Short-Term Cardiovascular Response to Short-Radius Centrifugation With and Without Ergometer Exercise

Ana Diaz-Artiles, Thomas Heldt, Laurence R Young, Ana Diaz-Artiles, Thomas Heldt, Laurence R Young

Abstract

Artificial gravity (AG) has often been proposed as an integrated multi-system countermeasure to physiological deconditioning associated with extended exposure to reduced gravity levels, particularly if combined with exercise. Twelve subjects underwent short-radius centrifugation along with bicycle ergometry to quantify the short-term cardiovascular response to AG and exercise across three AG levels (0 G or no rotation, 1 G, and 1.4 G; referenced to the subject's feet and measured in the centripetal direction) and three exercise intensities (25, 50, and 100 W). Continuous cardiovascular measurements were collected during the centrifugation sessions using a non-invasive monitoring system. The cardiovascular responses were more prominent at higher levels of AG and exercise intensity. In particular, cardiac output, stroke volume, pulse pressure, and heart rate significantly increased with both AG level (in most of exercise group combinations, showing averaged increments across exercise conditions of 1.4 L/min/g, 7.6 mL/g, 5.22 mmHg/g, and 2.0 bpm/g, respectively), and workload intensity (averaged increments across AG conditions of 0.09 L/min/W, 0.17 mL/W, 0.22 mmHg/W, and 0.74 bpm/W respectively). These results suggest that the addition of AG to exercise can provide a greater cardiovascular benefit than exercise alone. Hierarchical regression models were fitted to the experimental data to determine dose-response curves of all cardiovascular variables as a function of AG-level and exercise intensity during short-radius centrifugation. These results can inform future studies, decisions, and trade-offs toward potential implementation of AG as a space countermeasure.

Keywords: artificial gravity; human experiments; orthostatic intolerance; spaceflight countermeasure; spaceflight deconditioning.

Figures

FIGURE 1
FIGURE 1
MIT short-radius centrifuge configuration during the experimental sessions. The centrifuge was constrained to a radius of 1.4 m, and a cycle ergometer was used during the centrifugation runs. Subjects were positioned on their right side facing “into the wind.”
FIGURE 2
FIGURE 2
Twenty-five minutes exercise protocol conducted at each experimental session. The protocol included a baseline period (3 min), the spin-up process to the desired G-level (100 s), a first period of AG alone before exercise (125 s), the ergometer exercise period (15-min including work rate transitions), a second period of AG alone after exercise (120 s), and the spin-down process (60 s). The three G-levels tested were 0, 1, and 1.4 G (measured at the feet), corresponding to angular velocities of 0, 28.6, and 33.4 rpm respectively.
FIGURE 3
FIGURE 3
Cardiovascular responses from 12 subjects (mean ± SE) during the 25-min centrifuge run under three different AG-levels (0, 1, and 1.4 G). The protocol includes a spin-up phase (starting at Time = 3 min), the exercise phase with multiple workload intensities (from Time = 6:45 min to Time = 21:45 min), and the spin-down phase (starting at Time = 23:45 min).
FIGURE 4
FIGURE 4
Cardiovascular data from 12 subjects (mean ± SE) by AG-level (0 G, 1 G, and 1.4 G) and workload intensity (0 W, 25 W, 50 W, and 100 W). The figure highlights significant differences between AG-levels within the same workload intensity in HR, SV, CO, DBP, and MAP (simple main effects from 2-factor repeated measures ANOVA with Bonferroni correction, ∗significantly different at p < 0.05). Our analysis also showed a statistically significant overall effect of AG-level on PP (main effects two-way repeated-measures ANOVA, ∗∗significantly different at p < 0.05) but the simple main effects did not yield a significant result. For clarity, significant differences between work rates have not been included.
FIGURE 5
FIGURE 5
Statistically significant mixed regression models fitted to the cardiovascular experimental data across all conditions: three AG-levels (0 G, 1 G, and 1.4 G) and four workload intensities (0 W, 25 W, 50 W, and 100 W). Symbols and error bars correspond to experimental data from 12 subjects (mean ± SE) in each condition.
