.1161/01.CIR.85.1.164
    1. Bonaduce D, Petretta M, Morgano G, Villari B, Bianchi V, Conforti G, et al. Left ventricular remodelling in the year after myocardial infarction: an echocardiographic, haemodynamic, and radionuclide angiographic study. Coron Artery Dis (1994) 5:155–62.10.1097/00019501-199402000-00009
    1. Stampfer HG. The relationship between psychiatric illness and the circadian pattern of heart rate. Aust NZ J Psychiatry (1998) 32:187–98.10.3109/00048679809062728
    1. Stampfer HG, Dimmitt SB. Variations in circadian heart rate in psychiatric disorders: theoretical and practical implications. Chronophysiol Ther (2013) 3:41–50.10.2147/CPT.S43623
    1. Tsuji H, Venditti FJ, Jr, Manders ES, Evans JC, Larson MG, Feldman CL, et al. Reduced heart rate variability and mortality risk in an elderly cohort. The Framingham Heart Study. Circulation (1994) 90:878–83.10.1161/01.CIR.90.2.878
    1. Tsuji H, Larson MG, Venditti FJ, Jr, Manders ES, Evans JC, Feldman CL, et al. Impact of reduced heart rate variability on risk for cardiac events. The Framingham Heart Study. Circulation (1996) 94:2850–5.10.1161/01.CIR.94.11.2850
    1. Hadase M, Azuma A, Zen K, Asada S, Kawasaki T, Kamitani T, et al. Very low frequency power of heart rate variability is a powerful predictor of clinical prognosis in patients with congestive heart failure. Circ J (2004) 68:343–7.10.1253/circj.68.343
    1. Schmidt H, Müller-Werdan U, Hoffmann T, Francis DP, Piepoli MF, Rauchhaus M, et al. Autonomic dysfunction predicts mortality in patients with multiple organ dysfunction syndrome of different age groups. Crit Care Med (2005) 33:1994–2002.10.1097/01.CCM.0000178181.91250.99
    1. Shah AJ, Lampert R, Goldberg J, Veledar E, Bremner JD, Vaccarino V. Posttraumatic stress disorder and impaired autonomic modulation in male twins. Biol Psychiatry (2013) 73:1103–10.10.1016/j.biopsych.2013.01.019
    1. Carney RM, Freedland KE, Stein PK, Miller GE, Steinmeyer B, Rich MW, et al. Heart rate variability and markers of inflammation and coagulation in depressed patients with coronary heart disease. J Psychosom Res (2007) 62:463–7.10.1016/j.jpsychores.2006.12.004
    1. Lampert R, Bremner JD, Su S, Miller A, Lee F, Cheema F, et al. Decreased heart rate variability is associated with higher levels of inflammation in middle-aged men. Am Heart J (2008) 156:759.e1–7.10.1016/j.ahj.2008.07.009
    1. Theorell T, Liljeholm-Johansson Y, Björk H, Ericson M. Saliva testosterone and heart rate variability in the professional symphony orchestra after “public faintings” of an orchestra member. Psychoneuroendocrinology (2007) 32:660–8.10.1016/j.psyneuen.2007.04.006
    1. Bernardi L, Valle F, Coco M, Calciati A, Sleight P. Physical activity influences heart rate variability and very-low-frequency components in Holter electrocardiograms. Cardiovasc Res (1996) 32:234–7.10.1016/0008-6363(96)00081-8
    1. Akselrod S, Gordon D, Ubel FA, Shannon DC, Barger AC, Cohen RJ. Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science (1981) 213:220–2.10.1126/science.6166045
    1. Claydon VE, Krassioukov AV. Clinical correlates of frequency analyses of cardiovascular control after spinal cord injury. Am J Physiol Heart Circ Physiol (2008) 294:H668–78.10.1152/ajpheart.00869.2007
    1. Taylor JA, Carr DL, Myers CW, Eckberg DL. Mechanisms underlying very-low-frequency RR-interval oscillations in humans. Circulation (1998) 98:547–55.10.1161/01.CIR.98.6.547
    1. Berntson GG, Bigger JT, Jr, Eckberg DL, Grossman P, Kaufmann PG, Malik M, et al. Heart rate variability: origins, methods, and interpretive caveats. Psychophysiology (1997) 34:623–48.10.1111/j.1469-8986.1997.tb02140.x
