The effect of dietary resistant starch type 2 on the microbiota and markers of gut inflammation in rural Malawi children

M Isabel Ordiz, Thaddaeus D May, Kathie Mihindukulasuriya, John Martin, Jan Crowley, Phillip I Tarr, Kelsey Ryan, Elissa Mortimer, Geetha Gopalsamy, Ken Maleta, Makedonka Mitreva, Graeme Young, Mark J Manary, M Isabel Ordiz, Thaddaeus D May, Kathie Mihindukulasuriya, John Martin, Jan Crowley, Phillip I Tarr, Kelsey Ryan, Elissa Mortimer, Geetha Gopalsamy, Ken Maleta, Makedonka Mitreva, Graeme Young, Mark J Manary

Abstract

Background: Resistant starch (RS) decreases intestinal inflammation in some settings. We tested the hypothesis that gut inflammation will be reduced with dietary supplementation with RS in rural Malawian children. Eighteen stunted 3-5-year-old children were supplemented with 8.5 g/day of RS type 2 for 4 weeks. The fecal samples were analyzed for the microbiota, the microbiome, short chain fatty acids, metabolome, and proteins indicative of inflammation before and after the intervention. Subjects served as their own controls.

Results: The consumption of RS changed the composition of the microbiota; at the phylum level Actinobacteria increased, while Firmicutes decreased. Among the most prevalent genera, Lactobacillus was increased and Roseburia, Blautia, and Lachnospiracea incertae sedis were decreased. The Shannon H index at the genus level decreased from 2.02 on the habitual diet and 1.76 after the introduction of RS (P < 0.01). Fecal acetate concentration decreased, and fecal propionate concentration increased after RS administration (-5.2 and 2.0 μmol/g, respectively). Fecal calprotectin increased from 29 ± 69 to 89 ± 49 μg/g (P = 0.003) after RS was given. The lipopolysaccharide biosynthesis pathway was upregulated.

Conclusions: Our findings do not support the hypothesis that RS reduces gut inflammation in rural Malawian children.

Trial registration: ClinicalTrials.gov NCT01811836.

Figures

Fig. 1
Fig. 1
16S RNA bacterial sequences represent in fecal samples from 18 Malawian children before and after adding RS to their diet. Pie charts of average values of relative abundance (percentage of sequences) of the most abundant bacterial groups: phyla (a), and genus (b) found in the fecal microbiota
Fig. 2
Fig. 2
LEfse rank plot of differentially abundant pathways in gut microbiomes initial vs. final samples. LDA scores were given for different abundance of pathways before (habitual diet: green) and after the resistant starch was added to the habitual diet (habitual diet + RS: red)

