Pyrosequencing analysis reveals changes in intestinal microbiota of healthy adults who received a daily dose of immunomodulatory probiotic strains

Julio Plaza-Díaz, Jose Ángel Fernández-Caballero, Natalia Chueca, Federico García, Carolina Gómez-Llorente, María José Sáez-Lara, Luis Fontana, Ángel Gil, Julio Plaza-Díaz, Jose Ángel Fernández-Caballero, Natalia Chueca, Federico García, Carolina Gómez-Llorente, María José Sáez-Lara, Luis Fontana, Ángel Gil

Abstract

The colon microbiota plays a crucial role in human gastrointestinal health. Current attempts to manipulate the colon microbiota composition are aimed at finding remedies for various diseases. We have recently described the immunomodulatory effects of three probiotic strains (Lactobacillus rhamnosus CNCM I-4036, Lactobacillus paracasei CNCM I-4034, and Bifidobacterium breve CNCM I-4035). The goal of the present study was to analyze the compositions of the fecal microbiota of healthy adults who received one of these strains using high-throughput 16S ribosomal RNA gene sequencing. Bacteroides was the most abundant genus in the groups that received L. rhamnosus CNCM I-4036 or L. paracasei CNCM I-4034. The Shannon indices were significantly increased in these two groups. Our results also revealed a significant increase in the Lactobacillus genus after the intervention with L. rhamnosus CNCM I-4036. The initially different colon microbiota became homogeneous in the subjects who received L. rhamnosus CNCM I-4036. While some orders that were initially present disappeared after the administration of L. rhamnosus CNCM I-4036, other orders, such as Sphingobacteriales, Nitrospirales, Desulfobacterales, Thiotrichales, and Synergistetes, were detected after the intervention. In summary, our results show that the intake of these three bacterial strains induced changes in the colon microbiota.

Trial registration: ClinicalTrials.gov NCT01479543.

Keywords: gut; healthy adults; high-throughput nucleotide sequencing; microbiota; probiotics.

Figures

Figure 1
Figure 1
Compositions of fecal microbiota in 23 healthy adults at the phylum level. The subjects were divided into five groups and received either a placebo, a capsule containing 9 × 109 CFUs of one of the three strains, or a capsule containing 9 × 109 CFUs of a mixture of B. breve CNCM I-4035 and L. rhamnosus CNCM I-4036 each day for 30 days. Each column represents 1 healthy adult, as described in Table 1.
Figure 2
Figure 2
The impacts of L. rhamnosus CNCM I-4036 consumption on the intestinal microbiota. The first washout, intervention and second washout refer to the different L. rhamnosus CNCM I-4036 intake phases. Principal component analysis (PCoA) score plots of the different L. rhamnosus CNCM I-4036 intake phases are shown. The data were compared with those in the Ribosomal Database Project (RDP) using a maximum e-value of 10−5, a minimum identity of 75%, and a minimum alignment length of 15 measured in bp for RNA databases. The data were normalized to values between 0 and 1, and Euclidean distance was measured in the construction of PCoA plots. Each figure represents the composition of the intestinal microbiota of one healthy volunteer.
Figure 3
Figure 3
Tree diagram of the different L. rhamnosus CNCM I-4036 intake phases. (A) First washout. (B) Intervention. (C) Second washout. Each tree diagram represents the composition of the intestinal microbiota of five healthy volunteers who received L. rhamnosus CNCM I-4036. Colors represent orders. FW, First washout; I, intervention; and SW, second washout.
Figure 3
Figure 3
Tree diagram of the different L. rhamnosus CNCM I-4036 intake phases. (A) First washout. (B) Intervention. (C) Second washout. Each tree diagram represents the composition of the intestinal microbiota of five healthy volunteers who received L. rhamnosus CNCM I-4036. Colors represent orders. FW, First washout; I, intervention; and SW, second washout.
Figure 3
Figure 3
Tree diagram of the different L. rhamnosus CNCM I-4036 intake phases. (A) First washout. (B) Intervention. (C) Second washout. Each tree diagram represents the composition of the intestinal microbiota of five healthy volunteers who received L. rhamnosus CNCM I-4036. Colors represent orders. FW, First washout; I, intervention; and SW, second washout.

