Robot-assisted vs. sensory integration training in treating gait and balance dysfunctions in patients with multiple sclerosis: a randomized controlled trial

Marialuisa Gandolfi, Christian Geroin, Alessandro Picelli, Daniele Munari, Andreas Waldner, Stefano Tamburin, Fabio Marchioretto, Nicola Smania, Marialuisa Gandolfi, Christian Geroin, Alessandro Picelli, Daniele Munari, Andreas Waldner, Stefano Tamburin, Fabio Marchioretto, Nicola Smania

Abstract

Background: Extensive research on both healthy subjects and patients with central nervous damage has elucidated a crucial role of postural adjustment reactions and central sensory integration processes in generating and "shaping" locomotor function, respectively. Whether robotic-assisted gait devices might improve these functions in Multiple sclerosis (MS) patients is not fully investigated in literature.

Purpose: The aim of this study was to compare the effectiveness of end-effector robot-assisted gait training (RAGT) and sensory integration balance training (SIBT) in improving walking and balance performance in patients with MS.

Methods: Twenty-two patients with MS (EDSS: 1.5-6.5) were randomly assigned to two groups. The RAGT group (n = 12) underwent end-effector system training. The SIBT group (n = 10) underwent specific balance exercises. Each patient received twelve 50-min treatment sessions (2 days/week). A blinded rater evaluated patients before and after treatment as well as 1 month post treatment. Primary outcomes were walking speed and Berg Balance Scale. Secondary outcomes were the Activities-specific Balance Confidence Scale, Sensory Organization Balance Test, Stabilometric Assessment, Fatigue Severity Scale, cadence, step length, single and double support time, Multiple Sclerosis Quality of Life-54.

Results: Between groups comparisons showed no significant differences on primary and secondary outcome measures over time. Within group comparisons showed significant improvements in both groups on the Berg Balance Scale (P = 0.001). Changes approaching significance were found on gait speed (P = 0.07) only in the RAGT group. Significant changes in balance task-related domains during standing and walking conditions were found in the SIBT group.

Conclusion: Balance disorders in patients with MS may be ameliorated by RAGT and by SIBT.

Keywords: motor skills disorders; physiological adaptations; postural balance; proprioception; sensory feedback.

Figures

Figure 1
Figure 1
Flow diagram of the study.
Figure 2
Figure 2
(A) Within group analysis: mean performance and standard errors at primary and statistical significant secondary outcome measures. Abbreviations: SS, stable surface; CS, complaint surface; EO, eyes-open condition; Dome, Dome condition; FU, follow-up. (B) Between group comparison: mean performance and standard errors at secondary organization balance test (SOT) (only statistical significant value). Abbreviations: CS, complaint surface; EO, eyes-open condition; EC, eyes-closed condition; Dome, Dome condition; FU, follow-up.

