Safety and immunomodulatory effects of three probiotic strains isolated from the feces of breast-fed infants in healthy adults: SETOPROB study

Julio Plaza-Diaz, Carolina Gomez-Llorente, Laura Campaña-Martin, Esther Matencio, Inmaculada Ortuño, Rosario Martínez-Silla, Carlos Gomez-Gallego, Maria Jesús Periago, Gaspar Ros, Empar Chenoll, Salvador Genovés, Beatriz Casinos, Angela Silva, Dolores Corella, Olga Portolés, Fernando Romero, Daniel Ramón, Antonio Perez de la Cruz, Angel Gil, Luis Fontana, Julio Plaza-Diaz, Carolina Gomez-Llorente, Laura Campaña-Martin, Esther Matencio, Inmaculada Ortuño, Rosario Martínez-Silla, Carlos Gomez-Gallego, Maria Jesús Periago, Gaspar Ros, Empar Chenoll, Salvador Genovés, Beatriz Casinos, Angela Silva, Dolores Corella, Olga Portolés, Fernando Romero, Daniel Ramón, Antonio Perez de la Cruz, Angel Gil, Luis Fontana

Abstract

We previously described the isolation and characterization of three probiotic strains from the feces of exclusively breast-fed newborn infants: Lactobacillus paracasei CNCM I-4034, Bifidobacterium breve CNCM I-4035 and Lactobacillus rhamnosus CNCM I-4036. These strains were shown to adhere to intestinal mucus in vitro, to be sensitive to antibiotics and to resist biliary salts and low pH. In the present study, a multicenter, randomized, double-blind, placebo-controlled trial with 100 healthy volunteers in three Spanish cities was carried out to evaluate the tolerance, safety, gut colonization and immunomodulatory effects of these three probiotics. Volunteers underwent a 15-day washout period, after which they were randomly divided into 5 groups that received daily a placebo, a capsule containing one of the 3 strains or a capsule containing a mixture of two strains for 30 days. The intervention was followed by another 15-day washout period. Patients did not consume fermented milk for the entire duration of the study. Gastrointestinal symptoms, defecation frequency and stool consistency were not altered by probiotic intake. No relevant changes in blood and serum, as well as no adverse events occurred during or after treatment. Probiotic administration slightly modified bacterial populations in the volunteers' feces. Intestinal persistence occurred in volunteers who received L. rhamnosus CNCM I-4036. Administration of B. breve CNCM I-4035 resulted in a significant increase in fecal secretory IgA content. IL-4 and IL-10 increased, whereas IL-12 decreased in the serum of volunteers treated with any of the three strains. These results demonstrate that the consumption of these three bacterial strains was safe and exerted varying degrees of immunomodulatory effects.

Trial registration: ClinicalTrials.gov NCT01479543.

Conflict of interest statement

Competing Interests: Part of the research currently in progress in the authors' laboratory is funded by the company Hero Spain, S. A. through the grant #3582 managed by the Fundacion General Empresa-Universidad de Granada. EM, IO, RMS and FR are employed by Hero Global Technology Center, Hero Spain, S.A. This center is part of the food company HERO, headquartered in Switzerland. EC, SG, BC, AS and DR are employed by Biopolis S.L., a spin-off of the Cover Letter National Spanish Research Council (Consejo Superior de Investigaciones Científicas), Ministry of Education, Spain. There are no patents, products in development or marketed products to declare. This does not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials, as detailed online in the guide for authors.

Figures

Figure 1. CONSORT flow diagram of the…
Figure 1. CONSORT flow diagram of the subjects in the SETOPROB study (NCT01479543).
Figure 2. Secretory IgA content (A) and…
Figure 2. Secretory IgA content (A) and populations of Clostridium difficile (B), Bacteroides (C), Lactobacillus (D), and Bifidobacterium spp. (E) in the feces of healthy adults fed one daily probiotic capsule or placebo for 4 weeks as log CFU/g feces.
Values are means ± SEM, n=20 per group. Labeled means without a common letter differ, P<0.05. Time 1, first washout; Time 2, intervention; Time 3, second washout.
Figure 3. Serum IL-4 (A), IL-10 (B),…
Figure 3. Serum IL-4 (A), IL-10 (B), and IL-12 (C) concentrations and IL-10/TNF-α (D), and IL-10/IL-12 ratios (E) in healthy adults fed one daily capsule of probiotics or placebo for 4 weeks.
Values are means ± SEM, n=20 per group. Labeled means without a common letter differ, P<0.05. Time 1, first washout; Time 2, intervention.

