Intrahemispheric Perfusion in Chronic Stroke-Induced Aphasia

Cynthia K Thompson, Matthew Walenski, YuFen Chen, David Caplan, Swathi Kiran, Brenda Rapp, Kristin Grunewald, Mia Nunez, Richard Zinbarg, Todd B Parrish, Cynthia K Thompson, Matthew Walenski, YuFen Chen, David Caplan, Swathi Kiran, Brenda Rapp, Kristin Grunewald, Mia Nunez, Richard Zinbarg, Todd B Parrish

Abstract

Stroke-induced alterations in cerebral blood flow (perfusion) may contribute to functional language impairments and recovery in chronic aphasia. Using MRI, we examined perfusion in the right and left hemispheres of 35 aphasic and 16 healthy control participants. Across 76 regions (38 per hemisphere), no significant between-subjects differences were found in the left, whereas blood flow in the right was increased in the aphasic compared to the control participants. Region-of-interest (ROI) analyses showed a varied pattern of hypo- and hyperperfused regions across hemispheres in the aphasic participants; however, there were no significant correlations between perfusion values and language abilities in these regions. These patterns may reflect autoregulatory changes in blood flow following stroke and/or increases in general cognitive effort, rather than maladaptive language processing. We also examined blood flow in perilesional tissue, finding the greatest hypoperfusion close to the lesion (within 0-6 mm), with greater hypoperfusion in this region compared to more distal regions. In addition, hypoperfusion in this region was significantly correlated with language impairment. These findings underscore the need to consider cerebral perfusion as a factor contributing to language deficits in chronic aphasia as well as recovery of language function.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Figure 1
Figure 1
Lesion overlap map for 35 participants with aphasia, by axial slices (a) and with a three-dimensional view (b), using the neurological convention (left hemisphere is on the left). The color bar indicates the degree of overlap from minimal overlap (violet; N = 2 participants overlapping) to maximum overlap (red; N = 25 participants overlapping). The overlap map was spatially smoothed (3 mm).
Figure 2
Figure 2
Mean right-occipital-normalized perfusion values for participants with aphasia and healthy controls, averaged across the 38 ROIs for the left and right hemispheres. Error bars are standard error. indicates a significant left versus right difference (p < .05).
Figure 3
Figure 3
ROIs with greater perfusion (hyperperfusion; red-yellow color scale) and lesser perfusion (hypoperfusion; blue-green color scale) in patients relative to control participants, in three-dimensional and axial slice views (left hemisphere is on the left). Only regions that differ significantly across groups (patients versus controls; p < .05) are indicated.
Figure 4
Figure 4
Mean right-occipital-normalized perfusion values for participants with aphasia for the left perilesional tissue and the corresponding right homologous regions in the 0–6 mm, 6–12 mm, and remaining (12+ mm) ROIs. Error bars are standard error. indicates a significant difference (p < .05). Significance is not indicated for left versus right differences (all ROIs are significant between hemispheres).