    1. Armour JA. Neurocardiology: Anatomical and Functional Principles. Boulder Creek, CA: Institute of HeartMath; (2003).
    1. Kember GC, Fenton GA, Collier K, Armour JA. Aperiodic stochastic resonance in a hysteretic population of cardiac neurons. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics (2000) 61:1816–24.10.1103/PhysRevE.61.1816
    1. Kember GC, Fenton GA, Armour JA, Kalyaniwalla N. Competition model for aperiodic stochastic resonance in a Fitzhugh-Nagumo model of cardiac sensory neurons. Phys Rev E Stat Nonlin Soft Matter Phys (2001) 63(4 Pt 1):041911.10.1103/PhysRevE.63.041911
    1. Berntson GG, Cacioppo JT, Grossman P. Wither vagal tone. Biol Psychol (2007) 74:295–300.10.1016/j.biopsycho.2006.08.006
    1. Lehrer PM. Biofeedback training to increase heart rate variability. In: Lehrer PM, Woolfolk RL, Sime WE, editors. Principles and Practice of Stress Management. New York, NY: The Guilford Press; (2007). p. 227–48.
    1. Reyes del Paso GA, Langewitz W, Mulder LJM, Van Roon A, Duschek S. The utility of low frequency heart rate variability as an index of sympathetic cardiac tone: a review with emphasis on a reanalysis of previous studies. Psychophysiology (2013) 50:477–87.10.1111/psyp.12027
    1. Goldstein DS, Bentho O, Park MY, Sharabi Y. Low-frequency power of heart rate variability is not a measure of cardiac sympathetic tone but may be a measure of modulation of cardiac autonomic outflows by baroreflexes. Exp Physiol (2011) 96:1255–61.10.1113/expphysiol.2010.056259
    1. Ahmed AK, Harness JB, Mearns AJ. Respiratory control of heart rate. Eur J Appl Physiol (1982) 50:95–104.10.1007/BF00952248
    1. Lehrer PM, Vaschillo E, Vaschillo B, Lu SE, Eckberg DL, Edelberg R, et al. Heart rate variability biofeedback increases baroreflex gain and peak expiratory flow. Psychosom Med (2003) 65:796–805.10.1097/01.PSY.0000089200.81962.19
    1. Tiller WA, McCraty R, Atkinson M. Cardiac coherence: a new, noninvasive measure of autonomic nervous system order. Altern Ther Health Med (1996) 2:52–65.
    1. Brown TE, Beightol LA, Koh J, Eckberg DL. Important influence of respiration on human R-R interval power spectra is largely ignored. J Appl Physiol (1985) (1993) 75:2310–7.
    1. Quintana DS, Elstad M, Kaufmann T, Brandt CL, Haatveit B, Haram M, et al. Resting-state high-frequency heart rate variability is related to respiratory frequency in individuals with severe mental illness but not healthy controls. Sci Rep (2016) 6:37212.10.1038/srep37212
    1. Grossman P, Taylor EW. Toward understanding respiratory sinus arrhythmia: relations to cardiac vagal tone, evolution and biobehavioral functions. Biol Psychol (2007) 74:263–85.10.1016/j.biopsycho.2005.11.014
    1. Eckberg DL, Eckberg MJ. Human sinus node responses to repetitive, ramped carotid baroreceptor stimuli. Am J Physiol (1982) 242:H638–44.
    1. Thayer JF, Yamamoto SS, Brosschot JF. The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. Int J Cardiol (2010) 141:122–31.10.1016/j.ijcard.2009.09.543
    1. Grossman P. Comment on heart rate variability and cardiac vagal tone in psychophysiological research – recommendations for experiment planning, data analysis, and data reporting. Front Psychol (2017) 8:213.10.3389/fpsyg.2017.00213
    1. Egizio VB, Eddy M, Robinson M, Jennings JR. Efficient and cost-effective estimation of the influence of respiratory variables on respiratory sinus arrhythmia. Psychophysiology (2011) 48:488–94.10.1111/j.1469-8986.2010.01086.x
    1. Pagani M, Lombardi F, Guzzetti S, Sandrone G, Rimoldi O, Malfatto G, et al. Power spectral density of heart rate variability as an index of sympatho-vagal interaction in normal and hypertensive subjects. J Hypertens Suppl (1984) 2:S383–5.