References

    1. Keusch GT, Denno DM, Black RE, Duggan C, Guerrant RL, Lavery JV, et al. Environmental enteric dysfunction: pathogenesis, diagnosis, and clinical consequences. Clin Infect Dis. 2014;59(Suppl 4):S207–12. doi: 10.1093/cid/ciu485.
    1. Prendergast AJ, Humphrey JH. The stunting syndrome in developing countries. Paediatr Int Child Health. 2014;34:250–65. doi: 10.1179/2046905514Y.0000000158.
    1. Kelly P. Nutrition, intestinal defence and the microbiome. Proc Nutr Soc. 2010;69:261–8. doi: 10.1017/S0029665110000108.
    1. Moongngarm A. Chemical compositions and resistant starch content in starchy foods. Am J Agric Biol Sci. 2013;8:107–13. doi: 10.3844/ajabssp.2013.107.113.
    1. Bogden JD, Kemp FW, Huang AE, Shapses SA, Ambia-Sobhan H, Jagpal S, et al. Bone mineral density and content during weight cycling in female rats: effects of dietary amylase-resistant starch. Nutr Met (Lond) 2008;5:34. doi: 10.1186/1743-7075-5-34.
    1. Ingerslev AK, Theil PK, Hedemann MS, Lærke HN, Bach Knudsen KE. Resistant starch and arabinoxylan augment SCFA absorption, but affect postprandial glucose and insulin responses differently. Br J Nutr. 2014;111:1564–76. doi: 10.1017/S0007114513004066.
    1. Nofrarías M, Martinez-Puig D, Pujols J, Majó N, Pérez JF. Long-term intake of resistant starch improves colonic mucosal integrity and reduces gut apoptosis and blood immune cells. Nutrition. 2007;23:861–70. doi: 10.1016/j.nut.2007.08.016.
    1. McOrist AL, Miller RB, Bird AR, Keogh JB, Noakes M, Topping DL, et al. Fecal butyrate levels vary widely among individuals but are usually increased by a diet high in resistant starch. J Nutr. 2011;141:883–9. doi: 10.3945/jn.110.128504.
    1. Haenen D, Zhang J, Souza da Silva C, Bosch G, Van der Meer IM, van Arkel J, et al. A diet high in resistant starch modulates microbiota composition, SCFA concentrations, and gene expression in pig intestine. J Nutr. 2013;143:274–83. doi: 10.3945/jn.112.169672.
    1. Topping DL, Clifton PM. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev. 2001;81:1031–64.
    1. Higgins JA, Brown IL. Resistant starch: a promising dietary agent for the prevention/treatment of inflammatory bowel disease and bowel cancer. Curr Opin Gastroenterol. 2013;29:190–4. doi: 10.1097/MOG.0b013e32835b9aa3.
    1. Binder HJ, Brown I, Ramakrishna BS, Young GP. Oral rehydration therapy in the second decade of the twenty-first century. Curr Gastroenterol Rep. 2014;16:376. doi: 10.1007/s11894-014-0376-2.
    1. May T, Westcott C, Thakwalakwa C, Ordiz MI, Maleta K, Westcott J, et al. Resistant starch does not affect zinc homeostasis in rural Malawian children. J Trace Elem Med Biol. 2015;30:43–8. doi: 10.1016/j.jtemb.2015.01.005.
    1. Tomlin J, Read NW. The effect of resistant starch on colon function in humans. Br J Nutr. 1990;64:589–95. doi: 10.1079/BJN19900058.
    1. Hakansson A, Molin G. Gut microbiota and inflammation. Nutrients. 2011;3:637–82. doi: 10.3390/nu3060637.
    1. Biagi B, Nylund L, Candela M, Ostan R, Bucci L, Pini E, et al. Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS One. 2010;5 doi: 10.1371/journal.pone.0010667.
    1. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, et al. Enterotypes of the human gut microbiome. Nature. 2011;473:174–80. doi: 10.1038/nature09944.
    1. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334:105–8. doi: 10.1126/science.1208344.
    1. De Filippo C, Cavalieri D, Di Paolo M, Ramazzotti M, Poullet JB, Massart S, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A. 2010;107:14691–6. doi: 10.1073/pnas.1005963107.
    1. Nakayama J, Watanabe K, Jiang J, Matsuda K, Chao SH, Haryono P, et al. Diversity in gut bacterial community of school-age children in Asia. Sci Rep. 2015;5:8397. doi: 10.1038/srep08397.
    1. Cameron EA, Kwiatkowski KJ, Lee BH, Hamaker BR, Koropatkin NM, Martens EC. Multifunctional nutrient-binding proteins adapt human symbiotic bacteria for glycan competition in the gut by separately promoting enhanced sensing and catalysis. MBio. 2014;5(5):e01441–14. doi: 10.1128/mBio.01441-14.
    1. Martınez I, Kim J, Duffy PR, Schlegel VL, Walter J. Resistant starches types 2 and 4 have differential effects on the composition of the fecal microbiota in human subjects. PLoS One. 2010;5 doi: 10.1371/journal.pone.0015046.
