Hemodialysis Impact on Motor Function beyond Aging and Diabetes-Objectively Assessing Gait and Balance by Wearable Technology

He Zhou, Fadwa Al-Ali, Hadi Rahemi, Nishat Kulkarni, Abdullah Hamad, Rania Ibrahim, Talal K Talal, Bijan Najafi, He Zhou, Fadwa Al-Ali, Hadi Rahemi, Nishat Kulkarni, Abdullah Hamad, Rania Ibrahim, Talal K Talal, Bijan Najafi

Abstract

Motor functions are deteriorated by aging. Some conditions may magnify this deterioration. This study examined whether hemodialysis (HD) process would negatively impact gait and balance beyond diabetes condition among mid-age adults (48⁻64 years) and older adults (65+ years). One hundred and ninety-six subjects (age = 66.2 ± 9.1 years, body-mass-index = 30.1 ± 6.4 kg/m², female = 56%) in 5 groups were recruited: mid-age adults with diabetes undergoing HD (Mid-age HD+, n = 38) and without HD (Mid-age HD-, n = 40); older adults with diabetes undergoing HD (Older HD+, n = 36) and without HD (Older HD-, n = 37); and non-diabetic older adults (Older DM-, n = 45). Gait parameters (stride velocity, stride length, gait cycle time, and double support) and balance parameters (ankle, hip, and center of mass sways) were quantified using validated wearable platforms. Groups with diabetes had overall poorer gait and balance compared to the non-diabetic group (p < 0.050). Among people with diabetes, HD+ had significantly worsened gait and balance when comparing to HD- (Cohen's effect size d = 0.63⁻2.32, p < 0.050). Between-group difference was more pronounced among older adults with the largest effect size observed for stride length (d = 2.32, p < 0.001). Results suggested that deterioration in normalized gait speed among HD+ was negatively correlated with age (r = -0.404, p < 0.001), while this correlation was diminished among HD-. Interestingly, results also suggested that poor gait among Older HD- is related to poor ankle stability, while no correlation was observed between poor ankle stability and poor gait among Older HD+. Using objective assessments, results confirmed that the presence of diabetes can deteriorate gait and balance, and this deterioration can be magnified by HD process. Among HD- people with diabetes, poor ankle stability described poor gait. However, among people with diabetes undergoing HD, age was a dominate factor describing poor gait irrespective of static balance. Results also suggested feasibility of using wearable platforms to quantify motor performance during routine dialysis clinic visit. These objective assessments may assist in identifying early deterioration in motor function, which in turn may promote timely intervention.

Keywords: aging; balance; diabetes; diabetic peripheral neuropathy; end stage renal disease; falls; frailty; gait; hemodialysis; motor performance; wearables.

Conflict of interest statement

The authors declare no conflicts of interest.

Figures

Figure 1
Figure 1
An Illustration of gait test. (A) Two wearable inertial sensors were attached to left and right lower shins. (B) The subject was asked to walk with habitual gait speed for 15 m. (C) Using validated algorithms gait parameters of interest, including stride velocity (unit: m/s), normalized stride velocity to height (unit: height/s), stride length (unit: m), normalized stride length to height (unit: % height), gait cycle time (unit: s), and double support (unit: %) were calculated.
Figure 2
Figure 2
An Illustration of balance test. (A) Two wearable inertial sensors were attached to lower back and lower dominant shin. (B) Double-stance for 30 s and semi-tandem for 20 s under eyes open condition were performed. (C) Using validated algorithms balance parameters of interest, including ankle sway (unit: deg2), hip sway (unit: deg2), center of mass sway (unit: cm2), and normalized center of mass sway to height (unit: cm2/height) were calculated.
Figure 3
Figure 3
Correlation between age and (A) normalized stride velocity and (B) double support among people with diabetes with and without HD.
Figure 4
Figure 4
Correlation between double-stance ankle sway and (A) normalized stride velocity and (B) gait cycle time among older adults with diabetes with and without HD.