References

    1. Savage D.C. Microbial ecology of the gastrointestinal tract. Annu. Rev. Microbiol. 1977;31:107–133. doi: 10.1146/annurev.mi.31.100177.000543.
    1. Ley R.E., Peterson D.A., Gordon J.I. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell. 2006;124:837–848. doi: 10.1016/j.cell.2006.02.017.
    1. Steinhoff U. Who controls the crowd? New findings and old questions about the intestinal microflora. Immunol. Lett. 2005;99:12–16. doi: 10.1016/j.imlet.2004.12.013.
    1. Backhed F., Ley R.E., Sonnenburg J.L., Peterson D.A., Gordon J.I. Host bacterial mutualism in the human intestine. Science. 2005;307:1915–1920. doi: 10.1126/science.1104816.
    1. Hooper L.V., Midtvedt T., Gordon J.I. How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu. Rev. Nutr. 2002;22:283–307. doi: 10.1146/annurev.nutr.22.011602.092259.
    1. Upadhyay N., Moudgal V. Probiotics: A Review. J. Clin. Outcomes Manage. 2012;19:76–84.
    1. Kim S.W., Suda W., Kim S., Oshima K., Fukuda S., Ohno H., Morita H., Hattori M. Robustness of gut microbiota of healthy adults in response to probiotic intervention revealed by high-throughput pyrosequencing. DNA Res. 2013;20:241–253. doi: 10.1093/dnares/dst006.
    1. Ferrario C., Taverniti V., Milani C., Fiore W., Laureati M., De Noni I., Stuknyte M., Chouaia B., Riso P., Guglielmetti S. Modulation of Fecal Clostridiales Bacteria and Butyrate by Probiotic Intervention with Lactobacillus paracasei DG Varies among Healthy Adults. J. Nutr. 2014;144:1787–1796. doi: 10.3945/jn.114.197723.
    1. Hamady M., Knight R. Microbial community profiling for human microbiome projects: Tools, techniques, and challenges. Genome Res. 2009;19:1141–1152. doi: 10.1101/gr.085464.108.
    1. Turnbaugh P.J., Backhed F., Fulton L., Gordon J.I. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe. 2008;3:213–223. doi: 10.1016/j.chom.2008.02.015.
    1. Larsen N., Vogensen F.K., van den Berg F.W., Nielsen D.S., Andreasen A.S., Pedersen B.K., Al-Soud W.A., Sorensen S.J., Hansen L.H., Jakobsen M. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS ONE. 2010;5:e9085. doi: 10.1371/journal.pone.0009085.
    1. Friswell M., Campbell B., Rhodes J. The role of bacteria in the pathogenesis of inflammatory bowel disease. Gut Liver. 2010;4:295–306. doi: 10.5009/gnl.2010.4.3.295.
    1. Ley R.E., Backhed F., Turnbaugh P., Lozupone C.A., Knight R.D., Gordon J.I. Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. USA. 2005;102:11070–11075. doi: 10.1073/pnas.0504978102.
    1. Ravussin Y., Koren O., Spor A., Leduc C., Gutman R., Stombaugh J., Knight R., Ley R.E., Leibel R.L. Responses of gut microbiota to diet composition and weight loss in lean and obese mice. Obesity. 2012;20:738–747. doi: 10.1038/oby.2011.111.
    1. Plaza-Diaz J., Gomez-Llorente C., Campaña-Martin L., Matencio E., Ortuño I., Martínez-Silla R., Gomez-Gallego C., Periago M.J., Ros G., Chenoll E., et al. Safety and immunomodulatory effects of three probiotic strains isolated from the feces of breast-fed infants in healthy adults: SETOPROB study. PLoS ONE. 2013;8:e78111. doi: 10.1371/journal.pone.0078111.
    1. Muñoz-Quezada S., Chenoll E., Vieites J.M., Genovés S., Maldonado J., Bermúdez-Brito M., Gomez-Llorente C., Matencio E., Bernal M.J., Romero F., et al. Isolation, identification and characterisation of three novel probiotic strains (Lactobacillus paracasei CNCM I-4034, Bifidobacterium breve CNCM I-4035 and Lactobacillus rhamnosus CNCM I-4036) from the faeces of exclusively breast-fed infants. Br. J. Nutr. 2013;109:S51–S62. doi: 10.1017/S0007114512005211.
    1. Muñoz-Quezada S., Bermudez-Brito M., Chenoll E., Genovés S., Gomez-Llorente C., Plaza-Diaz J., Matencio E., Bernal M.J., Romero F., Ramón D., Gil A. Competitive inhibition of three novel bacteria isolated from faeces of breast milk-fed infants against selected enteropathogens. Br. J. Nutr. 2013;109:S63–S69. doi: 10.1017/S0007114512005600.
