Identifying functional reorganization of spelling networks: an individual peak probability comparison approach

Jeremy J Purcell, Brenda Rapp, Jeremy J Purcell, Brenda Rapp

Abstract

Previous research has shown that damage to the neural substrates of orthographic processing can lead to functional reorganization during reading (Tsapkini et al., 2011); in this research we ask if the same is true for spelling. To examine the functional reorganization of spelling networks we present a novel three-stage Individual Peak Probability Comparison (IPPC) analysis approach for comparing the activation patterns obtained during fMRI of spelling in a single brain-damaged individual with dysgraphia to those obtained in a set of non-impaired control participants. The first analysis stage characterizes the convergence in activations across non-impaired control participants by applying a technique typically used for characterizing activations across studies: Activation Likelihood Estimate (ALE) (Turkeltaub et al., 2002). This method was used to identify locations that have a high likelihood of yielding activation peaks in the non-impaired participants. The second stage provides a characterization of the degree to which the brain-damaged individual's activations correspond to the group pattern identified in Stage 1. This involves performing a Mahalanobis distance statistics analysis (Tsapkini et al., 2011) that compares each of a control group's peak activation locations to the nearest peak generated by the brain-damaged individual. The third stage evaluates the extent to which the brain-damaged individual's peaks are atypical relative to the range of individual variation among the control participants. This IPPC analysis allows for a quantifiable, statistically sound method for comparing an individual's activation pattern to the patterns observed in a control group and, thus, provides a valuable tool for identifying functional reorganization in a brain-damaged individual with impaired spelling. Furthermore, this approach can be applied more generally to compare any individual's activation pattern with that of a set of other individuals.

Keywords: ALE; IPPC; dysgraphia; fMRI; mahalanobis; orthography; spelling.

Figures

Figure 1
Figure 1
A schematic depiction of the cognitive architecture of the written word production system that distinguishes between central and peripheral spelling processes (adapted from Purcell et al., 2011).
Figure 2
Figure 2
Axial slices depicting DPT's lesion in the left ventral occipitotemporal cortex. The slices were rotated -15 degrees from the AC-PC line and are shown in a sagittal view as red lines in the right side box.
Figure 3
Figure 3
Whole brain contrast maps depicting spelling activations for DPT and the control groups. Only clusters surpassing a corrected cluster-threshold of p < 0.05 are shown. (A) Map of clusters with t-value scale for the Spell>Case Verification for DPT (B) Map of DPT's spelling clusters projected in red onto a standard rendered template brain and onto slices from 32 to −24 in the z-axis. Displayed also are the overlaid results from control groups 1(light blue) and 2 (dark blue) with blue-gray depicting the overlap between them. As can be seen, there was no overlap between the distribution of activations for control groups 1/2 and DPT.
Figure 4
Figure 4
The subject-based ALE analysis map. (A) The results of the subject-based ALE analysis based on the locations of significant spelling peaks from every control participant (19 total). ALE clusters were FDR corrected at p < 0.05. Significant clusters were projected on a standard rendered template brain in green. These clusters correspond to the regions with greatest likelihood of peak activation for spelling across all control subjects. (B) An overlay of DPT's functional activation map in red (from Figure 3) and the subject-based ALE map in green. Areas of overlap are in yellow. These include portions of the left inferior frontal gyrus.
Figure 5
Figure 5
Mahalanobis distance plots depicting peak activations for DPT and control participants. The ellipsoids represent the 95% confidence interval of the control data and x, y, and z represent dimensions in Talairach coordinate space. (A) Depicts a plot of the individual control participant peaks that contribute to a group ALE peak that is located in the left middle temporal gyrus (centered at −50, −36, 0). This is compared to the nearest DPT peak at (−48, −22, −11); MD2 = 20.1, p-value = 0.0002. (B) Depicts a plot corresponding to the control peaks corresponding to a group ALE peak located in the left IFG (centered at −50, 8, 20). This is compared the nearest DPT peak at (−57, 11, 13); MD2 = 5.3, p-value = 0.154.