FIGURE 6
FIGURE 6
Male and female cardiovascular variables (mean ± SE) during the centrifugation runs, shown at each AG-level across all workload intensity conditions. There was a statistically significant gender effect (between-subjects effect of repeated measures ANOVA, ∗significantly different at p < 0.05) in SV (p < 0.0005) and PP (p = 0.006). Trends are also present in other variables, namely HR, CO, and TPR.

References

    1. Abdi H. (2010). “Greenhouse geisser correction,” in Encyclopedia of Research Design, eds Salkind N. J., Dougherty D. M., Frey B. (Thousand Oaks CA: Sage; ), 544–548.
    1. Arai T., Limper U., Gauger P., Beck L. (2013). Pulse contour methods to estimate cardiovascular indices in micro-and hypergravity. Aviat. Space Environ. Med. 84 1178–1185. 10.3357/ASEM.3683.2013
    1. Baevsky R. M., Baranov V. M., Funtova I. I., Diedrich A., Pashenko A. V., Chernikova A. G., et al. (2007). Autonomic cardiovascular and respiratory control during prolonged spaceflights aboard the International Space Station. J. Appl. Physiol. 103 156–161. 10.1152/japplphysiol.00137.2007
    1. Baker J. E., Moulder J. E., Hopewell J. W. (2011). Radiation as a risk factor for cardiovascular disease. Antioxid. Redox Signal. 15 1945–1956. 10.1089/ars.2010.3742
    1. Bartels S. A., Stok W. J., Bezemer R., Boksem R. J., Van Goudoever J., Cherpanath T. G. V., et al. (2011). Noninvasive cardiac output monitoring during exercise testing: nexfin pulse contour analysis compared to an inert gas rebreathing method and respired gas analysis. J. Clin. Monit. Comput. 25 315–321. 10.1007/s10877-011-9310-4
    1. Bogert L. W., van Lieshout J. J. (2005). Non-invasive pulsatile arterial pressure and stroke volume changes from the human finger. Exp. Physiol. 90 437–446. 10.1113/expphysiol.2005.030262
    1. Bogert L. W., Wesseling K. H., Schraa O., Van Lieshout E. J., De Mol B. A., Van Goudoever J., et al. (2010). Pulse contour cardiac output derived from non-invasive arterial pressure in cardiovascular disease. Anaesthesia 65 1119–1125. 10.1111/j.1365-2044.2010.06511.x
    1. Bonjour J., Capelli C., Antonutto G., Calza S., Tam E., Linnarsson D., et al. (2010). Determinants of oxygen consumption during exercise on cycle ergometer: the effects of gravity acceleration. Respir. Physiol. Neurobiol. 171 128–134. 10.1016/j.resp.2010.02.013
    1. Broch O., Renner J., Gruenewald M., Meybohm P., Schöttler J., Caliebe A., et al. (2012). A comparison of the nexfin® and transcardiopulmonary thermodilution to estimate cardiac output during coronary artery surgery. Anaesthesia 67 377–383. 10.1111/j.1365-2044.2011.07018.x
    1. Bubenek-Turconi S. I., Craciun M., Miclea I., Perel A. (2013). Noninvasive continuous cardiac output by the nexfin before and after preload-modifying maneuvers: a comparison with intermittent thermodilution cardiac output. Anesth. Analg. 117 366–372. 10.1213/ANE.0b013e31829562c3
    1. Buckey J. C. (2006). Space Physiology. New York, NY: Oxford University Press.
    1. Buckey J. C., Lane L. D., Levine B. D., Watenpaugh D. E., Wright S. J., Moore W. E., et al. (1996). Orthostatic intolerance after spaceflight. J. Appl. Physiol. 81 7–18. 10.1152/jappl.1996.81.1.7
    1. Charles B. J., Lathers C. M. (1991). Cardiovascular adaption to spaceflight. J. Clin. Pharmacol. 31 1010–1023. 10.1002/j.1552-4604.1991.tb03665.x
    1. Charles J. B., Lathers C. M. (1994). Summary of lower body negative pressure experiments during space flight. J. Clin. Pharmacol. 34 571–583. 10.1002/j.1552-4604.1994.tb02009.x