References

    1. Obembe A.O., Olaogun M.O., Adedoyin R. Gait and balance performance of stroke survivors in South-Western Nigeria—A cross-sectional study. Pan Afr. Med. J. 2014;17:6. doi: 10.11604/pamjs.supp.2014.17.1.3001.
    1. Ellis T., Cavanaugh J.T., Earhart G.M., Ford M.P., Foreman K.B., Dibble L.E. Which measures of physical function and motor impairment best predict quality of life in Parkinson’s disease? Parkinsonism Relat. Disord. 2011;17:693–697. doi: 10.1016/j.parkreldis.2011.07.004.
    1. Steffen T.M., Hacker T.A., Mollinger L. Age-and gender-related test performance in community-dwelling elderly people: Six-Minute Walk Test, Berg Balance Scale, Timed Up & Go Test, and gait speeds. Phys. Ther. 2002;82:128–137.
    1. Benjuya N., Melzer I., Kaplanski J. Aging-induced shifts from a reliance on sensory input to muscle cocontraction during balanced standing. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2004;59:M166–M171. doi: 10.1093/gerona/59.2.M166.
    1. Wolfson L.I., Whipple R., Amerman P., Kaplan J., Kleinberg A. Gait and balance in the elderly: Two functional capacities that link sensory and motor ability to falls. Clin. Geriatr. Med. 1985;1:649–659. doi: 10.1016/S0749-0690(18)30930-3.
    1. Laughton C.A., Slavin M., Katdare K., Nolan L., Bean J.F., Kerrigan D.C., Phillips E., Lipsitz L.A., Collins J.J. Aging, muscle activity, and balance control: Physiologic changes associated with balance impairment. Gait Posture. 2003;18:101–108. doi: 10.1016/S0966-6362(02)00200-X.
    1. Johansen K.L., Chertow G.M., Da Silva M., Carey S., Painter P. Determinants of physical performance in ambulatory patients on hemodialysis. Kidney Int. 2001;60:1586–1591. doi: 10.1046/j.1523-1755.2001.00972.x.
    1. Erken E., Ozelsancak R., Sahin S., Yılmaz E.E., Torun D., Leblebici B., Kuyucu Y.E., Sezer S. The effect of hemodialysis on balance measurements and risk of fall. Int. Urol. Nephrol. 2016;48:1705–1711. doi: 10.1007/s11255-016-1388-7.
    1. Shin S., Chung H.R., Fitschen P.J., Kistler B.M., Park H.W., Wilund K.R., Sosnoff J.J. Postural control in hemodialysis patients. Gait Posture. 2014;39:723–727. doi: 10.1016/j.gaitpost.2013.10.006.
    1. Foundation N.K. Diabetes and Chronic Kidney Disease. [(accessed on 15 June 2018)]; Available online: .
    1. Eknoyan G., Lameire N., Barsoum R., Eckardt K.-U., Levin A., Levin N., Locatelli F., Macleod A., Vanholder R., Walker R. The burden of kidney disease: Improving global outcomes. Kidney Int. 2004;66:1310–1314. doi: 10.1111/j.1523-1755.2004.00894.x.
    1. Lockhart T.E., Barth A.T., Zhang X., Songra R., Abdel-Rahman E., Lach J. Wireless Health. ACM; New York, NY, USA: 2010. Portable, non-invasive fall risk assessment in end stage renal disease patients on hemodialysis; pp. 84–93.
    1. Soangra R., Lockhart T.E., Lach J., Abdel-Rahman E.M. Effects of hemodialysis therapy on sit-to-walk characteristics in end stage renal disease patients. Ann. Biomed. Eng. 2013;41:795–805. doi: 10.1007/s10439-012-0701-6.
    1. Zhou H., Sabbagh M., Wyman R., Liebsack C., Kunik M.E., Najafi B. Instrumented trail-making task to differentiate persons with no cognitive impairment, amnestic mild cognitive impairment, and Alzheimer disease: A proof of concept study. Gerontology. 2017;63:189–200. doi: 10.1159/000452309.
    1. Zhou H., Lee H., Lee J., Schwenk M., Najafi B. Motor planning error: Toward measuring cognitive frailty in older adults using wearables. Sensors. 2018;18:926. doi: 10.3390/s18030926.