References

    1. World Health Organization and Food & Agriculture Organization (2002) Guidelines for the Evaluation of Probiotics in Food. Report of a joint FAO/WHO working group on drafting guidelines for the evaluation of probiotics in food. London, Ontario, Canada. Retrieved onpublished at whilst December year 1111 from .
    1. Fontana L, Bermudez-Brito M, Plaza-Diaz J, Muñoz-Quezada S, Gil A (2013) Sources, isolation, characterisation and evaluation of probiotics. Br J Nutr 109: S35-S50. doi:10.1017/S0007114512004011. PubMed: .
    1. Guarner F, Malagelada JR (2003) Gut flora in health and disease. Lancet. 361: 512-519. doi:10.1016/S0140-6736(03)12489-0. PubMed: .
    1. Gourbeyre P, Denery S, Bodinier M (2011) Probiotics, prebiotics, and synbiotics: impact on the gut immune system and allergic reactions. J Leukoc Biol 89: 685-695. doi:10.1189/jlb.1109753. PubMed: .
    1. Macpherson AJ, Harris NL (2004) Interactions between commensal intestinal bacteria and the immune system. Nat Rev Immunol 4: 478-485. doi:10.1038/nri1373. PubMed: .
    1. Frick JS, Schenk K, Quitadamo M, Kahl F, Köberle M et al. (2007) Lactobacillus fermentum attenuates the proinflammatory effect of Yersinia enterocolitica on human epithelial cells. Inflamm Bowel Dis 13: 83-90. doi:10.1002/ibd.20009. PubMed: .
    1. Vankerckhoven V, Huys G, Vancanneyt M, Vael C, Klare I et al. (2008) Biosafety assessment of probiotics used for human consumption: recommendations from the EU-PROSAFE Project. Trends Food Sci Technol 19: 102–114. doi:10.1016/j.tifs.2007.07.013.
    1. Collins JK, Thornton G, Sullivan GO (1998) Selection of probiotic strains for human application. Int Dairy J 8: 487–490. doi:10.1016/S0958-6946(98)00073-9.
    1. Ouwehand AC, Salminen S, Isolauri E (2002) Probiotics: an overview of beneficial effects. Antonie Van Leeuwenhoek 82: 279–289. doi:10.1023/A:1020620607611. PubMed: .
    1. Muñoz-Quezada S, Chenoll E, Vieites JM, Genovés S, Maldonado J et al. (2013) Isolation, identification and characterisation of three novel probiotic strains (Lactobacillus paracasei CNCM I-4034, Bifidobacterium breve CNCM I-4035 and Lactobacillus rhamnosus CNCM I-4036) from the faeces of exclusively breast-fed infants. Br J Nutr 109: S51-S62. doi:10.1017/S0007114512005211. PubMed: .
    1. Rios S (1967) Métodos estadísticos. Madrid, Spain: Ediciones del Castillo.
    1. Wind RD, Tolboom H, Klare I, Huys G, Knol J (2010) Tolerance and safety of the potentially probiotic strain Lactobacillus rhamnosus PRSF-L477: a randomised, double-blind placebo-controlled trial in healthy volunteers. Br J Nutr 104: 1806-1816. doi:10.1017/S0007114510002746. PubMed: .
    1. Svedlund J, Sjödin I, Dotevall G (1988) GSRS – a clinical rating scale for gastrointestinal symptoms in patients with irritable bowel syndrome and peptic ulcer disease. Dig Dis Sci 33: 129–134. doi:10.1007/BF01535722. PubMed: .
    1. Whelan K, Judd PA, Taylor MA (2004) Assessment of fecal output in patients receiving enteral tube feeding: validation of a novel chart. Eur J Clin Nutr 58: 1030–1037. doi:10.1038/sj.ejcn.1601927. PubMed: .
    1. Van Aerde J, Alarcon P, Lam W (2003) Tolerance and safety of energy-dense enteral formulae for young children. Int Pediatr 18: 95–99.
    1. Fallani M, Young D, Scott J, Norin E, Amarri S et al. (2010) Intestinal microbiota of 6-weeks-old infants across Europe: geographic influence beyond delivery mode, breast-feeding, and antibiotics. J Pediatr Gastroenterol Nutr 51: 77-84. doi:10.1097/MPG.0b013e3181d1b11e. PubMed: .
    1. Gomez-Llorente C, Plaza-Diaz J, Aguilera M, Muñoz-Quezada S, Bermudez-Brito et al. (2013) Three main factors define changes in fecal microbiota associated with feeding modality in infants. J Pediatr Gastroenterol Nutr (In press).
