Blood pressure and mortality in patients with type 2 diabetes and a recent coronary event in the ELIXA trial

Magnus O Wijkman, Brian Claggett, Rafael Diaz, Hertzel C Gerstein, Lars Køber, Eldrin Lewis, Aldo P Maggioni, Emil Wolsk, David Aguilar, Rhonda Bentley-Lewis, John J McMurray, Jeffrey Probstfield, Matthew Riddle, Jean-Claude Tardif, Scott D Solomon, Marc A Pfeffer, Magnus O Wijkman, Brian Claggett, Rafael Diaz, Hertzel C Gerstein, Lars Køber, Eldrin Lewis, Aldo P Maggioni, Emil Wolsk, David Aguilar, Rhonda Bentley-Lewis, John J McMurray, Jeffrey Probstfield, Matthew Riddle, Jean-Claude Tardif, Scott D Solomon, Marc A Pfeffer

Abstract

Background: The relationship between blood pressure and mortality in type 2 diabetes (T2DM) is controversial, with concern for increased risk associated with excessively lowered blood pressure.

Methods: We evaluated whether prior cardiovascular disease (CVD) altered the relationship between baseline blood pressure and all-cause mortality in 5852 patients with T2DM and a recent acute coronary syndrome (ACS) who participated in the ELIXA (Evaluation of Lixisenatide in Acute Coronary Syndrome) trial. Risk of death was assessed in Cox models adjusted for age, sex, race, heart rate, BMI, smoking, diabetes duration, insulin use, HbA1c, eGFR, brain natriuretic peptide (BNP), urine albumin/creatinine ratio, treatment allocation and prior coronary revascularization.

Results: Although overall there was no significant association between systolic blood pressure (SBP) and mortality (hazard ratio per 10 mmHg lower SBP 1.05 (95% CI 0.99-1.12) P = 0.10), lower SBP was significantly associated with higher risk of death (hazard ratio per 10 mmHg lower SBP 1.13 (95% CI 1.04-1.22) P = 0.002) in 2325 patients with additional CVD (index ACS+ at least one of the following prior to randomization: myocardial infarction other than the index ACS, stroke or heart failure). In 3527 patients with only the index ACS no significant association was observed (hazard ratio per 10 mmHg lower SBP 0.95 (0.86-1.04) P = 0.26; P for interaction 0.005).

Conclusions: The association between blood pressure and mortality was modified by additional CVD history in patients with type 2 diabetes and a recent coronary event. When blood pressures measured after an acute coronary event are used to assess the risk of death in patients with type 2 diabetes, the cardiovascular history needs to be taken into consideration. Trial registration ClinicalTrials.gov number NCT01147250, first posted June 22, 2010.

Keywords: Blood pressure; Coronary artery disease; Diabetes mellitus.