    1. Clément G. (2005). Fundamentals of Space Medicine. El Segundo, CA: Microcosm Press.
    1. Clément G. (2017). International roadmap for artificial gravity research. NPJ Microgravity 3:29. 10.1038/s41526-017-0034-8
    1. Clément G., Bukley A. P. (2007). Artificial Gravity. Hawthorne, CA: Springer; 10.1007/0-387-70714-X
    1. Clément G., Paloski W. H., Rittweger J., Linnarsson D., Bareille M. P., Mulder E., et al. (2016). Centrifugation as a countermeasure during bed rest and dry immersion: what has been learned? J. Musculoskelet. Neuronal Interact. 16 84–91.
    1. Clément G. R., Charles J. B., Paloski W. H. (2016). Revisiting the needs for artificial gravity during deep space missions. Reach 1 1–10. 10.1016/j.reach.2016.01.001
    1. Clément G., Pavy-Le Traon A. (2004). Centrifugation as a countermeasure during actual and simulated microgravity: a review. Eur. J. Appl. Physiol. 92 235–248. 10.1007/s00421-004-1118-1
    1. Clement G. R., Bukley A. P., Paloski W. H. (2015). Artificial gravity as a countermeasure for mitigating physiological deconditioning during long-duration space missions. Front. Syst. Neurosci. 9:92. 10.3389/fnsys.2015.00092
    1. Critchley L. A. H., Huang L., Zhang J. (2014). Continuous cardiac output monitoring: what do validation studies tell us? Curr. Anesthesiol. Rep. 4 242–250. 10.1007/s40140-014-0062-9
    1. Dhalla N. S., Temsah R. M., Netticadan T. (2000). Role of oxidative stress in cardiovascular diseases. J. Hypertens. 18 655–673. 10.1097/00004872-200018060-00002
    1. Di Rienzo M., Castiglioni P., Iellamo F., Volterrani M., Pagani M., Mancia G., et al. (2008). Dynamic adaptation of cardiac baroreflex sensitivity to prolonged exposure to microgravity: data from a 16-day spaceflight. J. Appl. Physiol. 105 1569–1575. 10.1152/japplphysiol.90625.2008
    1. Diaz A., Heldt T., Young L. R. (2015a). “Cardiovascular responses to artificial gravity combined with exercise,” in Proceedings of the 2015 IEEE Aerospace Conference, Big Sky, MT: 1–11. 10.1109/AERO.2015.7118969
    1. Diaz A., Trigg C., Young L. R. (2015b). Combining ergometer exercise and artificial gravity in a compact-radius centrifuge. Acta Astronaut. 113 80–88. 10.1016/j.actaastro.2015.03.034
    1. Diaz Artiles A., Heldt T., Young L. R. (2016). Effects of artificial gravity on the cardiovascular system: computational approach. Acta Astronaut. 126 395–410. 10.1016/j.actaastro.2016.05.005
    1. Duda K. R., Jarchow T., Young L. R. (2012). Squat exercise biomechanics during short-radius centrifugation. Aviat. Space Environ. Med. 83 102–110. 10.3357/ASEM.2334.2012
    1. Eckberg D. L., Halliwill J. R., Beightol L. A., Brown T. E., Taylor J. A., Goble R. (2010). Human vagal baroreflex mechanisms in space. J. Physiol. 588 1129–1138. 10.1113/jphysiol.2009.186650
    1. Eeftinck Schattenkerk D. W., van Lieshout J. J., van den Meiracker A. H., Wesseling K. R., Blanc S., Wieling W., et al. (2009). Nexfin noninvasive continuous blood pressure validated against Riva-Rocci/Korotkoff. Am. J. Hypertens. 22 378–383. 10.1038/ajh.2008.368
    1. Evans J. M., Knapp C. F., Goswami N. (2018). Artificial gravity as a countermeasure to the cardiovascular deconditioning of spaceflight: gender perspectives. Front. Physiol. 9:716. 10.3389/fphys.2018.00716
    1. Evans J. M., Stenger M. B., Moore F. B., Hinghofer-Szalkay H., Rössler A., Patwardhan A. R., et al. (2004). Centrifuge training increases presyncopal orthostatic tolerance in ambulatory men. Aviat. Space Environ. Med. 75 850–858.