    1. Pagani M, Lombardi F, Guzzetti S, Rimoldi O, Furlan RA, Pizzinelli P, et al. Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ Res (1986) 59:178–93.10.1161/01.RES.59.2.178
    1. Eckberg DL. Human sinus arrhythmia as an index of vagal outflow. J Appl Physiol Respir Environ Exerc Physiol (1983) 54:961–6.
    1. Schrödinger E. What is Life? The Physical Aspect of the Living Cell. Cambridge: Cambridge University Press; (1944).
    1. Stein PK, Reddy A. Non-linear heart rate variability and risk stratification in cardiovascular disease. Indian Pacing Electrophysiol J (2005) 5:210–20.
    1. Behbahani S, Dabanloo NJ, Nasrabadi AM. Ictal heart rate variability assessment with focus on secondary generalized and complex partial epileptic seizures. Adv Biores (2012) 4:50–8.
    1. Zerr C, Kane A, Vodopest T, Allen J, Hannan J, Cangelosi A, et al. The nonlinear index SD1 predicts diastolic blood pressure and HRV time and frequency domain measurements in healthy undergraduates [Abstract]. Appl Psychophysiol Biofeedback (2015) 40:134.10.1007/s10484-015-9282-0
    1. Zerr C, Kane A, Vodopest T, Allen J, Hannan J, Fabbri M, et al. Does inhalation-to-exhalation ratio matter in heart rate variability biofeedback? [Abstract]. Appl Psychophysiol Biofeedback (2015) 40:135.10.1007/s10484-015-9282-0
    1. Brennan M, Palaniswami M, Kamen P. Do existing measures of Poincaré plot geometry reflect nonlinear features of heart rate variability? IEEE Trans Biomed Eng (2001) 48:1342–7.10.1109/10.959330
    1. Brennan M, Palaniswami M, Kamen P. Poincaré plot interpretation using a physiological model of HRV based on a network of oscillators. Am J Physiol Heart Circ Physiol (2002) 283:H1873–86.10.1152/ajpheart.00405.2000
    1. Tulppo MP, Mäkikallio TH, Takala TE, Seppänen T, Huikuri HV. Quantitative beat-to-beat analysis of heart rate dynamics during exercise. Am J Physiol (1996) 271:H244–52.
    1. Tulppo MP, Mäkikallio TH, Seppänen T, Laukkanen RT, Huikuri HV. Vagal modulation of heart rate during exercise: effects of age and physical fitness. Am J Physiol (1998) 274(2 Pt 2):H424–9.
    1. Guzik P, Piskorski J, Krauze T, Schneider R, Wesseling KH, Wykretowicz A, et al. Correlations between the Poincaré plot and conventional heart rate variability parameters assessed during paced breathing. J Physiol Sci (2007) 57:63–71.10.2170/physiolsci.RP005506
    1. Beckers F, Ramaekers D, Aubert AE. Approximate entropy of heart rate variability: validation of methods and application in heart failure. Cardiovasc Eng (2001) 1:177–82.10.1023/A:1015212328405
    1. Lippman N, Stein KM, Lerman BB. Comparison of methods for removal of ectopy in measurement of heart rate variability. Am J Physiol (1994) 267(1 Pt 2):H411–8.
    1. Laborde S, Mosley E, Thayer JF. Heart rate variability and cardiac vagal tone in psychophysiological research – recommendations for experiment planning, data analysis, and data reporting. Front Psychol (2017) 8:213.10.3389/fpsyg.2017.00213
    1. Saul JP, Albrecht P, Berger RD, Cohen RJ. Analysis of long-term heart rate variability: methods, 1/f scaling and implications. Comput Cardiol (1988) 14:419–22.