References

    1. Armutlu K., Karabudak R., Nurlu G. (2001). Physiotherapy approaches in the treatment of ataxic multiple sclerosis: a pilot study. Neurorehabil. Neural Repair 15, 203–211 10.1177/154596830101500308
    1. Bayouk J. F., Boucher J. P., Leroux A. (2006). Balance training following stroke: effects of task-oriented exercises with and without altered sensory input. Int. J. Rehabil. Res. 29, 51–59 10.1097/01.mrr.0000192100.67425.84
    1. Beer S., Aschbacher B., Manoglou D., Gamper E., Kool J., Kesselring J. (2008). Robot-assisted gait training in multiple sclerosis: a pilot randomized trial. Mult. Scler. 14, 231–236 10.1177/1352458507082358
    1. Benedetti M. G., Gasparroni V., Stecchi S., Zilioli R., Straudi S., Piperno R. (2009). Treadmill exercise in early multiple sclerosis: a case series study. Eur. J. Phys. Rehabil. Med. 45, 53–59
    1. Broekmans T., Roelants M., Alders G., Feys P., Thijs H., Eijnde B. O. (2010). Exploring the effects of a 20-week whole-body vibration training programme on leg muscle performance and function in persons with multiple sclerosis. J. Rehabil. Med. 42, 866–872 10.2340/16501977-0609
    1. Cakt B. D., Nacir B., Genç H., Saraçoğlu M., Karagöz A., Erdem H. R., et al. (2010). Cycling progressive resistance training for people with multiple sclerosis: a randomized controlled study. Am. J. Phys. Med. Rehabil. 89, 446–457 10.1097/PHM.0b013e3181d3e71f
    1. Cameron M. H., Horak F. B., Herndon R. R., Bourdette D. (2008). Imbalance in multiple sclerosis: a result of slowed spinal somatosensory conduction. Somatosens. Mot. Res. 25, 113–122 10.1080/08990220802131127
    1. Cameron M. H., Lord S. (2010). Postural control in multiple sclerosis: implications for fall prevention. Curr. Neurol. Neurosci. Rep. 10, 407–412 10.1007/s11910-010-0128-0
    1. Cattaneo D., Jonsdottir J. (2009). Sensory impairments in quiet standing in subjects with multiple sclerosis. Mult. Scler. 15, 59–67 10.1177/1352458508096874
    1. Cattaneo D., Jonsdottir J., Zocchi M., Regola A. (2007). Effects of balance exercises on people with multiple sclerosis: a pilot study. Clin. Rehabil. 21, 771–781 10.1177/0269215507077602
    1. Cattaneo D., Regola A., Meotti M. (2006). Validity of six balance disorders scales in persons with multiple sclerosis. Disabil. Rehabil. 28, 789–795 10.1080/09638280500404289
    1. Cohen J. (1988). Statistical Power Analysis for the Behavioral Sciences. 2nd ed Hillsdale, NJ: Lawrence Erlbaum
    1. Confavreux C., Vukusic S., Moreau T., Adeleine P. (2000). Relapses and progression of disability in multiple sclerosis. N. Engl. J. Med. 343, 1430–1438 10.1056/NEJM200011163432001
    1. Corradini M. L., Fioretti S., Leo T., Piperno R. (1997). Early recognition of postural disorders in multiple sclerosis through movement analysis: a modeling study. IEEE Trans. Biomed. Eng. 44, 1029–1038 10.1109/10.641330
    1. Dallal G. (2007). Random Generator. Available online at:
    1. Dietz V., Müller R., Colombo G. (2002). Locomotor activity in spinal man: significance of afferent input from joint and load receptors. Brain 125, 2626–2634 10.1093/brain/awf273
    1. Elwishy A. B. A. (2012). Effect of sensorimotor integration balance program in patients with Multiple Sclerosis: a single blinded randomized controlled study. Med. J. Cairo Univ. 80, 85–93
    1. Emken J. L., Reinkensmeyer D. J. (2005). Robot-enhanced motor learning: accelerating internal model formation during locomotion by transient dynamic amplification. IEEE Trans. Neural Syst. Rehabil. Eng. 13, 33–39 10.1109/TNSRE.2004.843173
    1. Folstein M. F., Folstein S. E., McHugh P. R. (1975). “Mini-mental state.” A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12, 189–198 10.1016/0022-3956(75)90026-6
    1. Frey S. H., Fogassi L., Grafton S., Picard N., Rothwell J. C., Schweighofer N., et al. (2011). Neurological principles and rehabilitation of action disorders: computation, anatomy, and physiology (CAP) model. Neurorehabil. Neural Repair 25, 6S–20S 10.1177/1545968311410940
    1. Givon U., Zeilig G., Achiron A. (2009). Gait analysis in multiple sclerosis: characterization of temporal-spatial parameters using GAITRite functional ambulation system. Gait Posture 29, 138–142 10.1016/j.gaitpost.2008.07.011
    1. Hebert J. R., Corboy J. R., Manago M. M., Schenkman M. (2011). Effects of vestibular rehabilitation on multiple sclerosis-related fatigue and upright postural control: a randomized controlled trial. Phys. Ther. 91, 1166–1183 10.2522/ptj.20100399
    1. Hesse S. (2008). Treadmill training with partial body weight support after stroke: a review. NeuroRehabilitation 23, 55–65