    1. Fischer M. O., Avram R., Cârjaliu I., Massetti M., Gérard J. L., Hanouz J. L., et al. (2012). Non-invasive continuous arterial pressure and cardiac index monitoring with nexfin after cardiac surgery. Br. J. Anaesth. 109 514–521. 10.1093/bja/aes215
    1. Fitts R. H., Trappe S. W., Costill D. L., Gallagher P. M., Creer A. C., Colloton P. A., et al. (2010). Prolonged space flight-induced alterations in the structure and function of human skeletal muscle fibres. J. Physiol. 588 3567–3592. 10.1113/jphysiol.2010.188508
    1. Fritsch-Yelle J. M., Charles J. B., Jones M. M., Beightol L. A., Eckberg D. L. (1994). Spaceflight alters autonomic regulation of arterial pressure in humans. J. Appl. Physiol. 77 1776–1783. 10.1152/jappl.1994.77.4.1776
    1. Goswami N., Bruner M., Xu D., Bareille M. P., Beck A., Hinghofer-Szalkay H., et al. (2015a). Short-arm human centrifugation with 0.4g at eye and 0.75g at heart level provides similar cerebrovascular and cardiovascular responses to standing. Eur. J. Appl. Physiol. 115 1569–1575. 10.1007/s00421-015-3142-8
    1. Goswami N., Evans J., Schneider S., Von Der Wiesche M., Mulder E., et al. (2015b). Effects of individualized centrifugation training on orthostatic tolerance in men and women. PLoS One 10:e0125780. 10.1371/journal.pone.0125780
    1. Greenleaf J. E., Gundo D. P., Watenpaugh D. E., Mulenburg G. M., Mckenzie M. A., Looft-Wilson R., et al. (1997). “Cycle-powered short radius (1.9 m) centrifuge: effect of exercise versus passive acceleration on heart rate in humans,” in NASA Technical Memorandum 110433, (Moffett Field, CA: Nasa Ames Research Center; ), 1–14.
    1. Guyton A. C. (1990). Textbook of Medical Physiology, 8th Edn St. Louis, MO: Harcourt College Pub.
    1. Harms M. P., Wesseling K. H., Pott F., Jenstrup M., Van Gj Secher N. H., et al. (1999). Continuous stroke volume monitoring by modelling flow from non-invasive measurement of arterial pressure in humans under orthostatic stress. Clin. Sci. 97 291–301. 10.1042/cs0970291
    1. Hughson R. L., Shoemaker J. K., Blaber A. P., Arbeille P., Greaves D. K., Pereira-Junior P. P., et al. (2012). Cardiovascular regulation during long-duration spaceflights to the International Space Station. J. Appl. Physiol. 112 719–727. 10.1152/japplphysiol.01196.2011
    1. Iwasaki K.-I., Shiozawa T., Kamiya A., Michikami D., Hirayanagi K., Yajima K., et al. (2005). Hypergravity exercise against bed rest induced changes in cardiac autonomic control. Eur. J. Appl. Physiol. 94 285–291. 10.1007/s00421-004-1308-x
    1. Iwase S. (2005). Effectiveness of centrifuge-induced artificial gravity with ergometric exercise as a countermeasure during simulated microgravity exposure in humans. Acta Astronaut. 57 75–80. 10.1016/j.actaastro.2005.03.013
    1. Iwase S., Fu Q., Narita K., Morimoto E., Takada H., Mano T. (2002). Effects of graded load of artificial gravity on cardiovascular functions in humans. Environ. Med. 46 29–32.