    1. Lebel K., Nguyen H., Duval C., Plamondon R., Boissy P. Capturing the Cranio-Caudal Signature of a Turn with Inertial Measurement Systems: Methods, Parameters Robustness and Reliability. Front. Bioeng. Biotechnol. 2017;5 doi: 10.3389/fbioe.2017.00051.
    1. Nguyen H., Lebel K., Bogard S., Goubault E., Boissy P., Duval C. Using Inertial Sensors to Automatically Detect and Segment Activities of Daily Living in People with Parkinson‘s Disease. IEEE Trans. Neural Syst. Rehabil. Eng. 2018;26:197–204. doi: 10.1109/TNSRE.2017.2745418.
    1. Razjouyan J., Naik A.D., Horstman M.J., Kunik M.E., Amirmazaheri M., Zhou H., Sharafkhaneh A., Najafi B. Wearable Sensors and the Assessment of Frailty among Vulnerable Older Adults: An Observational Cohort Study. Sensors. 2018;18:1336. doi: 10.3390/s18051336.
    1. Piaggesi A., Låuchli S., Bassetto F., Biedermann T., Marques A., Najafi B., Palla I., Scarpa C., Seimetz D., Triulzi I. Advanced therapies in wound management: Cell and tissue based therapies, physical and bio-physical therapies smart and IT based technologies. J. Wound Care. 2018;27:S1–S137. doi: 10.12968/jowc.2018.27.Sup6a.S1.
    1. Aminian K., Najafi B. Capturing human motion using body-fixed sensors: Outdoor measurement and clinical applications. Comput. Anim. Virtual Worlds. 2004;15:79–94. doi: 10.1002/cav.2.
    1. Miller J.D., Najafi B., Armstrong D.G. Current standards and advances in diabetic ulcer prevention and elderly fall prevention using wearable technology. Curr. Geriatr. Rep. 2015;4:249–256. doi: 10.1007/s13670-015-0136-7.
    1. Razjouyan J., Lee H., Parthasarathy S., Mohler J., Sharafkhaneh A., Najafi B. Improving Sleep Quality Assessment Using Wearable Sensors by Including Information From Postural/Sleep Position Changes and Body Acceleration: A Comparison of Chest-Worn Sensors, Wrist Actigraphy, and Polysomnography. J. Clin. Sleep Med. 2017;13:1301–1310. doi: 10.5664/jcsm.6802.
    1. Najafi B., Ron E., Enriquez A., Marin I., Razjouyan J., Armstrong D.G. Smarter Sole Survival: Will Neuropathic Patients at High Risk for Ulceration Use a Smart Insole-Based Foot Protection System? J. Diabetes Sci. Technol. 2017;11:702–713. doi: 10.1177/1932296816689105.
    1. Razjouyan J., Grewal G.S., Talal T.K., Armstrong D.G., Mills J.L., Najafi B. Does Physiological Stress Slow Down Wound Healing in Patients With Diabetes? J. Diabetes Sci. Technol. 2017;11:685–692. doi: 10.1177/1932296817705397.
    1. Najafi B., Armstrong D.G., Mohler J. Novel wearable technology for assessing spontaneous daily physical activity and risk of falling in older adults with diabetes. J. Diabetes Sci. Technol. 2013;7:1147–1160. doi: 10.1177/193229681300700507.
    1. Yardley L., Beyer N., Hauer K., Kempen G., Piot-Ziegler C., Todd C. Development and initial validation of the Falls Efficacy Scale-International (FES-I) Age Ageing. 2005;34:614–619. doi: 10.1093/ageing/afi196.
    1. Orme J.G., Reis J., Herz E.J. Factorial and discriminant validity of the Center for Epidemiological Studies Depression (CES-D) scale. J. Clin. Psychol. 1986;42:28–33. doi: 10.1002/1097-4679(198601)42:1<28::AID-JCLP2270420104>;2-T.
    1. Fried L.P., Tangen C.M., Walston J., Newman A.B., Hirsch C., Gottdiener J., Seeman T., Tracy R., Kop W.J., Burke G. Frailty in older adults: Evidence for a phenotype. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2001;56:M146–M157. doi: 10.1093/gerona/56.3.M146.
