Effects of Exercise Domain and Intensity on Sleep in Women and Men with Overweight and Obesity

Jonas Salling Quist, Mads Rosenkilde, Anne Sofie Gram, Martin Bæk Blond, Daniel Holm-Petersen, Mads Fiil Hjorth, Bente Stallknecht, Anders Sjödin, Jonas Salling Quist, Mads Rosenkilde, Anne Sofie Gram, Martin Bæk Blond, Daniel Holm-Petersen, Mads Fiil Hjorth, Bente Stallknecht, Anders Sjödin

Abstract

Inadequate sleep is associated with cardiometabolic risk and adiposity. Exercise has been suggested as an efficient strategy to improve sleep; however, the effects of different types of exercise on sleep in individuals with overweight and obesity are not well understood. We examined effects of active commuting and leisure-time exercise on sleep in individuals with overweight or obesity. 130 physically inactive adults (20-45 years) with overweight or class 1 obesity (body mass index: 25-35 kg/m2) were randomized to 6 months of habitual lifestyle (CON, n = 18), active commuting by bike (BIKE, n = 35), or leisure-time exercise of moderate intensity (MOD, 50% VO2peak-reserve, n = 39) or vigorous intensity (VIG, 70% VO2peak-reserve, n = 38), 5 days/week. Sleep was assessed from 7-day/night accelerometry and questionnaires at baseline, 3 months, and 6 months. 92 participants were included in a per protocol analysis. At 3 months, sleep duration was longer in VIG (29 min/night [3; 55] (mean [95% CI]), p=0.03) but not in BIKE and MOD (p ≥ 0.11) compared with CON and was not different between groups at 6 months (p ≥ 0.36 vs. CON). At 6 months, sleep duration variability was lower in MOD (-31% [-50; -3], p=0.03) and numerically lower in VIG (-28% [-49; 1], p=0.06) relative to CON but was unchanged in BIKE (p=0.17 vs. CON). The effects were, however, primarily attributable to shorter and more irregular sleep in CON over time. Our findings suggest that effects of exercise on sleep in individuals with overweight and obesity may be restricted to leisure-time exercise with a short-term effect on sleep duration after vigorous intensity exercise (3 months) but a more regular sleep pattern after 6 months of moderate and vigorous intensity exercise compared with physically inactive controls. This trial was registered at clinicaltrials.gov with ID NCT01962259.