    1. Jeyhani V, Mahdiani S, Peltokangas M, Vehkaja A. Comparison of HRV parameters derived from photoplethysmography and electrocardiography signals. Conf Proc IEEE Eng Med Biol Soc (2015) 2015:5952–5.10.1109/EMBC.2015.7319747
    1. Merri M, Farden DC, Mottley JG, Titlebaum EL. Sampling frequency of the electrocardiogram for spectral analysis of the heart rate variability. IEEE Trans Biomed Eng (1990) 37:99–106.10.1109/10.43621
    1. Peltola MA. Role of editing of R-R intervals in the analysis of heart rate variability. Front Physiol (2012) 23:148.10.3389/fphys.2012.00148
    1. Berntson GG, Stowell JR. ECG artifacts and heart period variability: don’t miss a beat! Psychophysiology (1998) 35:127–32.10.1111/1469-8986.3510127
    1. Shaffer F, Combatalade DC. Don’t add or miss a beat: a guide to cleaner heart rate variability recordings. Biofeedback (2013) 41:121–30.10.5298/1081-5937-41.3.04
    1. Hirsch JA, Bishop B. Respiratory sinus arrhythmia in humans: how breathing pattern modulates heart rate. Am J Physiol (1981) 241:H620–9.
    1. Meehan Z, Muesenfechter N, Gravett N, Watson T, Smith A, Shearman S, et al. Breathing effort may not reduce heart rate variability when respiration rate is controlled [Abstract]. Appl Psychophysiol Biofeedback (Forthcoming).
    1. Meehan Z, Muesenfechter N, Gravett N, Watson T, Smith A, Shearman S, et al. A 1:2 inhalation-to-exhalation ratio does not increase heart rate variability during 6-bpm breathing [Abstract]. Appl Psychophysiol Biofeedback (Forthcoming).
    1. Lin IM, Tai L, Fan SY. Breathing at a rate of 5.5 breaths per minute with equal inhalation-to-exhalation ratio increases heart rate variability. Int J Psychophysiol (2014) 91:206–11.10.1016/j.ijpsycho.2013.12.006
    1. Bonnemeier H, Richardt G, Potratz J, Wiegand UK, Brandes A, Kluge N, et al. Circadian profile of cardiac autonomic nervous modulation in healthy subjects: differing effects of aging and gender on heart rate variability. J Cardiovasc Electrophysiol (2003) 14:791–9.10.1046/j.1540-8167.2003.03078.x
    1. Abhishekh HA, Nisarga P, Kisan R, Meghana A, Chandran S, Raju T, et al. Influence of age and gender on autonomic regulation of heart. J Clin Monit Comput (2013) 27:259–64.10.1007/s10877-012-9424-3
    1. Almeida-Santos MA, Barreto-Filho JA, Oliveira JL, Reis FP, da Cunha Oliveira CC, Sousa AC. Aging, heart rate variability and patterns of autonomic regulation of the heart. Arch Gerontol Geriatr (2016) 63:1–8.10.1016/j.archger.2015.11.011
    1. Koenig J, Thayer JF. Sex differences in healthy human heart rate variability: a meta-analysis. Neurosci Biobehav Rev (2016) 64:288–310.10.1016/j.neubiorev.2016.03.007
    1. Zhang D, Shen X, Qi X. Resting heart rate and all-cause and cardiovascular mortality in the general population: a meta-analysis. CMAJ (2016) 188:E53–63.10.1503/cmaj.150535
    1. De Meersman RE. Heart rate variability and aerobic fitness. Am Heart J (1993) 125:726–31.10.1016/0002-8703(93)90164-5
    1. Aubert AE, Seps B, Beckers F. Heart rate variability in athletes. Sports Med (2003) 33:889–919.10.2165/00007256-200333120-00003
    1. Bigger JT, Fleiss JL, Steinman RC, Rolnitzky LM, Schneider WJ, Stein PK. RR variability in healthy, middle-aged persons compared with patients with chronic coronary heart disease or recent acute myocardial infarction. Circulation (1995) 91:1936–43.10.1161/01.CIR.91.7.1936
