Asthmatic Eosinophils Promote Contractility and Migration of Airway Smooth Muscle Cells and Pulmonary Fibroblasts In Vitro

Ieva Janulaityte, Andrius Januskevicius, Virginija Kalinauskaite-Zukauske, Jolita Palacionyte, Kestutis Malakauskas, Ieva Janulaityte, Andrius Januskevicius, Virginija Kalinauskaite-Zukauske, Jolita Palacionyte, Kestutis Malakauskas

Abstract

Enhanced contractility and migration of airway smooth muscle cells (ASMC) and pulmonary fibroblasts (PF) are part of airway remodeling in asthma. Eosinophils are the central inflammatory cells that participate in airway inflammation. However, the role of asthmatic eosinophils in ASMC and PF contractility, migration, and differentiation to contractile phenotype has not yet been precisely described. A total of 38 individuals were included in this study: 13 steroid-free non-severe allergic asthma (AA) patients, 11 severe non-allergic eosinophilic asthma (SNEA) patients, and 14 healthy subjects (HS). For AA patients and HS groups, a bronchial allergen challenge with D. pteronyssinus was performed. Individual combined cell cultures were prepared from isolated peripheral blood eosinophils and immortalized ASMC or commercial PF cell lines separately. The migration of ASMC and PF was evaluated using wound healing assay and contractility using collagen gel assay. Gene expression of contractile apparatus proteins, COL1A1, COL5A1, and FN, in ASMC and PF was evaluated using qRT-PCR. We found that contractility and migration of ASMC and PF significantly increased after incubation with asthmatic eosinophils compared to HS eosinophils, p < 0.05, and SNEA eosinophils demonstrated the highest effect on contractility of ASMC and migration of both cell lines, p < 0.05. AA and SNEA eosinophils significantly increased gene expression of contractile apparatus proteins, COL1A1 and FN, in both cell lines, p < 0.05. Furthermore, the allergen-activated AA eosinophils significantly increased the contractility of ASMC, and migration and gene expression in ASMC and PF, p < 0.05. Thus, asthmatic eosinophils change ASMC and PF behavior by increasing their contractility and migration, contributing to airway remodeling.

Trial registration: ClinicalTrials.gov NCT03388359.

Keywords: airway smooth muscle cell; asthma; contractility; eosinophil; extracellular matrix; migration; pathogenesis; pulmonary fibroblast.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Flowchart of the study design. (A)—Recruitment of study subjects, clinical examination of allergic asthma patients and healthy subjects. (B)—Experimental workflow. AA—allergic asthma; ASMC—airway smooth muscle cells; HS—healthy subjects; PF—pulmonary fibroblasts; qRT-PCR—quantitative reverse transcription polymerase chain reaction.
Figure 2
Figure 2
The detailed experimental plan. ASMC—airway smooth muscle cells; PF—pulmonary fibroblast.
Figure 3
Figure 3
Collagen gel assay. (A)—ASMC after 24 h incubation with HS eosinophils; (B)—ASMC after 24 h incubation with SNEA patients’ eosinophils; (C)—ASMC after 24 h incubation with AA patients’ eosinophils; (D)—collagen gel contraction percentage from control ASMC after 1, 2, and 3 h incubation with subjects’ eosinophils, AA n = 3, SNEA n = 3, HS n = 3; (E)—collagen gel contraction percentage from control PF cells after 1, 2, and 3 h incubation with subjects’ eosinophils, AA n = 3, SNEA n = 3, HS n = 3. AA—allergic asthma patient; ASMC—airway smooth muscle cells; HS—healthy subject; PF—pulmonary fibroblast; SNEA—severe non-allergic eosinophilic asthma patients. Data presented as mean ± SEM.
Figure 3
Figure 3
Collagen gel assay. (A)—ASMC after 24 h incubation with HS eosinophils; (B)—ASMC after 24 h incubation with SNEA patients’ eosinophils; (C)—ASMC after 24 h incubation with AA patients’ eosinophils; (D)—collagen gel contraction percentage from control ASMC after 1, 2, and 3 h incubation with subjects’ eosinophils, AA n = 3, SNEA n = 3, HS n = 3; (E)—collagen gel contraction percentage from control PF cells after 1, 2, and 3 h incubation with subjects’ eosinophils, AA n = 3, SNEA n = 3, HS n = 3. AA—allergic asthma patient; ASMC—airway smooth muscle cells; HS—healthy subject; PF—pulmonary fibroblast; SNEA—severe non-allergic eosinophilic asthma patients. Data presented as mean ± SEM.
Figure 4
Figure 4
Wound healing assay. (A)—ASMC migration after 0 h, 24 h, 48 h, 72 h incubation with eosinophils; (B)—PF migration after 0 h, 24 h, 48 h, 72 h incubation with eosinophils. AA n = 5, SNEA n = 5, HS n = 5. Presented as a cell-covered area, as a percentage of control cells. AA—allergic asthma; ASMC—airway smooth muscle cells; HS—healthy subject; PF—pulmonary fibroblast; SNEA—severe non-allergic eosinophilic asthma patients. Data presented as mean ± SEM.