References

    1. Mielke R., Szelies B. Neuronal plasticity in poststroke aphasia: insights by quantitative electroencephalography. Expert Review of Neurotherapeutics. 2003;3(3):373–380. doi: 10.1586/14737175.3.3.373.
    1. Cramer S. C. Repairing the human brain after stroke: I. Mechanisms of spontaneous recovery. Annals of Neurology. 2008;63(3):272–287. doi: 10.1002/ana.21393.
    1. Thompson C. K., Ouden D.-B. D. Neuroimaging and recovery of language in aphasia. Current Neurology and Neuroscience Reports. 2008;8(6):475–483. doi: 10.1007/s11910-008-0076-0.
    1. Kiran S. What is the nature of poststroke language recovery and reorganization? ISRN Neurology. 2012;2012:13. doi: 10.5402/2012/786872.786872
    1. Buxton R. B., Uludag K., Dubowitz D. J., Liu T. T. Modeling the hemodynamic response to brain activation. NeuroImage. 2004;23(1):S220–S233. doi: 10.1016/j.neuroimage.2004.07.013.
    1. Witte O. W., Stoll G. Delayed and remote effects of focal cortical infarctions: secondary damage and reactive plasticity. Advances in neurology. 1997;73:207–227.
    1. Singhal A. B., Lo E. H., Dalkara T., Moskowitz M. A. Advances in stroke neuroprotection: hyperoxia and beyond. Neuroimaging Clinics of North America. 2005;15(3):697–720. doi: 10.1016/j.nic.2005.08.014.
    1. Schormann T., Kraemer M. Voxel-guided morphometry (“VGM”) and application to stroke. IEEE Transactions on Medical Imaging. 2003;22(1):62–74. doi: 10.1109/TMI.2002.806571.
    1. Hamilton R. H., Chrysikou E. G., Coslett B. Mechanisms of aphasia recovery after stroke and the role of noninvasive brain stimulation. Brain and Language. 2011;118(1-2):40–50. doi: 10.1016/j.bandl.2011.02.005.
    1. Saur D., Lange R., Baumgaertner A., et al. Dynamics of language reorganization after stroke. Brain: A Journal of Neurology. 2006;129(6):1371–1384. doi: 10.1093/brain/awl090.
    1. Richardson J. D., Baker J. M., Morgan P. S., Rorden C., Bonilha L., Fridriksson J. Cerebral perfusion in chronic stroke: implications for lesion-symptom mapping and functional MRI. Behavioural Neurology. 2011;24(2):117–122. doi: 10.3233/ben-2011-0283.
    1. Brumm K. P., Perthen J. E., Liu T. T., Haist F., Ayalon L., Love T. An arterial spin labeling investigation of cerebral blood flow deficits in chronic stroke survivors. NeuroImage. 2010;51(3):995–1005. doi: 10.1016/j.neuroimage.2010.03.008.
    1. Astrup J., Symon L., Branston N. M., Lassen N. A. Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischemia. Stroke. 1977;8(1):51–57. doi: 10.1161/01.str.8.1.51.
    1. Powers W. J., Press G. A., Grubb R. L., Jr., Gado M., Raichle M. E. The effect of hemodynamically significant carotid artery disease on the hemodynamic status of the cerebral circulation. Annals of Internal Medicine. 1987;106(1):27–35. doi: 10.7326/0003-4819-106-1-27.
    1. Love T., Swinney D., Wong E., Buxton R. Perfusion imaging and stroke: a more sensitive measure of the brain bases of cognitive deficits. Aphasiology. 2002;16(9):873–883. doi: 10.1080/02687030244000356.
    1. Hillis A. E. Magnetic resonance perfusion imaging in the study of language. Brain and Language. 2007;102(2):165–175. doi: 10.1016/j.bandl.2006.04.016.
    1. Rorden C., Karnath H.-O. Using human brain lesions to infer function: a relic from a past era in the fMRI age? Nature Reviews Neuroscience. 2004;5(10):812–819. doi: 10.1038/nrn1521.
    1. Peck K. K., Moore A. B., Crosson B. A., et al. Functional magnetic resonance imaging before and after aphasia therapy: shifts in hemodynamic time to peak during an overt language task. Stroke. 2004;35(2):554–559. doi: 10.1161/01.str.0000110983.50753.9d.