    1. Hesse S., Sarkodie-Gyan T., Uhlenbrock D. (1999). Development of an advanced mechanised gait trainer, controlling movement of the centre of mass, for restoring gait in non-ambulant subjects. Biomed. Tech. (Berl). 44, 194–201 10.1515/bmte.1999.44.7-8.194
    1. Hesse S., Waldner A., Tomelleri C. (2010). Innovative gait robot for the repetitive practice of floor walking and stair climbing up and down in stroke patients. J. Neuroeng. Rehabil. 7, 30 10.1186/1743-0003-7-30
    1. Hodgson J. A., Roy R. R., de Leon R., Dobkin B., Edgerton V. R. (1994). Can the mammalian lumbar spinal cord learn a motor task? Med. Sci. Sports Exerc. 26, 1491–1497 10.1249/00005768-199412000-00013
    1. Hu M. H., Woollacott M. H. (1994). Multisensory training of standing balance in older adults: I. Postural stability and one-leg stance balance. J. Gerontol. 49, 52–61 10.1093/geronj/49.2.M52
    1. Huisinga J. M., St. George R. J., Spain R., Overs S., Horak F. B. (2014). Postural response latencies are related to balance control during standing and walking in patients with multiple sclerosis. Arch. Phys. Med. Rehabil. 17 10.1016/j.apmr.2014.01.004
    1. Krishnan V., Kanekar N., Aruin A. S. (2012a). Feedforward postural control in individuals with multiple sclerosis during load release. Gait Posture 36, 225–230 10.1016/j.gaitpost.2012.02.022
    1. Krishnan V., Kanekar N., Aruin A. S. (2012b). Anticipatory postural adjustments in individuals with multiple sclerosis. Neurosci. Lett. 506, 256–260 10.1016/j.neulet.2011.11.018
    1. Krupp L. B., LaRocca N. G., Muir-Nash J., Steinberg A. D. (1989). The fatigue severity scale. Application to patients with multiple sclerosis and systemic lupus erythematosus. Arch. Neurol. 46, 1121–1123 10.1001/archneur.1989.00520460115022
    1. Kurtzke J. F. (1983). Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 33, 1444–1452 10.1212/WNL.33.11.1444
    1. Lam T., Anderschitz M., Dietz V. (2006). Contribution of feedback and feedforward strategies to locomotor adaptations. J. Neurophysiol. 95, 766–773 10.1152/jn.00473.2005
    1. Lam T., Wolstenholme C., Yang J. F. (2003). How do infants adapt to loading of the limb during the swing phase of stepping? J. Neurophysiol. 89, 1920–1928 10.1152/jn.01030.2002
    1. Larocca N. G. (2011). Impact of walking impairment in multiple sclerosis: perspectives of patients and care partners. Patient 4, 189–201 10.2165/11591150-000000000-00000
    1. Lo A. C., Triche E. W. (2008). Improving gait in multiple sclerosis using robot-assisted, body weight supported treadmill training. Neurorehabil. Neural Repair 22, 661–671 10.1177/1545968308318473
    1. Lou J. S., Bloedel J. R. (1988). A new conditioning paradigm: conditioned limb movements in locomoting decerebrate ferrets. Neurosci. Lett. 84, 185–190 10.1016/0304-3940(88)90405-3
    1. Massion J. (1992). Movement, posture and equilibrium: interaction and coordination. Prog. Neurobiol. 38, 35–56 10.1016/0301-0082(92)90034-C
    1. Maurer C., Mergner T., Peterka R. J. (2006). Multisensory control of human upright stance. Exp. Brain Res. 171, 231–250 10.1007/s00221-005-0256-y
    1. Menz H. B., Latt M. D., Tiedemann A., Mun San Kwan M., Lord S. R. (2004). Reliability of the GAITRite walkway system for the quantification of temporo-spatial parameters of gait in young and older people. Gait Posture 20, 20–25 10.1016/S0966-6362(03)00068-7
    1. Merfeld D. M., Zupan L., Peterka R. J. (1999). Human use internal models to estimate gravity and linear acceleration. Nature 98, 615–618 10.1038/19303
    1. Nelson S. R., Di Fabio R. P., Anderson J. H. (1995). Vestibular and sensory interaction deficits assessed by dynamic platform posturography in patients with multiple sclerosis. Ann. Otol. Rhinol. Laryngol. 104, 62–68
    1. Newman M. A., Dawes H., van den Berg M., Wade D. T., Burridge J., Izadi H. (2007). Can aerobic treadmill training reduce the effort of walking and fatigue in people with multiple sclerosis: a pilot study. Mult. Scler. 13, 113–119 10.1177/1352458506071169
    1. Nichols D. S. (1997). Balance retraining after stroke using force platform biofeedback. Phys. Ther. 77, 553–558
    1. Nielsen J. B., Sinkjaer T. (2002). Afferent feedback in the control of human gait. J. Electromyogr. Kinesiol. 12, 213–217 10.1016/S1050-6411(02)00023-8
    1. Nilsagård Y. E., Forsberg A. S., von Koch L. (2013). Balance exercise for persons with multiple sclerosis using Wii games: a randomised, controlled multi-centre study. Mult. Scler. 19, 209–216 10.1177/1352458512450088
    1. Pang M. Y., Lam T., Yang J. F. (2003). Infants adapt their stepping to repeated trip-inducing stimuli. J. Neurophysiol. 90, 2731–2740 10.1152/jn.00407.2003
    1. Pearson K. G. (2004). Generating the walking gait: role of sensory feedback. Prog. Brain Res. 143, 123–129