Figure 5
Figure 5
(A)—The effect of subjects’ eosinophils and/or serum on the ASMC-induced collagen gel disk shrinkage; (B)—The effect of subjects’ eosinophils and/or serum on the PF-induced collagen gel disk shrinkage. Data presented as percentage of control cells that were not incubated with eosinophils, as mean ± SEM. Added blood serum of each investigated subject to individual combined cultures: 2% v/v. AA—allergic asthma; ASMC—airway smooth muscle cells; HS—healthy subject; PF—pulmonary fibroblast; SNEA—severe non-allergic eosinophilic asthma. α p < 0.05 compared to the only serum effect; β p < 0.05 compared to eosinophil and serum combined effect. A—* p < 0.001 compared to control ASMC; B—* p < 0.01 compared to control PF. AA n = 12; SNEA n = 11; HS n = 10. Statistical analysis between investigated groups—Kruskal-Wallis test and post hoc Mann–Whitney two-sided U-test (independent data); within one study group—Friedman test for multiple comparison within the group and the post hoc Wilcoxon matched-pairs signed-rank two-sided test (dependent data). Significant differences were found in the eosinophil effect on ASMC and PF–induced collagen gel shrinkage between investigated groups by Kruskal-Wallis test, respectively, χ2 = 21.49, df = 2, p < 0.0001 and χ2 = 16.55, df = 2, p = 0.0003. Significant differences of ASMC-induced collagen gel shrinkage were found in AA and SNEA groups by Friedman test, respectively χ2 = 15.24, df = 2, p < 0.0001; χ2 = 11.89, df = 2, p = 0.0011. Significant differences of PF-induced collagen gel shrinkage were found in AA and HS groups by Friedman test, respectively, χ2 = 12.51, df = 2, p = 0.0007; and χ2 = 16.76; df = 2, p = 0.0002. Lines connect comparison groups with a p-value denoting the significant difference and pair-wise comparisons.
Figure 6
Figure 6
(A)–Migration of ASMC after incubation with eosinophils and/or subjects’ serum. (B)–Migration of PF after incubation with eosinophils and/or subjects’ serum. Data presented as cell covered area, as a percentage of control ASMC. Added blood serum of each investigated subject to individual combined cultures: 2% v/v. AA n = 13; SNEA n = 11; HS n = 14. AA—allergic asthma; ASMC—airway smooth muscle cells; HS—healthy subject; PF—pulmonary fibroblast; SNEA—severe non-allergic eosinophilic asthma. α p < 0.05 compared to the only serum effect; β p < 0.05 compared to the eosinophil and serum combined effect; A—* p < 0.001 compared to control ASMC, B—* p < 0.001 compared to control PF. Statistical analysis between investigated groups—Kruskal-Wallis test and post hoc Mann–Whitney two-sided U-test (independent data); within one study group—Friedman test for multiple comparison within the group and the post hoc Wilcoxon matched-pairs signed-rank two-sided test (dependent data). Significant differences were found in the eosinophil effect on ASMC and PF migration between investigated groups by Kruskal-Wallis test, respectively, χ2 = 22.33, df = 2, p < 0.0001 and χ2 = 25.93, df = 2, p < 0.0001. Significant differences of ASMC migration were found in AA and SNEA groups by Friedman test, respectively χ2 = 19.08, df = 2, p < 0.0001; χ2 = 16.55, df = 2, p < 0.0001. Significant differences of PF migration were found in AA and SNEA groups by Friedman test, respectively, χ2 = 19.08, df = 2, p < 0.0001; and χ2 = 14.60, df = 2, p = 0.0007. Lines connect comparison groups with a p-value denoting the significant difference in pair-wise comparisons.
Figure 7
Figure 7
(A)–Gene expression in ASMC after incubation with eosinophils; (B)–Gene expression in PF after incubation with eosinophils. Data presented as folds over the HS eosinophil effect as mean ± SEM. AA—allergic asthma patient; SNEA—severe non-allergic eosinophilic asthma patient; ASMC—airway smooth muscle cells; PF–pulmonary fibroblast; HS—healthy subject; COL1A1—collagen I α 1; COL5A1—collagen V α 1; FN—fibronectin; α-sm-actin—α smooth muscle actin; sm-MHC—smooth muscle myosin heavy chain; SM22—transgelin; sm-MLCK—smooth muscle myosin light chain kinase. * p < 0.01 compared to HS eosinophils; ** p < 0.001 compared to HS eosinophils. AA n = 11; SNEA n = 10; HS n = 8. Statistical analysis between investigated groups—Mann–Whitney two-sided U-test (independent data); Wilcoxon signed-rank test was used for gene expression analysis against ASMC or PF control. Lines connect comparison groups with a p-value denoting the significant difference in pair-wise comparisons.