Figure 6
Figure 6
Peak probability map (PPM). (A) Map of probability spheres each with a radius of 1 standard deviation of the UD (uncertainty distance), centered on each individual participant control peak and projected onto a standard rendered template brain. The color scale represents the percentage of overlap across all control subjects (total = 19). (B) One of DPT's peaks (−42, 14, 23) is represented by a red X. The PPM indicates that the maximum percentage of subjects with probabilistic spheres at the location of DPT's peak is approximately 11%, and therefore that the DPT peak is quite atypical.
Figure 7
Figure 7
Summary of IPPC Analysis results. Each of DPT's peaks and the control group ALE peaks (see Table 5) were projected onto DPT's brain; the red region depicts DPT's lesion. Dots are used to visualize the peak locations and were projected at a depth of 16 mm. Green identifies the location of peaks for the normal group, with dark green depicting “strong” normal activation peaks (the majority of control participants) and light green depicting “weak” normal activation peaks (see text for details). Blue dots are used to depict DPT's activation peaks that were consistent with normal activation peaks: dark blue indicates DPT peak locations consistent with the strong normal activation peaks; light blue depicts DPT's peaks consistent with the weak normal activation peaks. For DPT peaks that were identified as within the normal range, the red dashed circles indicate the grouping of the DPT peaks and the nearest control group peak. Red depicts DPT peaks that were classified as severely abnormal in their location (consistent with fewer than 11% of control participant peaks); orange depicts DPT peaks that were moderately abnormal in their location (consistent with 11–33% of control participant peaks).

References

    1. Baker C. I., Liu J., Wald L. L., Kwong K. K., Benner T., Kanwisher N. (2007). Visual word processing and experiential origins of functional selectivity in human extrastriate cortex. Proc. Natl. Acad. Sci. U.S.A. 104, 9087–9092 10.1073/pnas.0703300104
    1. Birn R. M., Diamond J. B., Smith M. A., Bandettini P. A. (2006). Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI. Neuroimage 31, 1536–1548 10.1016/j.neuroimage.2006.02.048
    1. Blank S. C., Bird H., Turkheimer F., Wise R. J. S. (2003). Speech production after stroke: the role of the right pars opercularis. Ann. Neurol. 54, 310–320 10.1002/ana.10656
    1. Booth J. R., Burman D. D., Meyer J. R., Gitelman D. R., Parrish T. B., Mesulam M. M. (2002). Functional anatomy of intra- and cross-modal lexical tasks. Neuroimage 16, 7–22 10.1006/nimg.2002.1081
    1. Booth J. R., Burman D. D., Meyer J. R., Lei Z., Choy J., Gitelman D. R., et al. (2003). Modality-specific and -independent developmental differences in the neural substrate for lexical processing. J. Neurolinguist. 16, 383–405 10.1016/S0911-6044(03)00019-8
    1. Brass M., Derrfuss J., Forstmann B., von Cramon D. Y. (2005). The role of the inferior frontal junction area in cognitive control. Trends Cogn. Sci. 9, 314–316 10.1016/j.tics.2005.05.001
    1. Cao Y., Vikingstad E. M., George K. P., Johnson A. F., Welch K. M. (1999). Cortical language activation in stroke patients recovering from aphasia with functional MRI. Stroke J. Cereb. Circ. 30, 2331–2340 10.1161/01.STR.30.11.2331
    1. Cappa S. F., Perani D., Grassi F., Bressi S., Alberoni M., Franceschi M., et al. (1997). A PET follow-up study of recovery after stroke in acute aphasics. Brain Lang. 56, 55–67 10.1006/brln.1997.1737