    1. Young M.J., Breddy J.L., Veves A., Boulton A.J. The prediction of diabetic neuropathic foot ulceration using vibration perception thresholds: A prospective study. Diabetes Care. 1994;17:557–560. doi: 10.2337/diacare.17.6.557.
    1. Xu D., Li J., Zou L., Xu Y., Hu D., Pagoto S.L., Ma Y. Sensitivity and specificity of the ankle—Brachial index to diagnose peripheral artery disease: A structured review. Vasc. Med. 2010;15:361–369.
    1. Organization W.H. Use of Glycated Haemoglobin (HbA1c) in the Diagnosis of Diabetes Mellitus. The Organization Google Scholar; Geneva, Switzerland: 2011.
    1. Delbaere K., Close J.C., Mikolaizak A.S., Sachdev P.S., Brodaty H., Lord S.R. The falls efficacy scale international (FES-I). A comprehensive longitudinal validation study. Age Ageing. 2010;39:210–216. doi: 10.1093/ageing/afp225.
    1. Weissman M.M., Sholomskas D., Pottenger M., Prusoff B.A., Locke B.Z. Assessing depressive symptoms in five psychiatric populations: A validation study. Am. J. Epidemiol. 1977;106:203–214. doi: 10.1093/oxfordjournals.aje.a112455.
    1. Bracewell N., Game F., Jeffcoate W., Scammell B. Clinical evaluation of a new device in the assessment of peripheral sensory neuropathy in diabetes. Diabetic Med. 2012;29:1553–1555. doi: 10.1111/j.1464-5491.2012.03729.x.
    1. Wyatt M.F., Stickrath C., Shah A., Smart A., Hunt J., Casserly I.P. Ankle—brachial index performance among internal medicine residents. Vasc. Med. 2010;15:99–105. doi: 10.1177/1358863X09356015.
    1. Aminian K., Najafi B., Büla C., Leyvraz P.-F., Robert P. Spatio-temporal parameters of gait measured by an ambulatory system using miniature gyroscopes. J. Biomech. 2002;35:689–699. doi: 10.1016/S0021-9290(02)00008-8.
    1. Aminian K., Trevisan C., Najafi B., Dejnabadi H., Frigo C., Pavan E., Telonio A., Cerati F., Marinoni E., Robert P. Evaluation of an ambulatory system for gait analysis in hip osteoarthritis and after total hip replacement. Gait Posture. 2004;20:102–107. doi: 10.1016/S0966-6362(03)00093-6.
    1. Najafi B., Helbostad J.L., Moe-Nilssen R., Zijlstra W., Aminian K. Does walking strategy in older people change as a function of walking distance? Gait Posture. 2009;29:261–266. doi: 10.1016/j.gaitpost.2008.09.002.
    1. Lindemann U., Najafi B., Zijlstra W., Hauer K., Muche R., Becker C., Aminian K. Distance to achieve steady state walking speed in frail elderly persons. Gait Posture. 2008;27:91–96. doi: 10.1016/j.gaitpost.2007.02.005.
    1. Grewal G., Sayeed R., Yeschek S., Menzies R.A., Talal T.K., Lavery L.A., Armstrong D.G., Najafi B. Virtualizing the assessment: A novel pragmatic paradigm to evaluate lower extremity joint perception in diabetes. Gerontology. 2012;58:463–471. doi: 10.1159/000338095.
    1. Najafi B., Miller D., Jarrett B.D., Wrobel J.S. Does footwear type impact the number of steps required to reach gait steady state?: An innovative look at the impact of foot orthoses on gait initiation. Gait Posture. 2010;32:29–33. doi: 10.1016/j.gaitpost.2010.02.016.
    1. Najafi B., Horn D., Marclay S., Crews R.T., Wu S., Wrobel J.S. Assessing Postural Control and Postural Control Strategy in Diabetes Patients Using Innovative and Wearable Technology. J. Diabetes Sci. Technol. 2010;4:780–791. doi: 10.1177/193229681000400403.
    1. Najafi B., Bharara M., Talal T.K., Armstrong D.G. Advances in balance assessment and balance training for diabetes. Diabetes Manag. 2012;2:293. doi: 10.2217/dmt.12.38.
    1. Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Erlbaum; Hillsdale, NJ, USA: 1988.
