Examining the relationship between maternal body size, gestational glucose tolerance status, mode of delivery and ethnicity on human milk microbiota at three months post-partum

Lauren LeMay-Nedjelski, James Butcher, Sylvia H Ley, Michelle R Asbury, Anthony J Hanley, Alex Kiss, Sharon Unger, Julia K Copeland, Pauline W Wang, Bernard Zinman, Alain Stintzi, Deborah L O'Connor, Lauren LeMay-Nedjelski, James Butcher, Sylvia H Ley, Michelle R Asbury, Anthony J Hanley, Alex Kiss, Sharon Unger, Julia K Copeland, Pauline W Wang, Bernard Zinman, Alain Stintzi, Deborah L O'Connor

Abstract

Background: Few studies have examined how maternal body mass index (BMI), mode of delivery and ethnicity affect the microbial composition of human milk and none have examined associations with maternal metabolic status. Given the high prevalence of maternal adiposity and impaired glucose metabolism, we systematically investigated the associations between these maternal factors in women ≥20 years and milk microbial composition and predicted functionality by V4-16S ribosomal RNA gene sequencing (NCT01405547; https://ichgcp.net/clinical-trials-registry/NCT01405547 ). Demographic data, weight, height, and a 3-h oral glucose tolerance test were gathered at 30 (95% CI: 25-33) weeks gestation, and milk samples were collected at 3 months post-partum (n = 113).

Results: Multivariable linear regression analyses demonstrated no significant associations between maternal characteristics (maternal BMI [pre-pregnancy, 3 months post-partum], glucose tolerance, mode of delivery and ethnicity) and milk microbiota alpha-diversity; however, pre-pregnancy BMI was associated with human milk microbiota beta-diversity (Bray-Curtis R2 = 0.037). Women with a pre-pregnancy BMI > 30 kg/m2 (obese) had a greater incidence of Bacteroidetes (incidence rate ratio [IRR]: 3.70 [95% CI: 1.61-8.48]) and a reduced incidence of Proteobacteria (0.62 [0.43-0.90]) in their milk, compared to women with an overweight BMI (25.0-29.9 kg/m2) as assessed by multivariable Poisson regression. An increased incidence of Gemella was observed among mothers with gestational diabetes who had an overweight BMI versus healthy range BMI (5.96 [1.85-19.21]). An increased incidence of Gemella was also observed among mothers with impaired glucose tolerance with an obese BMI versus mothers with a healthy range BMI (4.04 [1.63-10.01]). An increased incidence of Brevundimonas (16.70 [5.99-46.57]) was found in the milk of women who underwent an unscheduled C-section versus vaginal delivery. Lastly, functional gene inference demonstrated that pre-pregnancy obesity was associated with an increased abundance of genes encoding for the biosynthesis of secondary metabolites pathway in milk (coefficient = 0.0024, PFDR < 0.1).

Conclusions: Human milk has a diverse microbiota of which its diversity and differential abundance appear associated with maternal BMI, glucose tolerance status, mode of delivery, and ethnicity. Further research is warranted to determine whether this variability in the milk microbiota impacts colonization of the infant gut.

Keywords: Body mass index; Caesarean delivery; Ethnicity; Gestational diabetes; Human milk; Impaired glucose tolerance; Microbiome; Microbiota; Mode of delivery; Vaginal delivery.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Microbial relative abundance in human milk at the phylum level (n = 109). The relative abundances of bacterial phyla in collected human milk samples are visualized using bar plots. For simplicity, only the most abundant 5 phyla are displayed with other phyla merged into the Other category
Fig. 2
Fig. 2
Microbial relative abundance in human milk at the genus level (n = 109). The relative abundances of bacterial genera in collected human milk samples are visualized using bar plots. For simplicity, only the most abundant 10 genera are displayed with other genera merged into the Other category
Fig. 3
Fig. 3
a-e The association between maternal characteristics and human milk microbiota alpha-diversity. The bacterial richness (Chao1 index) and diversity (Shannon index) of each human milk sample are plotted using box and whisker plots (mid-line = median; upper and lower bounds of the box = first and third quartile) as a function of a maternal glucose tolerance, b mode of delivery, c pre-pregnancy BMI, d 3-month post-partum BMI, e ethnicity. Multivariable linear regression analyses revealed no significant associations between the alpha-diversity of the milk microbiota and maternal metabolic and obstetrical characteristics. Abbreviations: GDM, gestational diabetes mellitus, IGT, impaired glucose tolerance; Sched CS, scheduled C-section; Unsched CS, unscheduled C-section