    1. Thompson C. K., den Ouden D.-B., Bonakdarpour B., Garibaldi K., Parrish T. B. Neural plasticity and treatment-induced recovery of sentence processing in agrammatism. Neuropsychologia. 2010;48(11):3211–3227. doi: 10.1016/j.neuropsychologia.2010.06.036.
    1. Fridriksson J., Richardson J. D., Fillmore P., Cai B. Left hemisphere plasticity and aphasia recovery. NeuroImage. 2012;60(2):854–863. doi: 10.1016/j.neuroimage.2011.12.057.
    1. Vergara-Martínez M., Perea M., Gómez P., Swaab T. Y. ERP correlates of letter identity and letter position are modulated by lexical frequency. Brain and Language. 2013;125(1):11–27. doi: 10.1016/j.bandl.2012.12.009.
    1. Veldsman M., Cumming T., Brodtmann A. Beyond BOLD: optimizing functional imaging in stroke populations. Human Brain Mapping. 2015;36(4):1620–1636. doi: 10.1002/hbm.22711.
    1. Bonakdarpour B., Parrish T. B., Thompson C. K. Hemodynamic response function in patients with stroke-induced aphasia: implications for fMRI data analysis. NeuroImage. 2007;36(2):322–331. doi: 10.1016/j.neuroimage.2007.02.035.
    1. Bonakdarpour B., Beeson P. M., Demarco A. T., Rapcsak S. Z. Variability in blood oxygen level dependent (BOLD) signal in patients with stroke-induced and primary progressive aphasia. NeuroImage: Clinical. 2015;8, article no. 471:88–94. doi: 10.1016/j.nicl.2015.03.014.
    1. Kertesz A. Western Aphasia Battery-Revised (WAB-R) San Antonio, Tex, USA: Pearson; 2006.
    1. Brown C. E., Li P., Boyd J. D., Delaney K. R., Murphy T. H. Extensive turnover of dendritic spines and vascular remodeling in cortical tissues recovering from stroke. Journal of Neuroscience. 2007;27(15):4101–4109. doi: 10.1523/JNEUROSCI.4295-06.2007.
    1. Lin T.-N., Sun S.-W., Cheung W.-M., Li F., Chang C. Dynamic changes in cerebral blood flow and angiogenesis after transient focal cerebral ischemia in rats: evaluation with serial magnetic resonance imaging. Stroke. 2002;33(12):2985–2991. doi: 10.1161/01.str.0000037675.97888.9d.
    1. Shanina E. V., Schallert T., Witte O. W., Redecker C. Behavioral recovery from unilateral photothrombotic infarcts of the forelimb sensorimotor cortex in rats: role of the contralateral cortex. Neuroscience. 2006;139(4):1495–1506. doi: 10.1016/j.neuroscience.2006.01.016.
    1. Wei L., Erinjeri J. P., Rovainen C. M., Woolsey T. A. Collateral growth and angiogenesis around cortical stroke. Stroke. 2001;32(9):2179–2184. doi: 10.1161/hs0901.094282.
    1. Gonzalez C. L. R., Kolb B. A comparison of different models of stroke on behaviour and brain morphology. European Journal of Neuroscience. 2003;18(7):1950–1962. doi: 10.1046/j.1460-9568.2003.02928.x.
    1. Carmichael S. T., Tatsukawa K., Katsman D., Tsuyuguchi N., Kornblum H. I. Evolution of diaschisis in a focal stroke model. Stroke. 2004;35(3):758–763. doi: 10.1161/01.str.0000117235.11156.55.
    1. Stroemer R. P., Kent T. A., Hulsebosch C. E. Neocortical neural sprouting, synaptogenesis, and behavioral recovery after neocortical infarction in rats. Stroke. 1995;26(11):2135–2144. doi: 10.1161/01.STR.26.11.2135.
    1. Carmichael S. T. Plasticity of cortical projections after stroke. Neuroscientist. 2003;9(1):64–75. doi: 10.1177/1073858402239592.
    1. Chollet F., Dipiero V., Wise R. J. S., Brooks D. J., Dolan R. J., Frackowiak R. S. J. The functional anatomy of motor recovery after stroke in humans: A Study with Positron Emission Tomography. Annals of Neurology. 1991;29(1):63–71. doi: 10.1002/ana.410290112.
    1. Hillis A. E. Brain/language relationships identified with diffusion and perfusion MRI: clinical applications in neurology and neurosurgery. Annals of the New York Academy of Sciences. 2005;1064:149–161. doi: 10.1196/annals.1340.027.
    1. Lee R. G., Donkelaar P. V. Mechanisms underlying functional recovery following stroke. Canadian Journal of Neurological Sciences. 1995;22(4):257–263. doi: 10.1017/s0317167100039445.