    1. Agelink M, Boz C, Ullrich H, Andrich J. Relationship between major depression and heart rate variability. Clinical consequences and implications for antidepressive treatment. Psychiatry Res (2002) 113:139–49.10.1016/S0165-1781(02)00225-1
    1. Liao D, Cai J, Brancati FL, Folsom A, Barnes RW, Tyroler HA, et al. Association of vagal tone with serum insulin, glucose, and diabetes mellitus—The ARIC Study. Diabetes Res Clin Pract (1995) 30:211–21.10.1016/0168-8227(95)01190-0
    1. Appelhans BM, Luecken LJ. Heart rate variability and pain: associations of two interrelated homeostatic processes. Biol Psychol (2008) 77:174–82.10.1016/j.biopsycho.2007.10.004
    1. Haensel A, Mills PJ, Nelesen RA, Ziegler MG, Dimsdale JE. The relationship between heart rate variability and inflammatory markers in cardiovascular diseases. Psychoneuroendocrinology (2008) 33:1305–12.10.1016/j.psyneuen.2008.08.007
    1. Tobaldini E, Nobili L, Strada S, Casali KR, Braghiroli A, Montano N. Heart rate variability in normal and pathological sleep. Front Physiol (2013) 4:294.10.3389/fphys.2013.00294
    1. Conder RL, Conder AA. Heart rate variability interventions for concussion and rehabilitation. Front Psychol (2014) 5:890.10.3389/fpsyg.2014.00890
    1. Crosswell AD, Lockwood KG, Ganz PA, Bower JE. Low heart rate variability and cancer-related fatigue in breast cancer survivors. Psychoneuroendocrinology (2014) 45:58–66.10.1016/j.psyneuen.2014.03.011
    1. Shaffer F, Venner J. Heart rate variability anatomy and physiology. Biofeedback (2013) 41:13–25.10.5298/1081-5937-41.1.05
    1. Beauchaine TP, Thayer JF. Heart rate variability as a transdiagnostic biomarker of psychopathology. Int J Psychophysiol (2015) 98(2 Pt 2):338–50.10.1016/j.ijpsycho.2015.08.004
    1. Moss D, Shaffer F. The application of heart rate variability biofeedback to medical and mental health disorders. Biofeedback (2017) 45:2–8.10.5298/1081-5937-45.1.03
    1. Dekker JM, Schouten EG, Klootwijk P, Pool J, Swenne CA, Kromhout D. Heart rate variability from short electrocardiographic recordings predicts mortality from all causes in middle-aged and elderly men. The Zutphen Study. Am J Epidemiol (1997) 145:899–908.10.1093/oxfordjournals.aje.a009049
    1. Fagundes CP, Murray DM, Hwang BS, Gouin JP, Thayer JF, Sollers JJ, III, et al. Sympathetic and parasympathetic activity in cancer-related fatigue: more evidence for a physiological substrate in cancer survivors. Psychoneuroendocrinology (2011) 36:1137–47.10.1016/j.psyneuen.2011.02.005
    1. Zhou X, Ma Z, Zhang L, Zhou S, Wang J, Wang B, et al. Heart rate variability in the prediction of survival in patients with cancer: a systematic review and meta-analysis. J Psychosom Res (2016) 89:20–5.10.1016/j.jpsychores.2016.08.004
    1. Aeschbacher S, Schoen T, Dörig L, Kreuzmann R, Neuhauser C, Schmidt-Trucksäss A, et al. Heart rate, heart rate variability and inflammatory biomarkers among young and healthy adults. Ann Med (2017) 49:32–41.10.1080/07853890.2016.1226512
    1. Nussinovitch U, Elishkevitz KP, Nussinovitch M, Segev S, Volovitz B, Nussinovitch N. Reliability of ultra-short ECG indices for heart rate variability. Ann Noninvasive Electrocardiol (2011) 16:117–22.10.1111/j.1542-474X.2011.00417.x
    1. Munoz ML, van Roon A, Riese H, Oostenbroek E, Westrik I, de Geus EJ, et al. Validity of (ultra-) short heart rate variability recordings. J Epidemiol (1997) 145:696–706.