    1. Cohen L., Dehaene S. (2004). Specialization within the ventral stream: the case for the visual word form area. Neuroimage 22, 466–476 10.1016/j.neuroimage.2003.12.049
    1. Cohen L., Martinaud O., Lemer C., Lehericy S., Samson Y., Obadia M., et al. (2003). Visual word recognition in the left and right hemispheres: anatomical and functional correlates of peripheral alexias. Cereb. Cortex 13, 1313–1333 10.1093/cercor/bhg079
    1. Crawford J. R., Garthwaite P. H. (2002). Investigation of the single case in neuropsychology: confidence limits on the abnormality of test scores and test score differences. Neuropsychologia 40, 1196–1208 10.1016/S0028-3932(01)00224-X
    1. Crinion J., Holland A. L., Copland D. A., Thompson C. K., Hillis A. E. (2013). Neuroimaging in aphasia treatment research: quantifying brain lesions after stroke. Neuroimage 73, 208–214 10.1016/j.neuroimage.2012.07.044
    1. Crinion J. T., Leff A. P. (2007). Recovery and treatment of aphasia after stroke: functional imaging studies. Curr. Opin. Neurol. 20, 667–673 10.1097/WCO.0b013e3282f1c6fa
    1. Crinion J. T., Warburton E. A., Lambon-Ralph M. A., Howard D., Wise R. J. S. (2006). Listening to narrative speech after aphasic stroke: the role of the left anterior temporal lobe. Cereb. Cortex 16, 1116–1125 10.1093/cercor/bhj053
    1. Dehaene S., Cohen L. (2011). The unique role of the visual word form area in reading. Trends Cogn. Sci. 15, 254–262 10.1016/j.tics.2011.04.003
    1. Dehaene S., Cohen L., Sigman M., Vinckier F. (2005). The neural code for written words: a proposal. Trends Cogn. Sci. 9, 335–341 10.1016/j.tics.2005.05.004
    1. Derrfuss J., Brass M., Neumann J., Von Cramon D. Y. (2005). Involvement of the inferior frontal junction in cognitive control: meta-analyses of switching and Stroop studies. Hum. Brain Mapp. 25, 22–34 10.1002/hbm.20127
    1. Eickhoff S. B., Laird A. R., Grefkes C., Wang L. E., Zilles K., Fox P. T. (2009). Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty. Hum. Brain Mapp. 30, 2907–2926 10.1002/hbm.20718
    1. Fiez J. A., Tranel D., Seager-Frerichs D., Damasio H. (2006). Specific reading and phonological processing deficits are associated with damage to the left frontal operculum. Cortex 42, 624–643 10.1016/S0010-9452(08)70399-X
    1. Forman S. D., Cohen J. D., Fitzgerald M., Eddy W. F., Mintun M. A., Noll D. C. (1995). Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): use of a cluster-size threshold. Magn. Reson. Med. 33, 636–647 10.1002/mrm.1910330508
    1. Fridriksson J., Bonilha L., Baker J. M., Moser D., Rorden C. (2010). Activity in Preserved Left Hemisphere Regions Predicts Anomia Severity in Aphasia. Cereb. Cortex 20, 1013–1019 10.1093/cercor/bhp160
    1. Fridriksson J., Hubbard H. I., Hudspeth S. G., Holland A. L., Bonilha L., Fromm D., et al. (2012). Speech entrainment enables patients with Broca's aphasia to produce fluent speech. Brain J. Neurol. 135, 3815–3829 10.1093/brain/aws301
    1. Gaillard R., Naccache L., Pinel P., Clemenceau S., Volle E., Hasboun D., et al. (2006). Direct intracranial, FMRI, and lesion evidence for the causal role of left inferotemporal cortex in reading. Neuron 50, 191–204 10.1016/j.neuron.2006.03.031
    1. Gordinier H. (1903). Arguments in favor of the existence of a separate centre for writing. Am. J. Med. Sci. 126, 490–530 10.1097/00000441-190309000-00014
    1. Heiss W.-D., Thiel A. (2006). A proposed regional hierarchy in recovery of post-stroke aphasia. Brain Lang. 98, 118–123 10.1016/j.bandl.2006.02.002