References

    1. Victora CG, Bahl R, Barros AJD, França GVA, Horton S, Krasevec J, et al. Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. Lancet. 2016;387(10017):475–490. doi: 10.1016/S0140-6736(15)01024-7.
    1. Bode L. Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology. 2012;22(9):1147–1162. doi: 10.1093/glycob/cws074.
    1. Riskin A, Almog M, Peri R, Halasz K, Srugo I, Kessel A. Changes in immunomodulatory constituents of human milk in response to active infection in the nursing infant. Pediatr Res. 2012;71(2):220–225. doi: 10.1038/pr.2011.34.
    1. Wagner CL, Taylor SN, Johnson D. Host factors in amniotic fluid and breast milk that contribute to gut maturation. Clin Rev Allergy Immunol. 2008;34(2):191–204. doi: 10.1007/s12016-007-8032-3.
    1. Sabbaj S, Ibegbu CC, Kourtis AP. Cellular immunity in breast milk: implications for postnatal transmission of HIV-1 to the infant. Adv Exp Med Biol. 2012;743:161–169. doi: 10.1007/978-1-4614-2251-8_11.
    1. Arrieta M-C, Stiemsma LT, Amenyogbe N, Brown EM, Finlay B. The intestinal microbiome in early life: health and disease. Front Immunol. 2014;5:427. doi: 10.3389/fimmu.2014.00427.
    1. Azad MB, Konya T, Maughan H, Guttman DS, Field CJ, Chari RS, et al. Gut microbiota of healthy Canadian infants: profiles by mode of delivery and infant diet at 4 months. CMAJ. 2013;185(5):385–394. doi: 10.1503/cmaj.121189.
    1. Boix-Amorós A, Collado MC, Mira A. Relationship between milk microbiota, bacterial load, macronutrients, and human cells during lactation. Front Microbiol. 2016;7:492.
    1. Fernández L, Langa S, Martín V, Maldonado A, Jiménez E, Martín R, et al. The human milk microbiota: origin and potential roles in health and disease. Pharmacol Res. 2013;69(1):1–10. doi: 10.1016/j.phrs.2012.09.001.
    1. Jost T, Lacroix C, Braegger CP, Rochat F, Chassard C. Vertical mother-neonate transfer of maternal gut bacteria via breastfeeding. Environ Microbiol. 2014;16(9):2891–2904. doi: 10.1111/1462-2920.12238.
    1. Murphy K, Curley D, O’Callaghan TF, O’Shea C-A, Dempsey EM, O’Toole PW, et al. The composition of human milk and infant faecal microbiota over the first three months of life: a pilot study. Sci Rep. 2017;7:40597.
    1. Pannaraj PS, Li F, Cerini C, Bender JM, Yang S, Rollie A, et al. Association between breast milk bacterial communities and establishment and development of the infant gut microbiome. JAMA Pediatr. 2017;171(7):647–54.
    1. Vallès Y, Artacho A, Pascual-García A, Ferrús ML, Gosalbes MJ, Abellán JJ, et al. Microbial succession in the gut: directional trends of taxonomic and functional change in a birth cohort of Spanish infants. PLoS Genet. 2014;10(6):e1004406. doi: 10.1371/journal.pgen.1004406.
    1. Binns C, Lee M, Low WY. The long-term public health benefits of breastfeeding. Asia Pac J Public Health. 2016;28(1):7–14. doi: 10.1177/1010539515624964.
    1. Dieterich CM, Felice JP, O’Sullivan E, Rasmussen KM. Breastfeeding and health outcomes for the mother-infant dyad. Pediatr Clin N Am. 2013;60(1):31–48. doi: 10.1016/j.pcl.2012.09.010.