    1. Shaffer F, Shearman S, Meehan ZM. The promise of ultra-short-term (UST) heart rate variability measurements. Biofeedback (2016) 44:229–33.10.5298/1081-5937-44.3.09
    1. Munoz ML, van Roon A, Riese H, Thio C, Oostenbroek E, Westrik I, et al. Validity of (ultra-)short recordings for heart rate variability measurements. PLoS One (2015) 10:e0138921.10.1371/journal.pone.0138921
    1. McNames J, Aboy M. Reliability and accuracy of heart rate variability metrics versus ECG segment duration. Med Biol Eng Comput (2006) 44:747–56.10.1007/s11517-006-0097-2
    1. Bland JM, Altman DG. Measuring agreement in method comparison studies. Stat Methods Med Res (1999) 8:135–60.10.1177/096228029900800204
    1. Myles PS, Cui J. Using the Bland–Altman method to measure agreement with repeated measures. Br J Anaesth (2007) 99:309–11.10.1093/bja/aem214
    1. Berkoff DJ, Cairns CB, Sanchez LD, Moorman CT. Heart rate variability in elite American track-and-field athletes. J Strength Cond Res (2007) 21:227–31.10.1519/R-20135.1
    1. Seppälä S, Laitinen T, Tarvainen MP, Tompuri T, Veijalainen A, Savonen K, et al. Normal values for heart rate variability parameters in children 6-8 years of age: the PANIC Study. Clin Physiol Funct Imaging (2014) 34:290–6.10.1111/cpf.12096
    1. Kuo TB, Lin T, Yang CC, Li CL, Chen CF, Chou P. Effect of aging on gender differences in neural control of heart rate. Am J Physiol (1999) 277(6 Pt 2):H2233–9.
    1. Rennie KL, Hemingway H, Kumari M, Brunner E, Malik M, Marmot M. Effects of moderate and vigorous physical activity on heart rate variability in a British study of civil servants. Am J Epidemiol (2003) 158:135–43.10.1093/aje/kwg120
    1. Britton A, Shipley M, Malik M, Hnatkova K, Hemingway H, Marmot M. Changes in heart rate and heart rate variability over time in middle-aged men and women in the general population (from the Whitehall II Cohort Study). Am J Cardiol (2007) 100:524–7.10.1016/j.amjcard.2007.03.056
    1. Drury RL, Ginsberg JP. Unpacking health as a complex adaptive system: new and emerging technologies for integrative ambulatory autonomic self-regulation is a catalyst in the synergy of data mining, cloud computing, machine learning and biosensors. Front Res Topic (2017) (in press).
    1. Bonnemeier H, Richardt G, Potratz J, Wiegand UK, Brandes A, Kluge N, et al. Circadian profile of cardiac autonomic nervous modulation in healthy subjects: differing effects of aging and gender on heart rate variability. J Cardiovasc Electrophysiol (2003) 14:791–9.10.1046/j.1540-8167.2003.03078.x
    1. Aeschbacher S, Schoen T, Dörig L, Kreuzmann R, Neuhauser C, Schmidt-Trucksäss A, et al. Heart rate, heart rate variability and inflammatory biomarkers among young and healthy adults. Ann Med (2017) 49:32–41.10.1080/07853890.2016.1226512
    1. Lehrer PM, Gevirtz R. Heart rate variability: how and why does it work? Front Psychol (2014) 5:756.10.3389/fpsyg.2014.00756
    1. Moss D, Shaffer F. Foundations of Heart Rate Variability Biofeedback: A Book of Readings. Wheat Ridge, CO: Association for Applied Psychophysiology and Biofeedback; (2016).
    1. Tan G, Shaffer F, Lyle R, Teo I. Evidence-Based Practice in Biofeedback and Neurofeedback. 3rd ed Wheat Ridge, CO: Association for Applied Psychophysiology and Biofeedback; (2016).
    1. Zerr C, Kane A, Vodopest T, Allen J, Fluty E, Gregory J, et al. HRV biofeedback training raises temperature and lowers skin conductance [Abstract]. Appl Psychophysiol Biofeedback (2014) 39:299.10.1007/s10484-014-92549

Source: PubMed

3
S'abonner