References

    1. Schmid S. M., Hallschmid M., Schultes B. The metabolic burden of sleep loss. The Lancet Diabetes & Endocrinology. 2015;3(1):52–62. doi: 10.1016/s2213-8587(14)70012-9.
    1. Quist J. S., Sjödin A., Chaput J.-P., Hjorth M. F. Sleep and cardiometabolic risk in children and adolescents. Sleep Medicine Reviews. 2016;29:76–100. doi: 10.1016/j.smrv.2015.09.001.
    1. Knutson K. L., Van Cauter E. Associations between sleep loss and increased risk of obesity and diabetes. Annals of the New York Academy of Sciences. 2008;1129(1):287–304. doi: 10.1196/annals.1417.033.
    1. Driver H. S., Taylor S. R. Exercise and sleep. Sleep Medicine Reviews. 2000;4(4):387–402. doi: 10.1053/smrv.2000.0110.
    1. Chennaoui M., Arnal P. J., Sauvet F., Léger D. Sleep and exercise: a reciprocal issue? Sleep Medicine Reviews. 2015;20:59–72. doi: 10.1016/j.smrv.2014.06.008.
    1. Kwon A. M., Shin C. Structural equation modelling for the effect of physical exercise on excessive daytime sleepiness. Public Health. 2016;141:95–99. doi: 10.1016/j.puhe.2016.08.024.
    1. Sherrill D. L., Kotchou K., Quan S. F. Association of physical activity and human sleep disorders. Archives of Internal Medicine. 1998;158(17):1894–1898. doi: 10.1001/archinte.158.17.1894.
    1. Morgan K. Daytime activity and risk factors for late-life insomnia. Journal of Sleep Research. 2003;12(3):231–238. doi: 10.1046/j.1365-2869.2003.00355.x.
    1. Dishman R. K., Sui X., Church T. S., Kline C. E., Youngstedt S. D., Blair S. N. Decline in cardiorespiratory fitness and odds of incident sleep complaints. Medicine & Science in Sports & Exercise. 2015;47(5):960–966. doi: 10.1249/mss.0000000000000506.
    1. Kredlow M. A., Capozzoli M. C., Hearon B. A., Calkins A. W., Otto M. W. The effects of physical activity on sleep: a meta-analytic review. Journal of Behavioral Medicine. 2015;38(3):427–449. doi: 10.1007/s10865-015-961776.
    1. Kelley G. A., Kelley K. S. Exercise and sleep: a systematic review of previous meta-analyses. Journal of Evidence-Based Medicine. 2017;10(1):26–36. doi: 10.1111/jebm.12236.
    1. Kjeldsen J. S., Rosenkilde M., Nielsen S. W., et al. Effect of different doses of exercise on sleep duration, sleep efficiency and sleep quality in sedentary, overweight men. Bioenergetics: Open Access. 2013;2(1):1–6. doi: 10.4172/2167-7662.1000108.
    1. Buman M. P., King A. C. Exercise as a treatment to enhance sleep. American Journal of Lifestyle Medicine. 2010;4(6):500–514. doi: 10.1177/1559827610375532.
    1. Rosenkilde M., Petersen M. B., Gram A. S., et al. The GO-ACTIWE randomized controlled trial—an interdisciplinary study designed to investigate the health effects of active commuting and leisure time physical activity. Contemporary Clinical Trials. 2017;53:122–129. doi: 10.1016/j.cct.2016.12.019.
    1. Quist J. S., Rosenkilde M., Petersen M. B., Gram A. S., Sjödin A., Stallknecht B. Effects of active commuting and leisure-time exercise on fat loss in women and men with overweight and obesity: a randomized controlled trial. International Journal of Obesity. 2018;42(3):469–478. doi: 10.1038/ijo.2017.253.
    1. Quist J. S., Blond M. B., Gram A. S, et al. Effects of active commuting and leisure-time exercise on appetite in individuals with overweight and obesity. Journal of Applied Physiology. doi: 10.1152/japplphysiol.00239.2018. In press.
    1. Gram A. S., Bladbjerg E.-M., Quist J. S., Petersen M. B., Rosenkilde M., Stallknecht B. Anti-inflammatory effects of active commuting and leisure time exercise in overweight and obese women and men: a randomized controlled trial. Atherosclerosis. 2017;265:318–324. doi: 10.1016/j.atherosclerosis.2017.06.923.
    1. Gram A. S., Petersen M. B., Quist J. S., Rosenkilde M., Stallknecht B., Bladbjerg E. M. Effects of 6 Months of active commuting and leisure-time exercise on fibrin turnover in sedentary individuals with overweight and obesity: a randomised controlled trial. Journal of Obesity. 2018;2018:10. doi: 10.1155/2018/7140754.7140754
    1. Nordby P., Auerbach P. L., Rosenkilde M., et al. Endurance training per se increases metabolic health in young, moderately overweight men. Obesity. 2012;20(11):2202–2212. doi: 10.1038/oby.2012.70.
    1. Rosenkilde M., Auerbach P., Reichkendler M. H., Ploug T., Stallknecht B. M., Sjödin A. Body fat loss and compensatory mechanisms in response to different doses of aerobic exercise—a randomized controlled trial in overweight sedentary males. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. 2012;303(6):R571–R579. doi: 10.1152/ajpregu.00141.2012.
    1. World Health Organization. Global Recommendations on Physical Activity for Health. Geneva, Switzerland: World Health Organization; 2010.
    1. Garber C. E., Blissmer B., Deschenes M. R., et al. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults. Medicine & Science in Sports & Exercise. 2011;43(7):1334–1359. doi: 10.1249/mss.0b013e318213fefb.