Figure 8
Figure 8
(A)–Contraction of collagen gel disk with ASMC after incubation with eosinophils and/or subjects’ serum 24 h after bronchial allergen challenge with D. pteronyssinus; (B)–Contraction of collagen gel disk with PF after incubation with eosinophils and/or subjects’ serum 24 h after bronchial allergen challenge with D. pteronyssinus allergen. Data presented as a percentage of control ASMC that were not incubated with eosinophils. Added blood serum of each investigated subject to individual combined cultures: 2% v/v. ASMC—airway smooth muscle cells; HS—healthy subject; AA—allergic asthma; PF—pulmonary fibroblast. α—p < 0.05 compared to results 24h after allergen challenge; β—p < 0.05 compared to the only serum effect at the same visit; χ—p < 0.05 compared to the eosinophil and serum combined effect at the same visit; A—* p < 0.001 compared to control ASMC; B—* p < 0.01 compared to control PF; ** p < 0.001 compared to control PF. AA n = 10; HS n = 10. Statistical analysis within one study group—Friedman test for multiple comparison within the group and the post hoc Wilcoxon matched-pairs signed-rank two-sided test (dependent data). Significant differences of ASMC-induced collagen gel shrinkage were found in AA group 24 h after bronchial allergen challenge by Friedman test, χ2 = 12.96, df = 2, p = 0.0005. Significant differences of PF-induced collagen gel shrinkage were found in HS group 24 h after bronchial allergen challenge by Friedman test, χ2 = 9.929, df = 2, p = 0.0038. The results from Figure 5A,B of AA and HS patients were re-used as the baseline (before allergen challenge) result.
Figure 9
Figure 9
(A)–Migration of ASMC after incubation with allergen-activated eosinophils and/or subjects’ serum. (B)–Migration of PF after incubation with allergen-activated eosinophils and/or subjects’ serum. Data presented as cell covered area, as a percentage of control cells. Added blood serum of each investigated subject to individual combined cultures: 2% v/v. AA n = 13; HS n = 14. AA—allergic asthma; ASMC—airway smooth muscle cells; HS—healthy subject; PF—pulmonary fibroblast. α—p < 0.05 compared to results 24h after allergen challenge; βp < 0.05 compared to the only serum effect at the same visit; χ—p < 0.05 compared to the eosinophil and serum combined effect at the same visit; A—* p < 0.001 compared to control ASMC; B—* p < 0.01 compared to control PF cells. Statistical analysis within one study group—Friedman test for multiple comparison within the group and the post hoc Wilcoxon matched-pairs signed-rank two-sided test (dependent data). Significant differences of ASMC and PF migration were found in AA group 24 h after bronchial allergen challenge by Friedman test, respectively, χ2 = 17.23, df = 2, p = 0.0002; χ2 = 18.00, df = 2, p = 0.0001. The results from Figure 6A,B of AA and HS patients were re-used as the baseline (before allergen challenge) result.
Figure 10
Figure 10
(A)–The change in gene expression in ASMC 24 h after bronchial allergen challenge with D. pteronyssinus, (B)–The change in gene expression in PF cells 24 h after bronchial allergen challenge with D. pteronyssinus. Data presented as folds over baseline visit result as mean ± SEM. Added blood serum of each investigated subject to individual combined cultures: 2% v/v. AA—allergic asthma patient; ASMC—airway smooth muscle cells; PF—pulmonary fibroblast; HS—healthy subject; COL1A1—collagen I α 1; COL5A1—collagen V α 1; FN—fibronectin; α-sm-actin—α smooth muscle actin; sm-MHC—smooth muscle myosin heavy chain; SM22—transgelin; sm-MLCK—smooth muscle myosin light chain kinase. AA n = 11; HS n = 8. * p < 0.05 compared to control cells; ** p < 0.01. Statistical analysis between investigated groups—Mann–Whitney two-sided U-test (independent data); Wilcoxon signed-rank test was used for gene expression analysis against ASMC or PF control. Lines connect comparison groups with a p-value denoting the significant difference in pair-wise comparisons.

References

    1. Enilari O., Sinha S. The global impact of asthma in adult populations. Ann. Glob. Health. 2019;85:2412. doi: 10.5334/aogh.2412.
    1. Chan V., Burgess J.K., Ratoff J.C., O’Connor B.J., Greenough A., Lee T.H., Hirst S.J. Extracellular matrix regulates enhanced eotaxin expression in asthmatic airway smooth muscle cells. Am. J. Respir. Crit. Care Med. 2006;174:379–385. doi: 10.1164/rccm.200509-1420OC.
    1. Johnson P.R., Roth M., Tamm M., Hughes M., Ge Q., King G., Burgess J.K., Black J.L. Airway smooth muscle cell proliferation is increased in asthma. Am. J. Respir. Crit. Care Med. 2001;164:474–477. doi: 10.1164/ajrccm.164.3.2010109.
    1. Burgess J.K., Johnson P.R., Ge Q., Au W.W., Poniris M.H., McParland B.E., King G., Roth M., Black J.L. Expression of connective tissue growth factor in asthmatic airway smooth muscle cells. Am. J. Respir. Crit. Care Med. 2003;167:71–77. doi: 10.1164/rccm.200205-416OC.
    1. Jiang H., Rao K., Halayko A.J., Kepron W., Stephens N.L. Bronchial smooth muscle mechanics of a canine model of allergic airway hyperresponsiveness. J. Appl. Physiol. 1992;72:39–45. doi: 10.1152/jappl.1992.72.1.39.