    1. Kaderka J., Young L. R., Paloski W. H. (2010). A critical benefit analysis of artificial gravity as a microgravity countermeasure. Acta Astronaut. 67 1090–1102. 10.1016/j.actaastro.2010.06.032
    1. Katayama K., Sato K., Akima H. (2004). Acceleration with exercise during head-down bed rest preserves upright exercise responses. Aviat. Space Environ. Med. 75 1029–1035.
    1. Kozlovskaya I. B., Grigoriev A. I. (2004). Russian system of countermeasures on board of the International Space Station (ISS): the first results. Acta Astronaut. 55 233–237. 10.1016/j.actaastro.2004.05.049
    1. Kozlovskaya I. B., Grigoriev A. I., Stepantzov V. I. (1995). Countermeasure of the negative effects of weightlessness on physical systems in long-term space flights. Acta Astronaut. 36 661–668. 10.1016/0094-5765(95)00156-5
    1. LeBlanc A., Matsumoto T., Jones J., Shapiro J., Lang T., Shackelford L., et al. (2013). Bisphosphonates as a supplement to exercise to protect bone during long-duration spaceflight. Osteoporos. Int. 24 2105–2114. 10.1007/s00198-012-2243-z
    1. LeBlanc A. D., Spector E. R., Evans H. J., Sibonga J. D. (2007). Skeletal responses to space flight & bed rest analogue: a review. J. Musculoskelet. Neuronal Interact. 7 33–47.
    1. Lee S. M. C., Feiveson A. H., Stein S., Stenger M. B., Platts S. H. (2015). Orthostatic intolerance after ISS and space shuttle missions. Aerosp. Med. Hum. Perform. 86 54–67. 10.3357/AMHP.EC08.2015
    1. Levine B. D., Lane L. D., Watenpaugh D. E., Gaffney F. A., Buckey J. C., Blomqvist C. G., et al. (1996). Maximal exercise performance after adaptation to microgravity. J. Appl. Physiol. 81 686–694. 10.1152/jappl.1996.81.2.686
    1. Limper U., Gauger P., Beck L. E. (2011). Upright cardiac output measurements in the transition to weightlessness during parabolic flights. Aviat. Space Environ. Med. 82 448–454. 10.3357/ASEM.2883.2011
    1. Linnarsson D., Hughson R. L., Fraser K. S., Clément G., Karlsson L. L., Mulder E., et al. (2015). Effects of an artificial gravity countermeasure on orthostatic tolerance, blood volumes and aerobic power after short-term bed rest (BR-AG1). J. Appl. Physiol. 118 29–35. 10.1152/japplphysiol.00061.2014
    1. Mandsager K. T., Robertson D., Diedrich A. (2015). The function of the autonomic nervous system during spaceflight. Clin. Auton. Res. 25 141–151. 10.1007/s10286-015-0285-y
    1. Manen O., Dussault C., Sauvet F., Montmerle-Borgdorff S. (2015). Limitations of stroke volume estimation by non-invasive blood pressure monitoring in hypergravity. PLoS One 10:e0121936. 10.1371/journal.pone.0121936
    1. Martina J. R., Westerhof B. E., van Goudoever J., de Beaumont E. M., Truijen J., Kim Y. S., et al. (2012). Noninvasive continuous arterial blood pressure monitoring with nexfin®. Anesthesiology 116 1092–1103. 10.1097/ALN.0b013e31824f94ed
    1. Martina J. R., Westerhof B. E., Van Goudoever J., De Jonge N., Van Lieshout J. J., Lahpor J. R., et al. (2010). Noninvasive blood pressure measurement by the Nexfin monitor during reduced arterial pulsatility: a feasibility study. ASAIO J. 56 221–227. 10.1097/MAT.0b013e3181d70227
    1. Masatli Z., Nordine M., Maggioni M. A., Mendt S., Hilmer B., Brauns K., et al. (2018). Gender-specific cardiovascular reactions to + Gz interval training on a short arm human centrifuge. Front. Physiol. 9:1028. 10.3389/fphys.2018.01028
    1. Morita H., Abe C., Tanaka K. (2016). Long-term exposure to microgravity impairs vestibulo-cardiovascular reflex. Sci. Rep. 6:33405. 10.1038/srep33405
    1. Norsk P. (2014). Blood pressure regulation IV: adaptive responses to weightlessness. Eur. J. Appl. Physiol. 114 481–497. 10.1007/s00421-013-2797-2
    1. Norsk P., Asmar A., Damgaard M., Christensen N. J. (2015). Fluid shifts, vasodilatation and ambulatory blood pressure reduction during long duration spaceflight. J. Physiol. 593 573–584. 10.1113/jphysiol.2014.284869
    1. Norsk P., Damgaard M., Petersen L., Gybel M., Pump B., Gabrielsen A., et al. (2006). Vasorelaxation in space. Hypertension 47 69–73. 10.1161/01.HYP.0000194332.98674.57
    1. Paloski W. H., Charles J. B. (2014). International Workshop on Research and Operational Considerations for Artificial Gravity Countermeasures. (Technical Report). Mountain View, CA: Nasa Ames Research Center.