    1. Cole R. J., Kripke D. F., Gruen W., Mullaney D. J., Gillin J. C. Automatic sleep/wake identification from wrist activity. Sleep. 1992;15(5):461–469. doi: 10.1093/sleep/15.5.461.
    1. Hjorth M. F., Chaput J.-P., Damsgaard C. T., et al. Measure of sleep and physical activity by a single accelerometer: can a waist-worn actigraph adequately measure sleep in children? Sleep and Biological Rhythms. 2012;10(4):328–335. doi: 10.1111/j.1479-8425.2012.00578.x.
    1. Kjeldsen J. S., Hjorth M. F., Andersen R., et al. Short sleep duration and large variability in sleep duration are independently associated with dietary risk factors for obesity in Danish school children. International Journal of Obesity. 2014;38(1):32–39. doi: 10.1038/ijo.2013.147.
    1. Buysse D. J., Reynolds C. F., Monk T. H., Berman S. R., Kupfer D. J. The Pittsburgh sleep quality index: a new instrument for psychiatric practice and research. Psychiatry Research. 1989;28(2):193–213. doi: 10.1016/0165-1781(89)90047-4.
    1. Johns M. W. A new method for measuring daytime sleepiness: the epworth sleepiness scale. Sleep. 1991;14(6):540–545. doi: 10.1093/sleep/14.6.540.
    1. Mendelson M., Borowik A., Michallet A.-S., et al. Sleep quality, sleep duration and physical activity in obese adolescents: effects of exercise training. Pediatric Obesity. 2016;11(1):26–32. doi: 10.1111/ijpo.12015.
    1. Lastella M., Roach G. D., Halson S. L., Sargent C. Sleep/wake behaviours of elite athletes from individual and team sports. European Journal of Sport Science. 2015;15(2):94–100. doi: 10.1080/17461391.2014.932016.
    1. Halson S. L., Juliff L. E. Progress in Brain Research. Amsterdam, Netherlands: Elsevier; 2017. Sleep, sport, and the brain; pp. 13–31.
    1. Yetish G., Kaplan H., Gurven M., et al. Natural sleep and its seasonal variations in three pre-industrial societies. Current Biology. 2015;25(21):2862–2868. doi: 10.1016/j.cub.2015.09.046.
    1. Lehnkering H., Siegmund R. Influence of chronotype, season, and sex of subject on sleep behavior of young adults. Chronobiology International. 2007;24(5):875–888. doi: 10.1080/07420520701648259.
    1. He F., Bixler E. O., Liao J., et al. Habitual sleep variability, mediated by nutrition intake, is associated with abdominal obesity in adolescents. Sleep Medicine. 2015;16(12):1489–1494. doi: 10.1016/j.sleep.2015.07.028.
    1. McHill A. W., Wright K. P. Role of sleep and circadian disruption on energy expenditure and in metabolic predisposition to human obesity and metabolic disease. Obesity Reviews. 2017;18:15–24. doi: 10.1111/obr.12503.
    1. Pereira É. F., Moreno C., Louzada F. M. Increased commuting to school time reduces sleep duration in adolescents. Chronobiology International. 2014;31(1):87–94. doi: 10.3109/07420528.2013.826238.
    1. Kline C. E., Sui X., Hall M. H., et al. Dose-response effects of exercise training on the subjective sleep quality of postmenopausal women: exploratory analyses of a randomised controlled trial. BMJ Open. 2012;2(4) doi: 10.1136/bmjopen-2012-001044.e001044
    1. Yang P.-Y., Ho K.-H., Chen H.-C., Chien M.-Y. Exercise training improves sleep quality in middle-aged and older adults with sleep problems: a systematic review. Journal of Physiotherapy. 2012;58(3):157–163. doi: 10.1016/s1836-9553(12)70106-6.
    1. Youngstedt S. D. Ceiling and floor effects in sleep research. Sleep Medicine Reviews. 2003;7(4):351–365. doi: 10.1053/smrv.2001.0239.
    1. Ng W. L., Stevenson C. E., Wong E., et al. Does intentional weight loss improve daytime sleepiness? A systematic review and meta-analysis. Obesity Reviews. 2017;18(4):460–475. doi: 10.1111/obr.12498.
    1. Pearson N., Biddle S. J. H. Sedentary behavior and dietary intake in children, adolescents, and adults. American Journal of Preventive Medicine. 2011;41(2):178–188. doi: 10.1016/j.amepre.2011.05.002.
    1. Young T., Peppard P. E., Taheri S. Excess weight and sleep-disordered breathing. Journal of Applied Physiology. 2005;99(4):1592–1599. doi: 10.1152/japplphysiol.00587.2005.
    1. Thomasouli M.-A., Brady E. M., Davies M. J., et al. The impact of diet and lifestyle management strategies for obstructive sleep apnoea in adults: a systematic review and meta-analysis of randomised controlled trials. Sleep and Breathing. 2013;17(3):925–935. doi: 10.1007/s11325-013-0806-7.
    1. Araghi M. H., Chen Y.-F., Jagielski A., et al. Effectiveness of lifestyle interventions on obstructive sleep apnea (OSA): systematic review and meta-analysis. Sleep. 2013;36(10):1553–1562. doi: 10.5665/sleep.3056.
    1. Sadeh A. The role and validity of actigraphy in sleep medicine: an update. Sleep Medicine Reviews. 2011;15(4):259–267. doi: 10.1016/j.smrv.2010.10.001.

Source: PubMed

3
S'abonner