    1. Picelli A., Melotti C., Origano F., Neri R., Waldner A., Smania N. (2013). Robot-assisted gait training versus equal intensity treadmill training in patients with mild to moderate Parkinson's disease: a randomized controlled trial. Parkinsonism Relat. Disord. 19, 605–610 10.1016/j.parkreldis.2013.02.010
    1. Picelli A., Melotti C., Origano F., Waldner A., Gimigliano R., Smania N. (2012). Does robotic gait training improve balance in Parkinson's disease? A randomized controlled trial. Parkinsonism Relat. Disord. 18, 990–993 10.1016/j.parkreldis.2012.05.010
    1. Polman C. H., Reingold S. C., Banwell B., Clanet M., Cohen J. A., Filippi M., et al. (2011). Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann. Neurol. 69, 292–302 10.1002/ana.22366
    1. Powell L. E., Myers A. M. (1995). The activities-specific balance confidence (ABC) scale. J. Gerontol. A Biol. Sci. Med. Sci. 50, M28–M34 10.1093/gerona/50A.1.M28
    1. Remelius J. G., Hamill J., Kent-Braun J., Van Emmerik R. E. (2008). Gait initiation in multiple sclerosis. Motor Control 12, 93–108
    1. Riemann B. L., Lephart S. M. (2002). The sensorimotor system, Part II: the role of proprioception in motor control and functional joint stability. J. Athl. Train. 37, 80–84
    1. Rossignol S., Dubuc R., Gossard J. P. (2006). Dynamic sensorimotor interactions in locomotion. Physiol. Rev. 86, 89–154 10.1152/physrev.00028.2005
    1. Schuhfried O., Mittermaier C., Jovanovic T., Pieber K., Paternostro-Sluga T. (2005). Effects of whole-body vibration in patients with multiple sclerosis: a pilot study. Clin. Rehabil. 19, 834–842 10.1191/0269215505cr919oa
    1. Schwartz I., Sajin A., Moreh E., Fisher I., Neeb M., Forest A., et al. (2012). Robot-assisted gait training in multiple sclerosis patients: a randomized trial. Mult. Scler. 18, 881–890 10.1177/1352458511431075
    1. Shumway-Cook A., Horak F. B. (1986). Assessing the influence of sensory interaction of balance. Suggestion from the field. Phys. Ther. 66, 1548–1550
    1. Smania N., Corato E., Tinazzi M., Stanzani C., Fiaschi A., Girardi P., et al. (2010). Effect of balance training on postural instability in patients with idiopathic Parkinson's disease. Neurorehabil. Neural Repair 24, 826–834 10.1177/1545968310376057
    1. Smania N., Picelli A., Gandolfi M., Fiaschi A., Tinazzi M. (2008). Rehabilitation of sensorimotor integration deficits in balance impairment of patients with stroke hemiparesis: a before/after pilot study. Neurol. Sci. 29, 313–319 10.1007/s10072-008-0988-0
    1. Smedal T., Lygren H., Myhr K. M., Moe-Nilssen R., Gjelsvik B., Gjelsvik O., et al. (2006). Balance and gait improved in patients with MS after physiotherapy based on the Bobath concept. Physiother. Res. Int. 11, 104–116 10.1002/pri.327
    1. Solari A., Filippini G., Mendozzi L., Ghezzi A., Cifani S., Barbieri E., et al. (1999). Validation of Italian multiple sclerosis quality of life 54 questionnaire. J. Neurol. Neurosurg. Psychiatr. 67, 158–162 10.1136/jnnp.67.2.158
    1. Speers R. A., Kuo A. D., Horak F. B. (2002). Contributions of altered sensation and feedback responses to changes in coordination of postural control due to aging. Gait Posture 16, 20–30 10.1016/S0966-6362(02)00003-6
    1. Straudi S., Benedetti M. G., Venturini E., Manca M., Foti C., Basaglia N. (2013). Does robot-assisted gait training ameliorate gait abnormalities in multiple sclerosis? A pilot randomized-control trial. NeuroRehabilitation 33, 555–563 10.3233/NRE-130990
    1. Swinnen E., Beckwée D., Pinte D., Meeusen R., Baeyens J. P., Kerckhofs E. (2012). Treadmill training in multiple sclerosis: can body weight support or robot assistance provide added value? A systematic review. Mult. Scler. Int. 2012, 240274 10.1155/2012/240274
    1. Tamburella F., Scivoletto G., Molinari M. (2013). Balance training improves static stability and gait in chronic incomplete spinal cord injury subjects: a pilot study. Eur. J. Phys. Rehabil. Med. 49, 353–364
    1. Vaney C., Gattlen B., Lugon-Moulin V., Meichtry A., Hausammann R., Foinant D., et al. (2012). Robotic-assisted step training (lokomat) not superior to equal intensity of over-ground rehabilitation in patients with multiple sclerosis. Neurorehabil. Neural Repair. 26, 212–221 10.1177/1545968311425923
    1. Weinshenker B. G., Bass B., Rice G. P., Noseworthy J., Carriere W., Baskerville J., et al. (1989). The natural history of multiple sclerosis: a geographically based study. I. Clinical course and disability. Brain 112, 133–146 10.1093/brain/112.1.133
    1. Zackowski K. M., Cameron M., Wagner J. M. (2013). 2nd International Symposium on Gait and Balance in Multiple Sclerosis: interventions for gait and balance in MS. Disabil. Rehabil. [Epud ahead of print]. 10.3109/09638288.2013.833306

Source: PubMed

3
S'abonner