    1. Ma X., Cheng Z., Kong H., Wang Y., Unruh H., Stephens N.L., Laviolette M. Changes in biophysical and biochemical properties of single bronchial smooth muscle cells from asthmatic subjects. Am. J. Physiol. Lung Cell. Mol. Physiol. 2002;283:L1181–L1189. doi: 10.1152/ajplung.00389.2001.
    1. Ammit A.J., Armour C.L., Black J.L. Smooth-muscle myosin light-chain kinase content is increased in human sensitized airways. Am. J. Respir. Crit. Care Med. 2000;161:257–263. doi: 10.1164/ajrccm.161.1.9901005.
    1. An S., Bai T., Bates J., Black J., Brown R.H., Brusasco V., Chitano P., Deng L., Dowell M., Eidelman D. Airway smooth muscle dynamics: A common pathway of airway obstruction in asthma. Eur. Respir. J. 2007;29:834–860. doi: 10.1183/09031936.00112606.
    1. Salter B., Pray C., Radford K., Martin J.G., Nair P. Regulation of human airway smooth muscle cell migration and relevance to asthma. Respir. Res. 2017;18:156. doi: 10.1186/s12931-017-0640-8.
    1. Baum J., Duffy H.S. Fibroblasts and myofibroblasts: What are we talking about? J. Cardiovasc. Pharm. 2011;57:376–379. doi: 10.1097/FJC.0b013e3182116e39.
    1. Hinz B., Phan S.H., Thannickal V.J., Galli A., Bochaton-Piallat M.-L., Gabbiani G. The myofibroblast: One function, multiple origins. Am. J. Pathol. 2007;170:1807–1816. doi: 10.2353/ajpath.2007.070112.
    1. Kendall R.T., Feghali-Bostwick C.A. Fibroblasts in fibrosis: Novel roles and mediators. Front. Pharm. 2014;5:123. doi: 10.3389/fphar.2014.00123.
    1. Manuyakorn W. Airway remodelling in asthma: Role for mechanical forces. Asia Pac. Allergy. 2014;4:19–24. doi: 10.5415/apallergy.2014.4.1.19.
    1. Ozier A., Allard B., Bara I., Girodet P.-O., Trian T., Marthan R., Berger P. The pivotal role of airway smooth muscle in asthma pathophysiology. J. Allergy. 2011;2011:742710. doi: 10.1155/2011/742710.
    1. Carr T.F., Berdnikovs S., Simon H.-U., Bochner B.S., Rosenwasser L.J. Eosinophilic bioactivities in severe asthma. World Allergy Organ. J. 2016;9:21. doi: 10.1186/s40413-016-0112-5.
    1. Januskevicius A., Janulaityte I., Kalinauskaite-Zukauske V., Gosens R., Malakauskas K. The Enhanced Adhesion of Eosinophils Is Associated with Their Prolonged Viability and Pro-Proliferative Effect in Asthma. J. Clin. Med. 2019;8:1274. doi: 10.3390/jcm8091274.
    1. Gosens R., Stelmack G.L., Dueck G., McNeill K.D., Yamasaki A., Gerthoffer W.T., Unruh H., Gounni A.S., Zaagsma J., Halayko A.J. Role of caveolin-1 in p42/p44 MAP kinase activation and proliferation of human airway smooth muscle. Am. J. Physiol. Lung Cell. Mol. Physiol. 2006;291:L523–L534. doi: 10.1152/ajplung.00013.2006.
    1. Ngo P., Ramalingam P., Phillips J.A., Furuta G.T. Collagen gel contraction assay. Cell Cell Interact. 2006;341:103–110.
    1. Liang C.-C., Park A.Y., Guan J.-L. In vitro scratch assay: A convenient and inexpensive method for analysis of cell migration in vitro. Nat. Protoc. 2007;2:329–333. doi: 10.1038/nprot.2007.30.
    1. Walford H.H., Doherty T.A. Diagnosis and management of eosinophilic asthma: A US perspective. J. Asthma Allergy. 2014;7:53–65. doi: 10.2147/JAA.S39119.
    1. Bousquet J., Chanez P., Lacoste J.Y., Barnéon G., Ghavanian N., Enander I., Venge P., Ahlstedt S., Simony-Lafontaine J., Godard P., et al. Eosinophilic inflammation in asthma. N. Engl. J. Med. 1990;323:1033–1039. doi: 10.1056/NEJM199010113231505.
    1. Busse W.W., Sedgwick J.B. Eosinophils in asthma. Ann. Allergy. 1992;68:286–290.
    1. Hough K.P., Curtiss M.L., Blain T.J., Liu R.-M., Trevor J., Deshane J.S., Thannickal V.J. Airway Remodeling in Asthma. Front. Med. 2020;7:191. doi: 10.3389/fmed.2020.00191.
    1. Prakash Y.S. Airway smooth muscle in airway reactivity and remodeling: What have we learned? Am. J. Physiol. Lung Cell. Mol. Physiol. 2013;305:L912–L933. doi: 10.1152/ajplung.00259.2013.
    1. Zuyderduyn S., Sukkar M.B., Fust A., Dhaliwal S., Burgess J.K. Treating asthma means treating airway smooth muscle cells. Eur. Respir. J. 2008;32:265–274. doi: 10.1183/09031936.00051407.