Conflict of interest statement

MOW has served on advisory boards or lectured for MSD, Lilly, Novo Nordisk and Sanofi, and has organized a professional regional meeting sponsored by Lilly, Rubin Medical, Sanofi, Novartis and Novo Nordisk. BC has received consulting fees for Amgen, Biogen, Corvia, Myokardia, and Novartis. RD has received speaker fees from Sanofi, Astra Zeneca and Eli Lilly. HG holds the McMaster-Sanofi Population Health Institute Chair in Diabetes Research and Care and reports research grants from Eli Lilly, AstraZeneca, Merck, Novo Nordisk and Sanofi; honoraria for speaking from AstraZeneca, Boehringer Ingelheim, Eli Lilly, Novo Nordisk, and Sanofi; and consulting fees from Abbott, AstraZeneca, Boehringer Ingelheim, Eli Lilly, Merck, Novo Nordisk, Janssen, Sanofi, and Kowa. LK has received speaker´s honorarium (personal fee) from AstraZeneca, Novartis and Boehringer, unrelated to this manuscript. EL has received institutional funding for research grant support from Sanofi and Akebia. APM has received personal fees from Bayer, Fresenius, Novartis for participating in study committees outside the present work. EW has received speaker fees from Orion Pharma, Novartis Healthcare, Boehringer-Ingelheim, Merck. MR has received research funding through Oregon Health & Science University: Eli Lilly, Novo Nordisk, AstraZeneca, and honoraria for consulting: Adocia, AstraZeneca, Eli Lilly, GlaxoSmithKline, Intercept, Novo Nordisk, Sanofi, Theracos. JCT has received research grants from Amarin, Astra-Zeneca, DalCor, Esperion, Ionis, RegenXBio, Sanofi and Servier; honoraria from DalCor, Sanofi and Servier; holds minor equity interest in DalCor; and is an author of a patent on pharmacogenomics-guided CETP inhibition. SDS has received research grants from Alnylam, Amgen, AstraZeneca, Bellerophon, Bayer, BMS, Celladon, Cytokinetics, Eidos, Gilead, GSK, Ionis, Lone Star Heart, Mesoblast, MyoKardia, NIH/NHLBI, Neurotronik, Novartis, Respicardia, Sanofi Pasteur, Theracos, and has consulted for Akros, Alnylam, Amgen, Arena, AstraZeneca, Bayer, BMS, Cardior, Cardurion, Corvia, Cytokinetics, Daiichi-Sankyo, Gilead, GSK, Ironwood, Merck, Myokardia, Novartis, Roche, Takeda, Theracos, Quantum Genetics, Cardurion, AoBiome, Janssen, Cardiac Dimensions, Tenaya, Sanofi-Pasteur, Dinaqor, Tremeau. MAP receives research support from Novartis, serves as a consultant for AstraZeneca, Corvidia, DalCor, GlaxoSmithKline, Novartis, Novo Nordisk, Pharmascience and Sanofi, and has equity in DalCor.

Figures

Fig. 1
Fig. 1
Baseline distributions of systolic (a) and diastolic (b) blood pressures. Grey bars show patients with index acute coronary syndrome (ACS) only (n = 3527). Blue bars show patients with additional cardiovascular disease (CVD) (n = 2325)
Fig. 2
Fig. 2
Adjusted mortality rates and baseline blood pressures. Upper row: entire cohort, a systolic blood pressure, b diastolic blood pressure, c pulse pressure. Lower row: stratified by prior cardiovascular disease (CVD), d systolic blood pressure, e diastolic blood pressure, f  pulse pressure. Blue = Additional CVD, black = Index ACS only. P values for interaction: 0.005 (SBP), 0.004 (DBP), 0.12 (PP). Adjustments made for: randomization group, coronary revascularization history, age, sex, self-reported race, heart rate, BMI, smoking status, known duration of diabetes, glycated hemoglobin A1c, use of insulin, eGFR, the logarithm of the urinary albumin to creatinine ratio and the logarithm of the BNP level