    1. WHO. Short-term effects of breastfeeding: a systematic review on the benefits of breastfeeding on diarrhoea and pneumonia mortality. 2019. . Accessed 22 January 2019.
    1. WHO. Long-term effects of breastfeeding: a systematic review. 2019. . Accessed 22 January 2019.
    1. Uwaezuoke SN, Eneh CI, Ndu IK. Relationship between exclusive breastfeeding and lower risk of childhood obesity: a narrative review of published evidence. Clin Med Insights Pediatr. 2017;11:1179556517690196. doi: 10.1177/1179556517690196.
    1. Cabrera-Rubio R, Mira-Pascual L, Mira A, Collado MC. Impact of mode of delivery on the milk microbiota composition of healthy women. J Dev Orig Health Dis. 2016;7(1):54–60. doi: 10.1017/S2040174415001397.
    1. Cabrera-Rubio R, Collado MC, Laitinen K, Salminen S, Isolauri E, Mira A. The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. Am J Clin Nutr. 2012;96(3):544–551. doi: 10.3945/ajcn.112.037382.
    1. Kumar H, du Toit E, Kulkarni A, Aakko J, Linderborg KM, Zhang Y, et al. Distinct patterns in human milk microbiota and fatty acid profiles across specific geographic locations. Front Microbiol. 2016;7:1619.
    1. Urbaniak C, Angelini M, Gloor GB, Reid G. Human milk microbiota profiles in relation to birthing method, gestation and infant gender. Microbiome. 2016;4:1. doi: 10.1186/s40168-015-0145-y.
    1. Moossavi S, Sepehri S, Robertson B, Bode L, Goruk S, Field CJ, et al. Composition and variation of the human milk microbiota are influenced by maternal and early-life factors. Cell Host Microbe. 2019;25(2):324–35 e4.
    1. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community Ecology Package. 2019. . Accessed 23 January 2019.
    1. Najafi F, Hasani J, Izadi N, Hashemi-Nazari S-S, Namvar Z, Mohammadi S, et al. The effect of prepregnancy body mass index on the risk of gestational diabetes mellitus: a systematic review and dose-response meta-analysis. Obes Rev. 2019;20(3):472–486. doi: 10.1111/obr.12803.
    1. Sze MA, Schloss PD. Looking for a signal in the noise: revisiting obesity and the microbiome. mBio. 2016;7(4):e01018–6.
    1. Rodríguez JM. The origin of human milk bacteria: is there a bacterial entero-mammary pathway during late pregnancy and lactation? Adv Nutr. 2014;5(6):779–84.
    1. Jeurink PV, van Bergenhenegouwen J, Jiménez E, Knippels LMJ, Fernández L, Garssen J, et al. Human milk: a source of more life than we imagine. Benef Microbes. 2013;4(1):17–30. doi: 10.3920/BM2012.0040.
    1. Biagi E, Quercia S, Aceti A, Beghetti I, Rampelli S, Turroni S, et al. The bacterial ecosystem of human milk and Infant’s mouth and gut. Front Microbiol. 2017;8:1214. doi: 10.3389/fmicb.2017.01214.
    1. Gupta VK, Paul S, Dutta C. Geography, ethnicity or subsistence-specific variations in human microbiome composition and diversity. Front Microbiol. 2017;8:1162.
    1. Drago L, Toscano M, De Grandi R, Grossi E, Padovani EM, Peroni DG. Microbiota network and mathematic microbe mutualism in colostrum and mature milk collected in two different geographic areas: Italy versus Burundi. ISME J. 2017;11(4):875–884. doi: 10.1038/ismej.2016.183.