    1. Kalinauskaite-Zukauske V., Januskevicius A., Janulaityte I., Miliauskas S., Malakauskas K. Expression of eosinophil β chain-signaling cytokines receptors, outer-membrane integrins, and type 2 inflammation biomarkers in severe non-allergic eosinophilic asthma. BMC Pulm. Med. 2019;19:158. doi: 10.1186/s12890-019-0904-9.
    1. Bakakos A., Loukides S., Bakakos P. Severe Eosinophilic Asthma. J. Clin. Med. 2019;8:1375. doi: 10.3390/jcm8091375.
    1. Wong C.K., Cheung P.F.Y., Ip W.K., Lam C.W.K. Intracellular Signaling Mechanisms Regulating Toll-Like Receptor–Mediated Activation of Eosinophils. Am. J. Respir. Cell Mol. Biol. 2007;37:85–96. doi: 10.1165/rcmb.2006-0457OC.
    1. Webb R.C. Smooth muscle contraction and relaxation. Adv. Physiol. Educ. 2003;27:201–206. doi: 10.1152/advances.2003.27.4.201.
    1. Doeing D.C., Solway J. Airway smooth muscle in the pathophysiology and treatment of asthma. J. Appl. Physiol. 2013;114:834–843. doi: 10.1152/japplphysiol.00950.2012.
    1. Shaifta Y., MacKay C.E., Irechukwu N., O’Brien K.A., Wright D.B., Ward J.P.T. Transforming growth factor-β enhances Rho-kinase activity and contraction in airway smooth muscle via the nucleotide exchange factor ARHGEF1. J. Physiol. 2018;596:47–66. doi: 10.1113/JP275033.
    1. Michalik M., Wójcik-Pszczoła K., Paw M., Wnuk D., Koczurkiewicz P., Sanak M., Pękala E., Madeja Z. Fibroblast-to-myofibroblast transition in bronchial asthma. Cell Mol. Life Sci. 2018;75:3943–3961. doi: 10.1007/s00018-018-2899-4.
    1. Hinz B., Dugina V., Ballestrem C., Wehrle-Haller B., Chaponnier C. Alpha-smooth muscle actin is crucial for focal adhesion maturation in myofibroblasts. Mol. Biol. Cell. 2003;14:2508–2519. doi: 10.1091/mbc.e02-11-0729.
    1. Kohan M., Muro A.F., White E.S., Berkman N. EDA-containing cellular fibronectin induces fibroblast differentiation through binding to alpha4beta7 integrin receptor and MAPK/Erk 1/2-dependent signaling. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2010;24:4503–4512. doi: 10.1096/fj.10-154435.
    1. Altman L.C., Hill J.S., Hairfield W.M., Mullarkey M.F. Effects of corticosteroids on eosinophil chemotaxis and adherence. J. Clin. Investig. 1981;67:28–36. doi: 10.1172/JCI110024.
    1. Kato M., Schleimer R.P. Antiinflammatory steroids inhibit granulocyte/macrophage colony-stimulating factor production by human lung tissue. Lung. 1994;172:113–124. doi: 10.1007/BF00185082.
    1. Tobler A., Meier R., Seitz M., Dewald B., Baggiolini M., Fey M.F. Glucocorticoids downregulate gene expression of GM-CSF, NAP-1/IL-8, and IL-6, but not of M-CSF in human fibroblasts. Blood. 1992;79:45–51. doi: 10.1182/blood.V79.1.45.45.
    1. Rolfe F.G., Hughes J.M., Armour C.L., Sewell W.A. Inhibition of interleukin-5 gene expression by dexamethasone. Immunology. 1992;77:494–499.
    1. Zhang T., Day J.H., Su X., Guadarrama A.G., Sandbo N.K., Esnault S., Denlinger L.C., Berthier E., Theberge A.B. Investigating Fibroblast-Induced Collagen Gel Contraction Using a Dynamic Microscale Platform. Front. Bioeng. Biotechnol. 2019;7:196. doi: 10.3389/fbioe.2019.00196.
    1. Brown R.H., Mitzner W., Bulut Y., Wagner E.M. Effect of lung inflation in vivo on airways with smooth muscle tone or edema. J. Appl. Physiol. 1997;82:491–499. doi: 10.1152/jappl.1997.82.2.491.
    1. Dunnill M., Massarella G., Anderson J. A comparison of the quantitative anatomy of the bronchi in normal subjects, in status asthmaticus, in chronic bronchitis, and in emphysema. Thorax. 1969;24:176–179. doi: 10.1136/thx.24.2.176.
    1. Raeburn D., Webber S. Proinflammatory potential of the airway epithelium in bronchial asthma. Eur. Respir. J. 1994;7:2226–2233. doi: 10.1183/09031936.94.07122226.
    1. Jeffery P.K. Remodeling in asthma and chronic obstructive lung disease. Am. J. Respir. Crit. Care Med. 2001;164:S28–S38. doi: 10.1164/ajrccm.164.supplement_2.2106061.
    1. Bousquet J., Jeffery P.K., Busse W.W., Johnson M., Vignola A.M. Asthma. From bronchoconstriction to airways inflammation and remodeling. Am. J. Respir. Crit. Care Med. 2000;161:1720–1745. doi: 10.1164/ajrccm.161.5.9903102.