    1. Hillis A., Rapp B. (2004). Cognitive and neural substrates of written language: comprehension and production, in The Cognitive Neurosciences, 3rd Edn, ed Gazzaniga M. S. (Cambridge, MA: MIT Press; ), 775–787
    1. Hillis A. E., Newhart M., Heidler J., Barker P., Herskovits E., Degaonkar M. (2005). The roles of the “visual word form area” in reading. Neuroimage 24, 548–559 10.1016/j.neuroimage.2004.08.026
    1. Kan I. P., Biran I., Thompson-Schill S. L., Chatterjee A. (2006). Letter selection and letter assembly in acquired dysgraphia. Cogn. Behav. Neurol. 19, 225–236 10.1097/01.wnn.0000213918.18138.f2
    1. Karbe H., Thiel A., Weber-Luxenburger G., Herholz K., Kessler J., Heiss W. D. (1998). Brain plasticity in poststroke aphasia: what is the contribution of the right hemisphere? Brain Lang. 64, 215–230 10.1006/brln.1998.1961
    1. Kawahata N., Nagata K., Shishido F. (1988). Alexia with agraphia due to the left posterior inferior temporal lobe lesion–neuropsychological analysis and its pathogenetic mechanisms. Brain Lang 33, 296–310 10.1016/0093-934X(88)90070-3
    1. Kiran S., Ansaldo A., Bastiaanse R., Cherney L. R., Howard D., Faroqi-Shah Y., et al. (2013). Neuroimaging in aphasia treatment research: standards for establishing the effects of treatment. Neuroimage 76, 428–435 10.1016/j.neuroimage.2012.10.011
    1. Kurland J., Cortes C. R., Wilke M., Sperling A. J., Lott S. N., Tagamets M. A., et al. (2008). Neural mechanisms underlying learning following semantic mediation treatment in a case of phonologic alexia. Brain Imaging Behav. 2:147 10.1007/s11682-008-9027-2
    1. Liakakis G., Nickel J., Seitz R. J. (2011). Diversity of the inferior frontal gyrus–a meta-analysis of neuroimaging studies. Behav. Brain Res. 225, 341–347 10.1016/j.bbr.2011.06.022
    1. Mahalanobis P. C. (1936). On the generalized distance in statistics. Proc. Natl. Inst. Sci. India 2, 49–55
    1. McCandliss B. D., Cohen L., Dehaene S. (2003). The visual word form area: expertise for reading in the fusiform gyrus. Trends Cogn. Sci. 7, 293–299 10.1016/S1364-6613(03)00134-7
    1. Meinzer M., Beeson P. M., Cappa S., Crinion J., Kiran S., Saur D., et al. (2013). Neuroimaging in aphasia treatment research: consensus and practical guidelines for data analysis. Neuroimage 73, 215–224 10.1016/j.neuroimage.2012.02.058
    1. Musso M., Weiller C., Kiebel S., Müller S. P., Bülau P., Rijntjes M. (1999). Training-induced brain plasticity in aphasia. Brain J. Neurol. 122(Pt 9), 1781–1790 10.1093/brain/122.9.1781
    1. Ohyama M., Senda M., Kitamura S., Ishii K., Mishina M., Terashi A. (1996). Role of the nondominant hemisphere and undamaged area during word repetition in poststroke aphasics. A PET activation study. Stroke J. Cereb. Circ. 27, 897–903 10.1161/01.STR.27.5.897
    1. Oldfield R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9, 97–133 10.1016/0028-3932(71)90067-4
    1. Patterson K. (1986). Lexical but nonsemantic spelling? Cogn. Neuropsychol. 3, 341–367 10.1080/02643298608253363
    1. Perani D., Cappa S. F., Tettamanti M., Rosa M., Scifo P., Miozzo A., et al. (2003). A fMRI study of word retrieval in aphasia. Brain Lang. 85, 357–368 10.1016/S0093-934X(02)00561-8
    1. Philipose L. E., Gottesman R. F., Newhart M., Kleinman J. T., Herskovits E. H., Pawlak M. A., et al. (2007). Neural regions essential for reading and spelling of words and pseudowords. Ann. Neurol. 62, 481–492 10.1002/ana.21182
    1. Planton S., Jucla M., Roux F.-E., Démonet J.-F. (2013). The “handwriting brain”: a meta-analysis of neuroimaging studies of motor versus orthographic processes. Cortex 49, 2772–2787 10.1016/j.cortex.2013.05.011