References

    1. Rawshani A, Rawshani A, Franzen S, Sattar N, Eliasson B, Svensson AM, et al. Risk factors, mortality, and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2018;379(7):633–644. doi: 10.1056/NEJMoa1800256.
    1. Saad M, Salehi N, Ding Z, Mehta JL. Blood pressure target in diabetics: how low is too low? Eur Heart J. 2019;40(25):2044–2046. doi: 10.1093/eurheartj/ehz197.
    1. Whelton PK, Carey RM, Aronow WS, Casey DE, Jr, Collins KJ, Dennison Himmelfarb C, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension. 2018;71(6):e13–e115.
    1. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al. 2018 ESC/ESH guidelines for the management of arterial hypertension. Eur Heart J. 2018;39(33):3021–3104. doi: 10.1093/eurheartj/ehy339.
    1. American Diabetes A 10. Cardiovascular disease and risk management: standards of medical care in diabetes-2020. Diabetes Care. 2020;43(Suppl 1):S111–S134. doi: 10.2337/dc20-S010.
    1. Hagg-Holmberg S, Dahlstrom EH, Forsblom CM, Harjutsalo V, Liebkind R, Putaala J, et al. The role of blood pressure in risk of ischemic and hemorrhagic stroke in type 1 diabetes. Cardiovasc Diabetol. 2019;18(1):88. doi: 10.1186/s12933-019-0891-4.
    1. Adamsson Eryd S, Gudbjornsdottir S, Manhem K, Rosengren A, Svensson AM, Miftaraj M, et al. Blood pressure and complications in individuals with type 2 diabetes and no previous cardiovascular disease: national population based cohort study. BMJ. 2016;354:i4070. doi: 10.1136/bmj.i4070.
    1. Cooper-DeHoff RM, Gong Y, Handberg EM, Bavry AA, Denardo SJ, Bakris GL, et al. Tight blood pressure control and cardiovascular outcomes among hypertensive patients with diabetes and coronary artery disease. JAMA. 2010;304(1):61–68. doi: 10.1001/jama.2010.884.
    1. Navar AM, Gallup DS, Lokhnygina Y, Green JB, McGuire DK, Armstrong PW, et al. Hypertension control in adults with diabetes mellitus and recurrent cardiovascular events: global results from the trial evaluating cardiovascular outcomes with sitagliptin. Hypertension. 2017;70(5):907–914. doi: 10.1161/HYPERTENSIONAHA.117.09482.
    1. Bergmark BA, Scirica BM, Steg PG, Fanola CL, Gurmu Y, Mosenzon O, et al. Blood pressure and cardiovascular outcomes in patients with diabetes and high cardiovascular risk. Eur Heart J. 2018;39(24):2255–2262. doi: 10.1093/eurheartj/ehx809.
    1. White WB, Jalil F, Cushman WC, Bakris GL, Bergenstal R, Heller SR, et al. Average clinician-measured blood pressures and cardiovascular outcomes in patients with type 2 diabetes mellitus and ischemic heart disease in the EXAMINE trial. J Am Heart Assoc. 2018;7(20):e009114. doi: 10.1161/JAHA.118.009114.
    1. Bohm M, Schumacher H, Teo KK, Lonn EM, Mahfoud F, Mann JFE, et al. Cardiovascular outcomes and achieved blood pressure in patients with and without diabetes at high cardiovascular risk. Eur Heart J. 2019;40(25):2032–2043. doi: 10.1093/eurheartj/ehz149.
    1. Vidal-Petiot E, Ford I, Greenlaw N, Ferrari R, Fox KM, Tardif JC, et al. Cardiovascular event rates and mortality according to achieved systolic and diastolic blood pressure in patients with stable coronary artery disease: an international cohort study. Lancet. 2016;388(10056):2142–2152. doi: 10.1016/S0140-6736(16)31326-5.
    1. Ferreira JP, Duarte K, Pfeffer MA, McMurray JJV, Pitt B, Dickstein K, et al. Association between mean systolic and diastolic blood pressure throughout the follow-up and cardiovascular events in acute myocardial infarction patients with systolic dysfunction and/or heart failure: an analysis from the High-Risk Myocardial Infarction Database Initiative. Eur J Heart Fail. 2018;20(2):323–331. doi: 10.1002/ejhf.1131.
    1. Pfeffer MA, Claggett B, Diaz R, Dickstein K, Gerstein HC, Kober LV, et al. Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N Engl J Med. 2015;373(23):2247–2257. doi: 10.1056/NEJMoa1509225.