    1. Bousquet J., Lacoste J.Y., Chanez P., Vic P., Godard P., Michel F.B. Bronchial elastic fibers in normal subjects and asthmatic patients. Am. J. Respir. Crit. Care Med. 1996;153:1648–1654. doi: 10.1164/ajrccm.153.5.8630616.
    1. Carroll N.G., Perry S., Karkhanis A., Harji S., Butt J., James A.L., Green F.H.Y. The Airway Longitudinal Elastic Fiber Network and Mucosal Folding in Patients with Asthma. Am. J. Respir. Crit. Care Med. 2000;161:244–248. doi: 10.1164/ajrccm.161.1.9805005.
    1. Pepe C., Foley S., Shannon J., Lemiere C., Olivenstein R., Ernst P., Ludwig M.S., Martin J.G., Hamid Q. Differences in airway remodeling between subjects with severe and moderate asthma. J. Allergy Clin. Immunol. 2005;116:544–549. doi: 10.1016/j.jaci.2005.06.011.
    1. Cockcroft D.W., Davis B.E. Mechanisms of airway hyperresponsiveness. J. Allergy Clin. Immunol. 2006;118:551–559. doi: 10.1016/j.jaci.2006.07.012.
    1. Sapienza S., Du T., Eidelman D.H., Wang N.S., Martin J.G. Structural Changes in the Airways of Sensitized Brown Norway Rats after Antigen Challenge. Am. Rev. Respir. Dis. 1991;144:423–427. doi: 10.1164/ajrccm/144.2.423.
    1. Aszodi A., Legate K.R., Nakchbandi I., Fässler R. What mouse mutants teach us about extracellular matrix function. Annu. Rev. Cell Dev. Biol. 2006;22:591–621. doi: 10.1146/annurev.cellbio.22.010305.104258.
    1. Yamauchi E., Shoji S., Nishihara M., Shimoda T., Nishima S. Contribution of lung fibroblast migration in the fibrotic process of airway remodeling in asthma. Allergol. Int. Off. J. Jpn. Soc. Allergol. 2008;57:73–78. doi: 10.2332/allergolint.O-06-481.
    1. Muniz V.S., Weller P.F., Neves J.S. Eosinophil crystalloid granules: Structure, function, and beyond. J. Leukoc. Biol. 2012;92:281–288. doi: 10.1189/jlb.0212067.
    1. Zagai U., Lundahl J., Klominek J., Venge P., Sköld C.M. Eosinophil Cationic Protein Stimulates Migration of Human Lung Fibroblasts In Vitro. Scand. J. Immunol. 2009;69:381–386. doi: 10.1111/j.1365-3083.2009.02233.x.
    1. Erjefält J.S., Greiff L., Andersson M., Ädelroth E., Jeffery P.K., Persson C.G.A. Degranulation patterns of eosinophil granulocytes as determinants of eosinophil driven disease. Thorax. 2001;56:341–344. doi: 10.1136/thorax.56.5.341.
    1. McBrien C.N., Menzies-Gow A. The Biology of Eosinophils and Their Role in Asthma. Front. Med. 2017;4:93. doi: 10.3389/fmed.2017.00093.
    1. Saito K., Nagata M., Kikuchi I., Sakamoto Y. Leukotriene D4 and eosinophil transendothelial migration, superoxide generation, and degranulation via β2 integrin. Ann. Allergy Asthma Immunol. 2004;93:594–600. doi: 10.1016/S1081-1206(10)61269-0.
    1. Sukkar M.B., Stanley A.J., Blake A.E., Hodgkin P.D., Johnson P.R., Armour C.L., Hughes J.M. ‘Proliferative’ and ‘synthetic’ airway smooth muscle cells are overlapping populations. Immunol. Cell Biol. 2004;82:471–478. doi: 10.1111/j.0818-9641.2004.01275.x.
    1. Wright D.B., Trian T., Siddiqui S., Pascoe C.D., Johnson J.R., Dekkers B.G.J., Dakshinamurti S., Bagchi R., Burgess J.K., Kanabar V., et al. Phenotype modulation of airway smooth muscle in asthma. Pulm. Pharmacol. Ther. 2013;26:42–49. doi: 10.1016/j.pupt.2012.08.005.
    1. Ma X., Wang Y., Stephens N.L. Serum deprivation induces a unique hypercontractile phenotype of cultured smooth muscle cells. Am. J. Physiol. 1998;274:C1206–C1214. doi: 10.1152/ajpcell.1998.274.5.C1206.
    1. Halayko A.J., Camoretti-Mercado B., Forsythe S.M., Vieira J.E., Mitchell R.W., Wylam M.E., Hershenson M.B., Solway J. Divergent differentiation paths in airway smooth muscle culture: Induction of functionally contractile myocytes. Am. J. Physiol. 1999;276:L197–L206. doi: 10.1152/ajplung.1999.276.1.L197.
    1. Halayko A.J., Salari H., Ma X., Stephens N.L. Markers of airway smooth muscle cell phenotype. Am. J. Physiol. 1996;270:L1040–L1051. doi: 10.1152/ajplung.1996.270.6.L1040.