    1. Paloski W. H., Young L. R. (1999). Artificial Gravity Workshop. League City, TX: NASA.
    1. Penaz J. (1973). “Photoelectric measurement of blood pressure, volume and flow in the finger,” in Proceedings of the Digest 10th Int Conf Med Biol Engng, (Dresden: International Federation for Medical and Biological Engineering; ), 104.
    1. Perel A., Wesselink W., Settels J. (2011). “The nexfin monitor – a totally non invasive cardiac output monitor,” in Proceedings of the 23rd Annual Meeting - International Symposium on Critical Care Medicine, ed. Gullo A. (Italia: Springer-Verlag; ), 103–108.
    1. Platts S. H., Merz N. B., Barr Y., Fu Q., Gulati M., Hughson R. L., et al. (2014). Effects of sex and gender on adaptation to space: cardiovascular alterations. J. Womens Heal. 23 950–955. 10.1089/jwh.2014.4912
    1. Platts S. H., Tuxhorn J. A., Ribeiro L. C., Stenger M. B., Lee S. M. C., Meck J. V. (2009). Compression garments as countermeasures to orthostatic intolerance. Aviat. Space Environ. Med. 80 437–442. 10.3357/ASEM.2473.2009
    1. Rao K. K., Haro G. J., Ayers C. R., Patel P. C., Mishkin J., Thibodeau J. T., et al. (2018). 579 blood pressure measurement in patients with continuous flow LVADs: comparing the doppler sphygmomanometer, the nexfin device, and the arterial line. J. Heart Lung Transplant 31 S200–S201. 10.1016/j.healun.2012.01.592
    1. Schwarz G. (1978). Estimating the dimension of a model. Ann. Stat. 6 461–464. 10.1214/aos/1176344136
    1. Shibata S., Levine B. D. (2011). Biological aortic age derived from the arterial pressure waveform. J. Appl. Physiol. 110 981–987. 10.1152/japplphysiol.01261.2010
    1. Sliwka U., Krasney J. A., Simon S. G., Schmidt P., Noth J. (1998). Effects of sustained low-level elevations of carbon dioxide on cerebral blood flow and autoregulation of the intracerebral arteries in humans. Aviat. Space Environ. Med. 69 299–306.
    1. Smith S. M., Heer M. A., Shackelford L. C., Sibonga J. D., Ploutz-Snyder L., Zwart S. R. (2012). Benefits for bone from resistance exercise and nutrition in long-duration spaceflight: Evidence from biochemistry and densitometry. J. Bone Miner. Res. 27 1896–1906. 10.1002/jbmr.1647
    1. Stenger M. B., Evans J. M., Patwardhan A. R., Moore F. B., Hinghofer-Szalkay H., Rössler A., et al. (2007). Artificial gravity training improves orthostatic tolerance in ambulatory men and women. Acta Astronaut. 60 267–272. 10.3389/fphys.2018.00716
    1. Stenger M. B., Lee S. M., Westby C. M., Ribeiro L. C., Phillips T. R., Martin D. S., et al. (2013). Abdomen-high elastic gradient compression garments during post-spaceflight stand tests. Aviat. Space Environ. Med. 84 459–466. 10.3357/ASEM.3528.2013
    1. Trappe S., Costill D., Gallagher P., Creer A., Peters J. R., Evans H., et al. (2009). Exercise in space: human skeletal muscle after 6 months aboard the International Space Station. J. Appl. Physiol. 106 1159–1168. 10.1152/japplphysiol.91578.2008
    1. Trigg C. (2013). Design and Validation of a Compact Radius Centrifuge Artificial Gravity Test Platform. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge.