    1. Postman-Caucheteux W. A., Birn R. M., Pursley R. H., Butman J. A., Solomon J. M., Picchioni D., et al. (2010). Single-trial fMRI shows contralesional activity linked to overt naming errors in chronic aphasic patients. J. Cogn. Neurosci. 22, 1299–1318 10.1162/jocn.2009.21261
    1. Price C. J., Crinion J. (2005). The latest on functional imaging studies of aphasic stroke. Curr. Opin. Neurol. 18, 429–434 10.1097/01.wco.0000168081.76859.c1
    1. Pugh K. R., Mencl W. E., Jenner A. R., Katz L., Frost S. J., Lee J. R., et al. (2001). Neurobiological studies of reading and reading disability. J. Commun. Disord. 34, 479–492 10.1016/S0021-9924(01)00060-0
    1. Purcell J. J., Turkeltaub P. E., Eden G. F., Rapp B. (2011). Examining the central and peripheral processes of written word production through meta-analysis. Front. Psychol. 2:239 10.3389/fpsyg.2011.00239
    1. Ralph M. A. L., Patterson K., Garrard P., Hodges J. R. (2003). Semantic dementia with category specificity: a comparative case-series study. Cogn. Neuropsychol. 20, 307–326 10.1080/02643290244000301
    1. Rapcsak P., Beeson S., Hillis A. (2002). Neuroanatomical Correlates of Spelling and Writing. New York, NY: Psychology Press
    1. Rapcsak S. Z., Beeson P. M. (2004). The role of left posterior inferior temporal cortex in spelling. Neurology 62, 2221–2229 10.1212/01.WNL.0000130169.60752.C5
    1. Rapcsak S. Z., Beeson P. M., Henry M. L., Leyden A., Kim E., Rising K., et al. (2009). Phonological dyslexia and dysgraphia: cognitive mechanisms and neural substrates. Cortex 45, 575–591 10.1016/j.cortex.2008.04.006
    1. Rapp B., Caplan D., Edwards S., Visch-Brink E., Thompson C. K. (2013). Neuroimaging in aphasia treatment research: issues of experimental design for relating cognitive to neural changes. Neuroimage 73, 200–207 10.1016/j.neuroimage.2012.09.007
    1. Rapp B., Caramazza A. (1997). From graphemes to abstract letter shapes: levels of representation in written spelling. J. Exp. Psychol. Hum. Percept. Perform. 23, 1130–1152 10.1037/0096-1523.23.4.1130
    1. Rapp B., Dufor O. (2011). The neurotopography of written word production: an FMRI investigation of the distribution of sensitivity to length and frequency. J. Cogn. Neurosci. 23, 4067–4081 10.1162/jocn_a_00109
    1. Rapp B., Kong D. (2002). Revealing the component functions of the graphemic buffer. Brain Lang. 83, 112–114 10.1016/S0093-934X(02)00059-7
    1. Rapp B., Lipka K. (2011). The literate brain: the relationship between spelling and reading. J. Cogn. Neurosci. 23, 1180–1197 10.1162/jocn.2010.21507
    1. Roeltgen D., Heilman K. (1985). Review of agraphia and a proposal for an anatomically-based neuropsychological model of writing. Appl. Psycholinguist. 6, 205–229 10.1017/S0142716400006184
    1. Rorden C., Brett M. (2000). Stereotaxic display of brain lesions. Behav. Neurol. 12, 191–200
    1. Saur D., Hartwigsen G. (2012). Neurobiology of language recovery after stroke: lessons from neuroimaging studies. Arch. Phys. Med. Rehabil. 93, S15–S25 10.1016/j.apmr.2011.03.036
    1. Saur D., Lange R., Baumgaertner A., Schraknepper V., Willmes K., Rijntjes M., et al. (2006). Dynamics of language reorganization after stroke. Brain 129, 1371–1384 10.1093/brain/awl090
    1. Schwartz M. F., Kimberg D. Y., Walker G. M., Faseyitan O., Brecher A., Dell G. S., et al. (2009). Anterior temporal involvement in semantic word retrieval: voxel-based lesion-symptom mapping evidence from aphasia. Brain J. Neurol. 132, 3411–3427 10.1093/brain/awp284