    1. Johnson P.R.A., Black J.L., Carlin S., Ge Q., Underwood P.A. The Production of Extracellular Matrix Proteins by Human Passively Sensitized Airway Smooth-Muscle Cells in Culture. Am. J. Respir. Crit. Care Med. 2000;162:2145–2151. doi: 10.1164/ajrccm.162.6.9909111.
    1. White E.S. Lung extracellular matrix and fibroblast function. Ann. Am. Thorac. Soc. 2015;12:S30–S33. doi: 10.1513/AnnalsATS.201406-240MG.
    1. Al-Alawi M., Hassan T., Chotirmall S.H. Transforming growth factor β and severe asthma: A perfect storm. Respir. Med. 2014;108:1409–1423. doi: 10.1016/j.rmed.2014.08.008.
    1. Scharenberg M.A., Pippenger B.E., Sack R., Zingg D., Ferralli J., Schenk S., Martin I., Chiquet-Ehrismann R. TGF-β-induced differentiation into myofibroblasts involves specific regulation of two MKL1 isoforms. J. Cell Sci. 2014;127:1079–1091. doi: 10.1242/jcs.142075.
    1. Desmouliere A., Geinoz A., Gabbiani F., Gabbiani G. Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J. Cell Biol. 1993;122:103–111. doi: 10.1083/jcb.122.1.103.
    1. Akamatsu T., Arai Y., Kosugi I., Kawasaki H., Meguro S., Sakao M., Shibata K., Suda T., Chida K., Iwashita T. Direct isolation of myofibroblasts and fibroblasts from bleomycin-injured lungs reveals their functional similarities and differences. Fibrogen. Tissue Repair. 2013;6:15. doi: 10.1186/1755-1536-6-15.
    1. Tomasek J.J., Gabbiani G., Hinz B., Chaponnier C., Brown R.A. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat. Rev. Mol. Cell Biol. 2002;3:349–363. doi: 10.1038/nrm809.
    1. Sapudom J., Rubner S., Martin S., Thoenes S., Anderegg U., Pompe T. The interplay of fibronectin functionalization and TGF-β1 presence on fibroblast proliferation, differentiation and migration in 3D matrices. Biomater. Sci. 2015;3:1291–1301. doi: 10.1039/C5BM00140D.
    1. Brenmoehl J., Miller S.-N., Hofmann C., Vogl D., Falk W., Schölmerich J., Rogler G. Transforming growth factor-beta 1 induces intestinal myofibroblast differentiation and modulates their migration. World J. Gastroenterol. 2009;15:1431–1442. doi: 10.3748/wjg.15.1431.
    1. Weitoft M., Andersson C., Andersson-Sjöland A., Tufvesson E., Bjermer L., Erjefält J., Westergren-Thorsson G. Controlled and uncontrolled asthma display distinct alveolar tissue matrix compositions. Respir. Res. 2014;15:67. doi: 10.1186/1465-9921-15-67.
    1. Wenstrup R.J., Florer J.B., Brunskill E.W., Bell S.M., Chervoneva I., Birk D.E. Type V collagen controls the initiation of collagen fibril assembly. J. Biol. Chem. 2004;279:53331–53337. doi: 10.1074/jbc.M409622200.
    1. Kalinauskaite-Zukauske V., Januskevicius A., Janulaityte I., Miliauskas S., Malakauskas K. Serum Levels of Epithelial-Derived Cytokines as Interleukin-25 and Thymic Stromal Lymphopoietin after a Single Dose of Mepolizumab in Patients with Severe Non-Allergic Eosinophilic Asthma: A Short Report. Can. Respir. J. 2019;2019:8607657. doi: 10.1155/2019/8607657.
    1. Sanz M.L., Parra A., Prieto I., Diéguez I., Oehling A.K. Serum eosinophil peroxidase (EPO) levels in asthmatic patients. Allergy. 1997;52:417–422. doi: 10.1111/j.1398-9995.1997.tb01021.x.
    1. Azazi E.A., Elshora A.E., Tantawy E.A., Elsayd M.A. Serum levels of Interleukin-33 and its soluble receptor ST2 in asthmatic patients. Egypt. J. Chest Dis. Tuberc. 2014;63:279–284. doi: 10.1016/j.ejcdt.2013.11.005.
    1. Hardy E., Farahani M., Hall I.P. Regulation of histamine H1 receptor coupling by dexamethasone in human cultured airway smooth muscle. Br. J. Pharmacol. 1996;118:1079–1084. doi: 10.1111/j.1476-5381.1996.tb15509.x.
    1. Tanaka H., Watanabe K., Tamaru N., Yoshida M. Arachidonic acid metabolites and glucocorticoid regulatory mechanism in cultured porcine tracheal smooth muscle cells. Lung. 1995;173:347–361. doi: 10.1007/BF00172142.
    1. Miller M., Cho J.Y., McElwain K., McElwain S., Shim J.Y., Manni M., Baek J.S., Broide D.H. Corticosteroids prevent myofibroblast accumulation and airway remodeling in mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 2006;290:L162–L169. doi: 10.1152/ajplung.00252.2005.