    1. Truijen J., Van Lieshout J. J., Wesselink W. A., Westerhof B. E. (2012). Noninvasive continuous hemodynamic monitoring. J. Clin. Monit. Comput. 26 267–278. 10.1007/s10877-012-9375-8
    1. van der Spoel A. G., Voogel A. J., Folkers A., Boer C., Bouwman R. A. (2012). Comparison of noninvasive continuous arterial waveform analysis (Nexfin) with transthoracic Doppler echocardiography for monitoring of cardiac output. J. Clin. Anesth. 24 304–309. 10.1016/j.jclinane.2011.09.008
    1. Verheyden B., Liu J., Beckers F., Aubert A. E. (2009). Adaptation of heart rate and blood pressure to short and long duration space missions. Respir. Physiol. Neurobiol. 169(Suppl.), S13–S16. 10.1016/j.resp.2009.03.008
    1. Verma A. K., Xu D., Bruner M., Garg A., Goswami N., Blaber A. P., et al. (2018). Comparison of autonomic control of blood pressure during standing and artificial gravity induced via short-arm human centrifuge. Front. Physiol. 9:712. 10.3389/fphys.2018.00712
    1. Waldie J. M., Newman D. J. (2011). A gravity loading countermeasure skinsuit. Acta Astronaut. 68 722–730. 10.1519/JSC.0000000000001460
    1. Wang Y. C., Yang C. B., Wu Y. H., Gao Y., Lu D. Y., Shi F., et al. (2011). Artificial gravity with ergometric exercise as a countermeasure against cardiovascular deconditioning during 4 days of head-down bed rest in humans. Eur. J. Appl. Physiol. 111 2315–2325. 10.1007/s00421-011-1866-7
    1. Wesseling K. H., de Wit B., van der Hoeven G. M. A., van Goudover J., Settels J. J. (1995). Physiocal, calibrating finger vascular physiology for Finapres. Homeostasis 36 67–82.
    1. Wesseling K. H., Jansen J. R., Settels J. J., Schreuder J. J. (1993). Computation of aortic flow from pressure in humans using a nonlinear, three-element model. J. Appl. Physiol. 74 2566–2573. 10.1152/jappl.1993.74.5.2566
    1. Westerhof N., Lankhaar J., Westerhof B. E. (2009). The arterial Windkessel. Med. Biol. Eng. Comput. 47 131–141. 10.1007/s11517-008-0359-2
    1. Williams D., Kuipers A., Mukai C., Thirsk R. (2009). Acclimation during space flight: effects on human physiology. CMAJ 180 1317–1323. 10.1503/cmaj.090628
    1. Yang C., Bin Zhang S., Zhang Y., Wang B., Yao Y.-J., et al. (2010). Combined short-arm centrifuge and aerobic exercise training improves cardiovascular function and physical working capacity in humans. Med. Sci. Monit. 16 575–583.
    1. Yang Y., Baker M., Graf S., Larson J., Caiozzo V. J. (2007). Hypergravity resistance exercise: the use of artificial gravity as potential countermeasure to microgravity. J. Appl. Physiol. 103 1879–1887. 10.1152/japplphysiol.00772.2007
    1. Young L. R., Yajima K., Paloski W. H. (2009). Artificial Gravity Research to Enable Human Space Exploration. Westchester, IL: International Academy of Astronautics (IAA)

Source: PubMed

3
S'abonner