    1. Nudo R. J. Recovery after damage to motor cortical areas. Current Opinion in Neurobiology. 1999;9(6):740–747. doi: 10.1016/S0959-4388(99)00027-6.
    1. Thompson C. K., Weintraub S. Northwestern Naming Battery. Evanston, Ill, USA: Northwestern University; 2014.
    1. Kay J., Lesser R., Coltheart M. Psycholinguistic assessments of language processing in aphasia (PALPA): an introduction. Aphasiology. 1996;10(2):159–180. doi: 10.1080/02687039608248403.
    1. Thompson C. K. Northwestern Assessment of Verbs and Sentences. Evanston, Ill, USA: Northwestern University; 2011.
    1. Dai W., Garcia D., De Bazelaire C., Alsop D. C. Continuous flow-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields. Magnetic Resonance in Medicine. 2008;60(6):1488–1497. doi: 10.1002/mrm.21790.
    1. Alsop D. C., Detre J. A., Golay X., et al. Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM Perfusion Study group and the European consortium for ASL in dementia. Magnetic Resonance in Medicine. 2015;73(1):102–116. doi: 10.1002/mrm.25197.
    1. Mugler J. P., Brookeman J. R. Three‐dimensional magnetization‐prepared rapid gradient‐echo imaging (3D MP RAGE) Magnetic Resonance in Medicine. 1990;15(1):152–157. doi: 10.1002/mrm.1910150117.
    1. Alpert K., Kogan A., Parrish T., Marcus D., Wang L. The northwestern university neuroimaging data archive (NUNDA) NeuroImage. 2016;124:1131–1136. doi: 10.1016/j.neuroimage.2015.05.060.
    1. Wang Z. Improving cerebral blood flow quantification for arterial spin labeled perfusion MRI by removing residual motion artifacts and global signal fluctuations. Magnetic Resonance Imaging. 2012;30(10):1409–1415. doi: 10.1016/j.mri.2012.05.004.
    1. Wang Z., Aguirre G. K., Rao H., et al. Empirical optimization of ASL data analysis using an ASL data processing toolbox: ASLtbx. Magnetic Resonance Imaging. 2008;26(2):261–269. doi: 10.1016/j.mri.2007.07.003.
    1. Herscovitch P., Raichle M. E. What is the correct value for the brain—blood partition coefficient for water? Journal of Cerebral Blood Flow and Metabolism. 1985;5(1):65–69. doi: 10.1038/jcbfm.1985.9.
    1. Lu H., Clingman C., Golay X., Van Zijl P. C. M. Determining the longitudinal relaxation time (T1) of blood at 3.0 tesla. Magnetic Resonance in Medicine. 2004;52(3):679–682. doi: 10.1002/mrm.20178.
    1. Du A. T., Jahng G. H., Hayasaka S., et al. Hypoperfusion in frontotemporal dementia and Alzheimer disease by arterial spin labeling MRI. Neurology. 2006;67(7):1215–1220. doi: 10.1212/01.wnl.0000238163.71349.78.
    1. Cohen J., Cohen P., West S. G., Aiken L. S. Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences. 3rd. Mahwah, NJ, USA: Lawrence Erlbaum Associates; 2003.
    1. Carmer S. G., Swanson M. R. An evaluation of ten pairwise multiple comparison procedures by Monte Carlo methods. Journal of the American Statistical Association. 1973;68(341):66–74. doi: 10.1080/01621459.1973.10481335.
    1. Holm S. A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics. 1979;6(2):65–70.
    1. Geranmayeh F., Brownsett S. L. E., Wise R. J. S. Task-induced brain activity in aphasic stroke patients: what is driving recovery? Brain: A Journal of Neurology. 2014;137(10):2632–2648. doi: 10.1093/brain/awu163.
    1. Hampshire A., Parkin B. L., Cusack R., et al. Assessing residual reasoning ability in overtly non-communicative patients using fMRI. NeuroImage: Clinical. 2013;2(1):174–183. doi: 10.1016/j.nicl.2012.11.008.
    1. Park D. C., Reuter-Lorenz P. The adaptive brain: aging and neurocognitive scaffolding. Annual Review of Psychology. 2009;60:173–196. doi: 10.1146/annurev.psych.59.103006.093656.

Source: PubMed

3
S'abonner