    1. Bentley-Lewis R, Aguilar D, Riddle MC, Claggett B, Diaz R, Dickstein K, et al. Rationale, design, and baseline characteristics in Evaluation of LIXisenatide in Acute Coronary Syndrome, a long-term cardiovascular end point trial of lixisenatide versus placebo. Am Heart J. 2015;169(5):631–638. doi: 10.1016/j.ahj.2015.02.002.
    1. Shin SH, Claggett B, Pfeffer MA, Skali H, Liu J, Aguilar D, et al. Hyperglycaemia, ejection fraction and the risk of heart failure or cardiovascular death in patients with type 2 diabetes and a recent acute coronary syndrome. Eur J Heart Fail. 2020 doi: 10.1002/ejhf.1790.
    1. Wolsk E, Claggett B, Pfeffer MA, Diaz R, Dickstein K, Gerstein HC, et al. Role of B-type natriuretic peptide and N-terminal prohormone BNP as predictors of cardiovascular morbidity and mortality in patients with a recent coronary event and type 2 diabetes mellitus. J Am Heart Assoc. 2017;6(6):e004743. doi: 10.1161/JAHA.116.004743.
    1. Peri-Okonny PA, Patel KK, Jones PG, Breeding T, Gosch KL, Spertus JA, et al. Low diastolic blood pressure is associated with angina in patients with chronic coronary artery disease. J Am Coll Cardiol. 2018;72(11):1227–1232. doi: 10.1016/j.jacc.2018.05.075.
    1. Shen Y, Yang ZK, Hu J, Wang XQ, Dai Y, Zhang S, et al. Donor artery stenosis interactions with diastolic blood pressure on coronary collateral flow in type 2 diabetic patients with chronic total occlusion. Cardiovasc Diabetol. 2018;17(1):76. doi: 10.1186/s12933-018-0724-x.
    1. Denardo SJ, Messerli FH, Gaxiola E, Aranda JM, Jr, Cooper-Dehoff RM, Handberg EM, et al. Coronary revascularization strategy and outcomes according to blood pressure (from the International Verapamil SR-Trandolapril Study [INVEST]) Am J Cardiol. 2010;106(4):498–503. doi: 10.1016/j.amjcard.2010.03.056.
    1. UK Prospective Diabetes Study Group Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. BMJ. 1998;317(7160):703–713. doi: 10.1136/bmj.317.7160.703.
    1. Hansson L, Zanchetti A, Carruthers SG, Dahlof B, Elmfeldt D, Julius S, et al. Effects of intensive blood-pressure lowering and low-dose aspirin in patients with hypertension: principal results of the Hypertension Optimal Treatment (HOT) randomised trial. HOT Study Group. Lancet. 1998;351(9118):1755–1762. doi: 10.1016/S0140-6736(98)04311-6.
    1. Cushman WC, Evans GW, Byington RP, Goff DC, Jr, Grimm RH, Jr, Cutler JA, et al. Effects of intensive blood-pressure control in type 2 diabetes mellitus. N Engl J Med. 2010;362(17):1575–1585. doi: 10.1056/NEJMoa1001286.
    1. Brunstrom M, Carlberg B. Effect of antihypertensive treatment at different blood pressure levels in patients with diabetes mellitus: systematic review and meta-analyses. BMJ. 2016;352:i717. doi: 10.1136/bmj.i717.
    1. Meredith PA, Ostergren J, Anand I, Puu M, Solomon SD, Michelson EL, et al. Clinical outcomes according to baseline blood pressure in patients with a low ejection fraction in the CHARM (Candesartan in Heart Failure: Assessment of Reduction in Mortality and Morbidity) Program. J Am Coll Cardiol. 2008;52(24):2000–2007. doi: 10.1016/j.jacc.2008.09.011.
    1. Kamishima K, Ogawa H, Jujo K, Yamaguchi J, Hagiwara N. Relationships between blood pressure lowering therapy and cardiovascular events in hypertensive patients with coronary artery disease and type 2 diabetes mellitus: the HIJ-CREATE sub-study. Diabetes Res Clin Pract. 2019;149:69–77. doi: 10.1016/j.diabres.2019.01.031.
    1. Park SJ, Son JW, Park SM, Choi HH, Hong KS. Relationship between inter-arm blood pressure difference and severity of coronary atherosclerosis. Atherosclerosis. 2017;263:171–176. doi: 10.1016/j.atherosclerosis.2017.06.023.
    1. Park SJ, Son JW, Hong KS, Choi HH. Effect of inter-arm blood pressure differences on outcomes after percutaneous coronary intervention. J Cardiol. 2020;75(6):648–653. doi: 10.1016/j.jjcc.2019.12.014.

Source: PubMed

3
S'abonner