    1. Shim H., Hurley R. S., Rogalski E., Mesulam M.-M. (2012). Anatomic, clinical, and neuropsychological correlates of spelling errors in primary progressive aphasia. Neuropsychologia 50, 1929–1935 10.1016/j.neuropsychologia.2012.04.017
    1. Talairach J., Tournoux P. (1988). Co-planar Stereotaxic-atlas of the Human Brain. 3-Dimensional Proportional System: Approach to Cerebral Imaging. New York, NY: Thieme Medical Publishers Inc
    1. Taylor J. S. H., Rastle K., Davis M. H. (2013). Can cognitive models explain brain activation during word and pseudoword reading? A meta-analysis of 36 neuroimaging studies. Psychol. Bull. 139, 766–791 10.1037/a0030266
    1. Thompson C. K., Bonakdarpour B., Fix S. F. (2010). Neural mechanisms of verb argument structure processing in agrammatic aphasic and healthy age-matched listeners. J. Cogn. Neurosci. 22, 1993–2011 10.1162/jocn.2009.21334
    1. Thompson C. K., den Ouden D.-B. (2008). Neuroimaging and recovery of language in aphasia. Curr. Neurol. Neurosci. Rep. 8, 475–483 10.1007/s11910-008-0076-0
    1. Thulborn K. R., Carpenter P. A., Just M. A. (1999). Plasticity of language-related brain function during recovery from stroke. Stroke J. Cereb. Circ. 30, 749–754 10.1161/01.STR.30.4.749
    1. Tsapkini K., Rapp B. (2010). The orthography-specific functions of the left fusiform gyrus: Evidence of modality and category specificity. Cortex 46, 185–205 10.1016/j.cortex.2009.02.025
    1. Tsapkini K., Vindiola M., Rapp B. (2011). Patterns of brain reorganization subsequent to left fusiform damage: fMRI evidence from visual processing of words and pseudowords, faces and objects. Neuroimage 55, 1357–1372 10.1016/j.neuroimage.2010.12.024
    1. Turkeltaub P. E., Eden G. F., Jones K. M., Zeffiro T. A. (2002). Meta-analysis of the functional neuroanatomy of single-word reading: method and validation. Neuroimage 16, 765–780 10.1006/nimg.2002.1131
    1. Turkeltaub P. E., Messing S., Norise C., Hamilton R. H. (2011). Are networks for residual language function and recovery consistent across aphasic patients? Neurology 76, 1726–1734 10.1212/WNL.0b013e31821a44c1
    1. Van Oers C. A., Vink M., van Zandvoort M. J., van der Worp H. B., de Haan E. H., Kappelle L. J., et al. (2010). Contribution of the left and right inferior frontal gyrus in recovery from aphasia. A functional MRI study in stroke patients with preserved hemodynamic responsiveness. Neuroimage 49, 885–893 10.1016/j.neuroimage.2009.08.057
    1. Visser M., Jefferies E., Lambon Ralph M. A. (2010). Semantic processing in the anterior temporal lobes: a meta-analysis of the functional neuroimaging literature. J. Cogn. Neurosci. 22, 1083–1094 10.1162/jocn.2009.21309
    1. Warburton E., Price C. J., Swinburn K., Wise R. J. (1999). Mechanisms of recovery from aphasia: evidence from positron emission tomography studies. J. Neurol. Neurosurg. Psychiatry 66, 155–161 10.1136/jnnp.66.2.155
    1. Weiller C., Isensee C., Rijntjes M., Huber W., Müller S., Bier D., et al. (1995). Recovery from Wernicke's aphasia: a positron emission tomographic study. Ann. Neurol. 37, 723–732 10.1002/ana.410370605
    1. Woollams A. M., Ralph M. A. L., Plaut D. C., Patterson K. (2007). SD-squared: on the association between semantic dementia and surface dyslexia. Psychol. Rev. 114, 316–339 10.1037/0033-295X.114.2.316
    1. Xu X., Zhang M., Shang D., Wang Q., Luo B., Weng X. (2004). Cortical language activation in aphasia: a functional MRI study. Chin. Med. J. (Engl.) 117, 1011–1016 Available online at:

Source: PubMed

3
S'abonner