    1. Pop-Busui R., Roberts L., Pennathur S., Kretzler M., Brosius F.C., Feldman E.L. The management of diabetic neuropathy in CKD. Am. J. Kidney Dis. 2010;55:365–385. doi: 10.1053/j.ajkd.2009.10.050.
    1. Timar B., Timar R., Gaiță L., Oancea C., Levai C., Lungeanu D. The impact of diabetic neuropathy on balance and on the risk of falls in patients with type 2 diabetes mellitus: A cross-sectional study. PLoS ONE. 2016;11:e0154654. doi: 10.1371/journal.pone.0154654.
    1. Arnold R., Issar T., Krishnan A.V., Pussell B.A. Neurological complications in chronic kidney disease. JRSM Cardiovasc. Dis. 2016;5:2048004016677687. doi: 10.1177/2048004016677687.
    1. Petrofsky J., Lee S., Macnider M., Navarro E. Autonomic, endothelial function and the analysis of gait in patients with type 1 and type 2 diabetes. Acta Diabetol. 2005;42:7–15. doi: 10.1007/s00592-005-0168-0.
    1. Jhamb M., Weisbord S.D., Steel J.L., Unruh M. Fatigue in patients receiving maintenance dialysis: A review of definitions, measures, and contributing factors. Am. J. Kidney Dis. 2008;52:353–365. doi: 10.1053/j.ajkd.2008.05.005.
    1. Floege J., Ehlerding G. Beta-2-microglobulin-associated amyloidosis. Nephron. 1996;72:9–26. doi: 10.1159/000188801.
    1. Lattanzio F., Corsonello A., Abbatecola A.M., Volpato S., Pedone C., Pranno L., Laino I., Garasto S., Corica F., Passarino G. Relationship between renal function and physical performance in elderly hospitalized patients. Rejuv. Res. 2012;15:545–552. doi: 10.1089/rej.2012.1329.
    1. Menz H.B., Lord S.R., St George R., Fitzpatrick R.C. Walking stability and sensorimotor function in older people with diabetic peripheral neuropathy. Arch. Phys. Med. Rehabi. 2004;85:245–252. doi: 10.1016/j.apmr.2003.06.015.
    1. Richardson J.K. Factors associated with falls in older patients with diffuse polyneuropathy. J. Am. Geriatr. Soc. 2002;50:1767–1773. doi: 10.1046/j.1532-5415.2002.50503.x.
    1. Conner-Kerr T., Templeton M.S. Chronic fall risk among aged individuals with type 2 diabetes. Ostomy. 2002;48:28–34, 35.
    1. Johansen K.L., Chertow G.M., Ng A.V., Mulligan K., Carey S., Schoenfeld P.Y., Kent-Braun J.A. Physical activity levels in patients on hemodialysis and healthy sedentary controls. Kidney Int. 2000;57:2564–2570. doi: 10.1046/j.1523-1755.2000.00116.x.
    1. Rhee C.M., Leung A.M., Kovesdy C.P., Lynch K.E., Brent G.A., Kalantar-Zadeh K. Updates on the management of diabetes in dialysis patients. Semin. Dialysis. 2014;27:135–145. doi: 10.1111/sdi.12198.
    1. Connor J., Pak C.C., Schroit A.J. Exposure of phosphatidylserine in the outer leaflet of human red blood cells. Relationship to cell density, cell age, and clearance by mononuclear cells. J. Biol. Chem. 1994;269:2399–2404.
    1. Ly J., Marticorena R., Donnelly S. Red blood cell survival in chronic renal failure. Am. J. Kidney Dis. 2004;44:715–719. doi: 10.1016/S0272-6386(04)00951-5.
    1. Suki W.N., Zabaneh R., Cangiano J., Reed J., Fischer D., Garrett L., Ling B., Chasan-Taber S., Dillon M., Blair A. Effects of sevelamer and calcium-based phosphate binders on mortality in hemodialysis patients. Kidney Int. 2007;72:1130–1137. doi: 10.1038/sj.ki.5002466.
    1. Vlassara H., Uribarri J., Cai W., Goodman S., Pyzik R., Post J., Grosjean F., Woodward M., Striker G.E. Effects of sevelamer on HbA1c, inflammation, and advanced glycation end products in diabetic kidney disease. Clin. J. Am. Soc. Nephrol. 2012;7:934–942. doi: 10.2215/CJN.12891211.

Source: PubMed

3
S'abonner