    1. Walker AW, Ince J, Duncan SH, Webster LM, Holtrop G, Ze X, et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. The ISME Journal. 2011;5:220–30. doi: 10.1038/ismej.2010.118.
    1. Ze X, Duncan SH, Louis P, Flint HJ. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. The ISME Journal. 2012;6:1535–43. doi: 10.1038/ismej.2012.4.
    1. Yang J, Martínez I, Walter J, Keshavarzian A, Rose DJ. In vitro characterization of the impact of selected dietary fibers on fecal microbiota composition and short chain fatty acid production. Anaerobe. 2013;23:74–81. doi: 10.1016/j.anaerobe.2013.06.012.
    1. Balamurugan R, Balachandar G, Dharmalingam T, Mortimer E, Gopalsamy G, Woodman R, et al. Effect of native and acetylated high amylose maize starch on fecal pH and short chain fatty acid concentrations in a cohort of children in southern India. Digestive Disease Week. 2014.
    1. Phillips J, Muir JG, Birkett A, Lu ZX, Jones GP, O’Dea K, et al. Effect of resistant starch on fecal bulk and fermentation-dependent events in humans. Am J Clin Nutr. 1995;62:121–30.
    1. Shoaie S, Karlsson F, Mardinoglu A, Nookaew I, Bordel S, Nielson J. Understanding the interactions between bacteria in the human gut through metabolic modeling. Scientific Reports 2013 Article 2532, doi:10.1038/srep02532.
    1. Matsumoto M, Kibe R, Ooga T, Aiba Y, Kurihara S, Sawaki E, et al. Impact of the intestinal microbiota on intestinal luminal metabolome. Scientific Reports 2012 Article 233, doi:1038/srep00233.
    1. Theede K, Kiszka-Kanowitz M, Nielsen AM, Nordgaard-Lassen I. The correlation between fecal calprotectin, simple clinical colitis activity index and biochemical markers in ulcerative colitis during high-dose steroid treatment. Scand J Gastroenterol. 2014;49:418–23. doi: 10.3109/00365521.2014.883427.
    1. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486:222–7.
    1. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489:220–30. doi: 10.1038/nature11550.
    1. Smith MI, Yatsunenko T, Manary MJ, Trehan I, Mkakosya R, Cheng J, et al. Gut microbiomes of Malawian twin pairs discordant for Kwashiorkor. Science. 2013;339:548–54. doi: 10.1126/science.1229000.
    1. Morais MB, Feste A, Miller RG, Lifschitz CH. Effect of resistant and digestible starch on intestinal absorption of calcium, iron, and zinc in infant pigs. Pediatr Res. 1996;39:872–6. doi: 10.1203/00006450-199605000-00022.
    1. Methé BA, Nelson KE, Pop M, Creasy HH, Giglio MG, Huttenhower C, et al. A framework for human microbiome research. Nature. 2012;486:215–21. doi: 10.1038/nature11209.
    1. Schloss PD. A high-throughput DNA sequence aligner for microbial ecology studies. PLoS One. 2009;4(12) doi: 10.1371/journal.pone.0008230.
    1. Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward DV, Giannoukos G, et al. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res. 2011;21:494–504. doi: 10.1101/gr.112730.110.
    1. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, et al. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 2009;37(Database issue):D141–5. doi: 10.1093/nar/gkn879.
    1. Oksanen J, Blanchet FG, Kindt R, Legendre P, O’Hara RB, Simpson GL, et al. Vegan: community ecology package. 2011.
    1. Human Microbiome Project Consortium A framework for human microbiome research. Nature. 2012;486:215–21. doi: 10.1038/nature11209.
    1. Davis C, Kota K, Baldhandapani V, Gong W, Abubucker S, Becker E, et al. mBLAST: keeping up with the sequencing explosion for (meta) genome analysis. J Data Mining Genomics Proteomics. 2013;4:135. doi: 10.4172/2153-0602.1000135.
    1. Abubucker S, Segata N, Goll J, Schubert AM, Izard J, Cantarel BL, et al. Metabolic reconstruction for metagenomic data and its application to the human microbiome. PLoS Comput Biol. 2012;8(6) doi: 10.1371/journal.pcbi.1002358.
    1. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;2(6):R60. doi: 10.1186/gb-2011-12-6-r60.
    1. Samuel BS, Gordon JI. A humanized gnotobiotic mouse model of host-archaeal-bacterial mutualism. Proc Natl Acad Sci U S A. 2006;103:10011–6. doi: 10.1073/pnas.0602187103.
    1. Agapova S, Stephenson K, Manary M, Weisz A, Tarr PI, Mkakosya R, et al. Detection of low-concentration host mRNA transcripts in Malawian children at risk for environmental enteropathy. J Pediatr Gastroenterol Nutr. 2013;56:66–71. doi: 10.1097/MPG.0b013e31826a107a.

Source: PubMed

3
S'abonner