    1. Ihrie M.D., Ingram J.L. Orchestrating Airway Smooth Muscle Cell Migration: GMFγ Phosphorylation Is the Key. Am. J. Respir. Cell Mol. Biol. 2019;61:136–138. doi: 10.1165/rcmb.2019-0074ED.
    1. Johnson P.R.A., Burgess J.K. Airway smooth muscle and fibroblasts in the pathogenesis of asthma. Curr. Allergy Asthma Rep. 2004;4:102–108. doi: 10.1007/s11882-004-0054-9.
    1. Redhu N.S., Shan L., Movassagh H., Gounni A.S. Thymic stromal lymphopoietin induces migration in human airway smooth muscle cells. Sci. Rep. 2013;3:2301. doi: 10.1038/srep02301.
    1. Melzer C., von der Ohe J., Hass R., Ungefroren H. TGF-β-Dependent Growth Arrest and Cell Migration in Benign and Malignant Breast Epithelial Cells Are Antagonistically Controlled by Rac1 and Rac1b. Int. J. Mol. Sci. 2017;18:1574. doi: 10.3390/ijms18071574.
    1. Janulaityte I., Januskevicius A., Kalinauskaite-Zukauske V., Bajoriuniene I., Malakauskas K. In Vivo Allergen-Activated Eosinophils Promote Collagen I and Fibronectin Gene Expression in Airway Smooth Muscle Cells via TGF-β1 Signaling Pathway in Asthma. Int. J. Mol. Sci. 2020;21:1837. doi: 10.3390/ijms21051837.
    1. Schaafsma D., McNeill K.D., Stelmack G.L., Gosens R., Baarsma H.A., Dekkers B.G.J., Frohwerk E., Penninks J.-M., Sharma P., Ens K.M., et al. Insulin increases the expression of contractile phenotypic markers in airway smooth muscle. Am. J. Physiol. Cell Physiol. 2007;293:C429–C439. doi: 10.1152/ajpcell.00502.2006.
    1. Singh S., Bodas M., Bhatraju N.K., Pattnaik B., Gheware A., Parameswaran P.K., Thompson M., Freeman M., Mabalirajan U., Gosens R., et al. Hyperinsulinemia adversely affects lung structure and function. Am. J. Physiol. Lung Cell. Mol. Physiol. 2016;310:L837–L845. doi: 10.1152/ajplung.00091.2015.
    1. McMillan S.J., Xanthou G., Lloyd C.M. Manipulation of allergen-induced airway remodeling by treatment with anti-TGF-beta antibody: Effect on the Smad signaling pathway. J. Immunol. 2005;174:5774–5780. doi: 10.4049/jimmunol.174.9.5774.
    1. Kalinauskaite-Zukauske V., Janulaityte I., Januskevicius A., Malakauskas K. Serum levels of epithelial-derived mediators and interleukin-4/interleukin-13 signaling after bronchial challenge with Dermatophagoides pteronyssinus in patients with allergic asthma. Scand. J. Immunol. 2019;90:e12820. doi: 10.1111/sji.12820.
    1. Schaafsma D., Gosens R., Bos I.S.T., Meurs H., Zaagsma J., Nelemans S.A. Allergic sensitization enhances the contribution of Rho-kinase to airway smooth muscle contraction. Br. J. Pharmacol. 2004;143:477–484. doi: 10.1038/sj.bjp.0705903.
    1. Gizycki M.J., Adelroth E., Rogers A.V., O’Byrne P.M., Jeffery P.K. Myofibroblast involvement in the allergen-induced late response in mild atopic asthma. Am. J. Respir. Cell Mol. Biol. 1997;16:664–673. doi: 10.1165/ajrcmb.16.6.9191468.
    1. Sakota Y., Ozawa Y., Yamashita H., Tanaka H., Inagaki N. Collagen gel contraction assay using human bronchial smooth muscle cells and its application for evaluation of inhibitory effect of formoterol. Biol. Pharm. Bull. 2014;37:1014–1020. doi: 10.1248/bpb.b13-00996.
    1. Bortolozzo A.S.S., Rodrigues A.P.D., Arantes-Costa F.M., Saraiva-Romanholo B.M., De Souza F.C.R., Brüggemann T.R., De Brito M.V., Ferreira R.D.S., Correia M.T.D.S., Paiva P.M.G., et al. The Plant Proteinase Inhibitor CrataBL Plays a Role in Controlling Asthma Response in Mice. BioMed Res. Int. 2018;2018:9274817. doi: 10.1155/2018/9274817.
    1. Xu J.G., Zhu S.Y., Heng B.C., Dissanayaka W.L., Zhang C.F. TGF-β1-induced differentiation of SHED into functional smooth muscle cells. Stem Cell Res. Ther. 2017;8:10. doi: 10.1186/s13287-016-0459-0.
    1. Serban A.I., Stanca L., Geicu O.I., Munteanu M.C., Dinischiotu A. RAGE and TGF-β1 cross-talk regulate extracellular matrix turnover and cytokine synthesis in AGEs exposed fibroblast cells. PLoS ONE. 2016;11:e0152376. doi: 10.1371/journal.pone.0152376.

Source: PubMed

3
S'abonner