    1. Vieites-Fernández J.M., Muñoz-Quezada S., Llamas-Company I., Maldonado-Lozano J., Romero-Braquehais F., Suárez-García A., Gil-Hernández A., Gómez-Llorente C., Bermúdez-Brito M. Isolation, Identification and Characterisation of Strains with Probiotic Activity, from Faeces of Infants Fed Exclusively with Breast Milk. EP 2 407 532 A2. European Patent Application. :1–53. Bulletin 2012/03 18 January 2012; International publication number: WO 2010/103140 (16.09.2010 Gazette 2010/37)
    1. Meyer F., Paarmann D., D’Souza M., Olson R., Glass E.M., Kubal M., Paczian T., Rodriguez A., Stevens R., Wilke A., Wilkening J., Edwards R.A. The metagenomics RAST server—A public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics. 2008;9:386. doi: 10.1186/1471-2105-9-386.
    1. Aziz Q., Doré J., Emmanuel A., Guarner F., Quigley E.M. Gut microbiota and gastrointestinal health: current concepts and future directions. Neurogastroenterol. Motil. 2013;25:4–15. doi: 10.1111/nmo.12046.
    1. Manichanh C., Borruel N., Casellas F., Guarner F. The gut microbiota in IBD. Nat. Rev. Gastroenterol. Hepatol. 2012;9:599–608. doi: 10.1038/nrgastro.2012.152.
    1. Koren O., Knights D., Gonzalez A., Waldron L., Segata N., Knight R., Huttenhower C., Ley R.E. A guide to enterotypes across the human body: Meta-analysis of microbial community structures in human microbiome datasets. PLoS Comput. Biol. 2013;9:e1002863. doi: 10.1371/journal.pcbi.1002863.
    1. The Human Microbiome Project Consortium Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207–214.
    1. Arumugam M., Raes J., Pelletier E., Le Paslier D., Yamada T., Mende D.R., Fernandes G.R., Tap J., Bruls T., Batto J.M., et al. Enterotypes of the human gut microbiome. Nature. 2011;473:174–180. doi: 10.1038/nature09944.
    1. Zhang J., Wang L., Guo Z., Sun Z., Gesudu Q., Kwok L., Menghebilige, Zhang H. 454 pyrosequencing reveals changes in the faecal microbiota of adults consuming Lactobacillus casei Zhang. FEMS Microbiol. Ecol. 2014;88:612–622. doi: 10.1111/1574-6941.12328.
    1. Azad M.B., Konya T., Maughan H., Guttman D.S., Field C.J., Chari R.S., Sears M.R., Becker A.B., Scott J.A., Kozyrskyj A.L., CHILD Study Investigators Gut microbiota of healthy Canadian infants: profiles by mode of delivery and infant diet at 4 months. CMAJ. 2013;185:385–394. doi: 10.1503/cmaj.121189.
    1. Bermudez-Brito M., Muñoz-Quezada S., Gomez-Llorente C., Matencio E., Bernal M.J., Romero F., Gil A. Human intestinal dendritic cells decrease cytokine release against Salmonella infection in the presence of Lactobacillus paracasei upon TLR activation. PLoS ONE. 2012;7:e43197. doi: 10.1371/journal.pone.0043197.
    1. Bermudez-Brito M., Muñoz-Quezada S., Gomez-Llorente C., Matencio E., Bernal M.J., Romero F., Gil A. Cell-free culture supernatant of Bifidobacterium breve CNCM I-4035 decreases pro-inflammatory cytokines in human dendritic cells challenged with Salmonella typhi through TLR activation. PLoS ONE. 2013;8:e59370. doi: 10.1371/journal.pone.0059370.
    1. Azad M.B., Konya T., Maughan H., Guttman D.S., Field C.J., Sears M.R., Becker A.B., Scott J.A., Kozyrskyj A.L. Infant gut microbiota and the hygiene hypothesis of allergic disease: Impact of household pets and siblings on microbiota composition and diversity. Allergy Asthma Clin. Immunol. 2013;9:15. doi: 10.1186/1710-1492-9-15.
    1. Bailey M.T., Dowd S.E., Galley J.D., Hufnagle A.R., Allen R.G., Lyte M. Exposure to a social stressor alters the structure of the intestinal microbiota: Implications for stressor-induced immunomodulation. Brain Behav. Immun. 2011;25:397–407. doi: 10.1016/j.bbi.2010.10.023.

Source: PubMed

3
S'abonner