    1. Lackey KA, Williams JE, Meehan CL, Zachek JA, Benda ED, Price WJ, et al. What’s normal? Microbiomes in human milk and infant feces are related to each other but vary geographically: The INSPIRE Study. Front Nutr. 2019;6:45.
    1. Huttenhower C, Gevers D, Knight R, et al. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207–14.
    1. Wang S, Li N, Zou H, Wu M. Gut microbiome-based secondary metabolite biosynthetic gene clusters detection in Parkinson’s disease. Neurosci Lett. 2019;696:93–8.
    1. Osbourn A. Secondary metabolic gene clusters: evolutionary toolkits for chemical innovation. Trends Genet. 2010;26(10):449–457. doi: 10.1016/j.tig.2010.07.001.
    1. O’Brien J, Wright GD. An ecological perspective of microbial secondary metabolism. Curr Opin Biotechnol. 2011;22(4):552–558. doi: 10.1016/j.copbio.2011.03.010.
    1. Morton JT, Marotz C, Washburne A, Silverman J, Zaramela LS, Edlund A, et al. Establishing microbial composition measurement standards with reference frames. Nat Commun. 2019;10(1):2719. doi: 10.1038/s41467-019-10656-5.
    1. Stämmler F, Gläsner J, Hiergeist A, Holler E, Weber D, Oefner PJ, et al. Adjusting microbiome profiles for differences in microbial load by spike-in bacteria. Microbiome. 2016;4(1):28. doi: 10.1186/s40168-016-0175-0.
    1. Jian C, Luukkonen P, Yki-Järvinen H, Salonen A, Korpela K. Quantitative PCR provides a simple and accessible method for quantitative microbiota profiling. PLoS One. 2020;15(1):e0227285. doi: 10.1371/journal.pone.0227285.
    1. Ley SH, O’Connor DL, Retnakaran R, Hamilton JK, Sermer M, Zinman B, et al. Impact of maternal metabolic abnormalities in pregnancy on human milk and subsequent infant metabolic development: methodology and design. BMC Public Health. 2010;10:590. doi: 10.1186/1471-2458-10-590.
    1. Ley SH, Hanley AJ, Sermer M, Zinman B, O’Connor DL. Associations of prenatal metabolic abnormalities with insulin and adiponectin concentrations in human milk. Am J Clin Nutr. 2012;95(4):867–874. doi: 10.3945/ajcn.111.028431.
    1. LeMay-Nedjelski L, Copeland J, Wang PW, Butcher J, Unger S, Stintzi A, et al. Methods and strategies to examine the human breastmilk microbiome. Methods Mol Biol. 1849;2018:63–86.
    1. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6(8):1621–1624. doi: 10.1038/ismej.2012.8.
    1. Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinforma Oxf Engl. 2010;26(19):2460–2461. doi: 10.1093/bioinformatics/btq461.
    1. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73(16):5261–5267. doi: 10.1128/AEM.00062-07.
    1. Price LB, Liu CM, Melendez JH, Frankel YM, Engelthaler D, Aziz M, et al. Community analysis of chronic wound bacteria using 16S rRNA gene-based pyrosequencing: impact of diabetes and antibiotics on chronic wound microbiota. PLoS One. 2009;4(7):e6462.
    1. McMurdie PJ, Holmes S. Phyloseq: a bioconductor package for handling and analysis of high-throughput phylogenetic sequence data. Pac Symp Biocomput. 2012:235–46.
    1. Iwai S, Weinmaier T, Schmidt BL, Albertson DG, Poloso NJ, Dabbagh K, et al. Piphillin: improved prediction of metagenomic content by direct inference from human microbiomes. PLoS One. 2016;11(11):e0166104. doi: 10.1371/journal.pone.0166104.

Source: PubMed

3
S'abonner