    1. Langendijk PS, Schut F, Jansen GL, Raangs GC, Kamphuis GR et al. (1995) Quantitative fluorescent in situ hybridization of Bifidobacterium spp. with genus specific 16S ribosomal-RNA targeted probes and its application in fecal samples. Appl Environ Microbiol 61: 3069-3075. PubMed: .
    1. Manz W, Amann R, Ludwig W, Vancanneyt M, Schleifer KH (1996) Application of a suite of 16S rRNA specific oligonucleotide probes designed to investigate bacteria of the phylum Cytophaga-flavobacter-bacteroides in the natural environment. Microbiology (Reading, Engl.) 142: 1097-1106
    1. Sghir A, Gramet G, Suau A, Rochet V, Pochart P et al. (2000) Quantification of bacterial groups within human fecal flora by oligonucleotide probe hybridization. Appl Environ Microbiol 66: 2263-2266. doi:10.1128/AEM.66.5.2263-2266.2000. PubMed: .
    1. Franks AH, Harmsen HJM, Raangs GC, Jansen GJ, Schut F et al. (1998) Variations of bacterial populations in human feces measured by fluorescent in situ hybridization with group specific 16S rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 64: 3336-3345. PubMed: .
    1. Harmsen HJM, Elfferich P, Schut F, Welling GW (1999) A 16S rRNA-targeted probe for detection of Lactobacilli and Enterococci in faecal samples by fluorescent in situ hybridization. Microb Ecol Health Dis 11: 3-12. doi:10.1080/089106099435862.
    1. Harmsen HJ, Wildeboer-Veloo AC, Raangs GC, Wagendorp AA, Klijn N et al. (2000) Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J Pediatr Gastroenterol Nutr 30: 61-67. doi:10.1097/00005176-200001001-00010. PubMed: .
    1. Lay C, Sutren M, Rochet V, Saunier K, Doré J et al. (2005) Design and validation of 16S rRNA probes to enumerate members of the Clostridium leptum subgroup in human faecal microbiota. Environ Microbiol 7: 933-946. doi:10.1111/j.1462-2920.2005.00763.x. PubMed: .
    1. Fallani M, Rigottier-Gois L, Aguilera M, Bridonneau C, Collignon A et al. (2006) Clostridium difficile and Clostridium perfringens species detected in infant faecal microbiota using 16S rRNA targeted probes. J Microbiol Methods 67: 150-116. doi:10.1016/j.mimet.2006.03.010. PubMed: .
    1. Scardovi V (1986) Genus Bifidobacterium . In: Sneath PHA, Mair NS, Sharpe ME. Bergey’s Manual of Systematic. J Bacteriol: 1418–1434.
    1. Gorbach SL, Chang TW, Goldin B (1987) Successful treatment of relapsing Clostridium difficile colitis with Lactobacillus GG. Lancet. 2: 1519 PubMed: .
    1. Lawrence SJ, Korzenik JR, Mundy LM (2005) Probiotics for recurrent Clostridium difficile disease. J Med Microbiol 54: 905–906. doi:10.1099/jmm.0.46096-0. PubMed: .
    1. Na X, Kelly C (2011) Probiotics in clostridium difficile Infection. J Clin Gastroenterol 45: S154-S158. doi:10.1097/MCG.0b013e31822ec787. PubMed: .
    1. Mantis NJ, Rol N, Corthésy B (2011) Secretory IgA's complex roles in immunity and mucosal homeostasis in the gut. Mucosal Immunol 4: 603-611. doi:10.1038/mi.2011.41. PubMed: .
    1. Mäkeläinen H, Tahvonen R, Salminen S, Ouwehand AC (2003) In vivo safety assessment of two Bifidobacterium longum strains. Microbiol Immunol 47: 911–914. PubMed: .
    1. Bermudez-Brito M, Muñoz-Quezada S, Gomez-Llorente C, Matencio E, Bernal MJ et al. (2012) Human intestinal dendritic cells decrease cytokine release against Salmonella infection in the presence of Lactobacillus paracasei upon TLR activation. PLOS ONE 7: e43197. doi:10.1371/journal.pone.0043197. PubMed: .
    1. Bermudez-Brito M, Muñoz-Quezada S, Gomez-Llorente C, Matencio E, Bernal MJ et al. (2013) Cell-Free culture supernatant of Bifidobacterium breve CNCM I-4035 decreases pro-Inflammatory cytokines in human dendritic cells challenged with Salmonella typhi through TLR activation. PLOS ONE 8: e59370. doi:10.1371/journal.pone.0059370. PubMed: .

Source: PubMed

3
S'abonner