Comparison of Autonomic Control of Blood Pressure During Standing and Artificial Gravity Induced via Short-Arm Human Centrifuge

Ajay K Verma, Da Xu, Michelle Bruner, Amanmeet Garg, Nandu Goswami, Andrew P Blaber, Kouhyar Tavakolian, Ajay K Verma, Da Xu, Michelle Bruner, Amanmeet Garg, Nandu Goswami, Andrew P Blaber, Kouhyar Tavakolian

Abstract

Autonomic control of blood pressure is essential toward maintenance of cerebral perfusion during standing, failure of which could lead to fainting. Long-term exposure to microgravity deteriorates autonomic control of blood pressure. Consequently, astronauts experience orthostatic intolerance on their return to gravitational environment. Ground-based studies suggest sporadic training in artificial hypergravity can mitigate spaceflight deconditioning. In this regard, short-arm human centrifuge (SAHC), capable of creating artificial hypergravity of different g-loads, provides an auspicious training tool. Here, we compare autonomic control of blood pressure during centrifugation creating 1-g and 2-g at feet with standing in natural gravity. Continuous blood pressure was acquired simultaneously from 13 healthy participants during supine baseline, standing, supine recovery, centrifugation of 1-g, and 2-g, from which heart rate (RR) and systolic blood pressure (SBP) were derived. The autonomic blood pressure regulation was assessed via spectral analysis of RR and SBP, spontaneous baroreflex sensitivity, and non-linear heart rate and blood pressure causality (RR↔SBP). While majority of these blood pressure regulatory indices were significantly different (p < 0.05) during standing and 2-g centrifugation compared to baseline, no change (p > 0.05) was observed in the same indices during 2-g centrifugation compared to standing. The findings of the study highlight the capability of artificial gravity (2-g at feet) created via SAHC toward evoking blood pressure regulatory controls analogous to standing, therefore, a potential utility toward mitigating deleterious effects of microgravity on cardiovascular performance and minimizing post-flight orthostatic intolerance in astronauts.

Keywords: artificial gravity; astronauts; blood pressure regulation; cardiovascular deconditioning; long duration spaceflight; microgravity; orthostatic intolerance; short-arm human centrifuge.

Figures

FIGURE 1
FIGURE 1
Dynamics of RR intervals (A) and blood pressure (B) i.e., systolic blood pressure (SBP) (black), diastolic blood pressure (DBP) (blue), and mean arterial pressure (MAP) (red) in response to different experimental conditions for one participant (male, age: 35 years, height: 175 cm, weight: 76 kg).
FIGURE 2
FIGURE 2
Distribution of SBP and RR intervals spectral power (n.u.). The figure details RR (A–C) and SBP (D–F) spectral power distribution in the VLF (0–0.04 Hz), LF (0.04–0.15 Hz, and HF (0.15–0.4 Hz) bands during baseline (BL), stand (S), recovery (REC), 1-g, and 2-g experimental protocol.
FIGURE 3
FIGURE 3
Spontaneous baroreflex sensitivity determined via sequence method. Figure details the distribution of up slope BRS (A), down slope BRS (B) during baseline (BL), stand (S), recovery (REC), 1-g, and 2-g experimental protocol.
FIGURE 4
FIGURE 4
Boxplot representation of non-baroreflex (A) and baroreflex (B) causalities in response to baseline (BL), stand (S), recovery (REC), 1-g, and 2-g experimental protocol.

References

    1. Antonutto G., di Prampero P. E. (2003). Cardiovascular deconditioning in microgravity: some possible countermeasures. Eur. J. Appl. Physiol. 90 283–291. 10.1007/s00421-003-0884-5
    1. Artiles A. D., Heldt T., Young L. R. (2016). Effects of artificial gravity on the cardiovascular system: computational approach. Acta Astronaut. 126 395–410.
    1. Arzeno N. M., Stenger M. B., Lee S. M. C., Ploutz-Snyder R., Platts S. H. (2013). Sex differences in blood pressure control during 6° head-down tilt bed rest. Am. J. Physiol. Heart Circ. Physiol. 304 H1114–H1123. 10.1152/ajpheart.00391.2012
    1. Baisden D. L., Beven G. E., Campbell M. R., Charles J. B., Dervay J. P., Foster E., et al. (2008). Human health and performance for long-duration spaceflight. Aviat. Space Environ. Med. 79 629–635. 10.3357/ASEM.2314.2008
    1. Bertinieri G., Di Rienzo M., Cavallazzi A., Ferrari A., Pedotti A., Mancia G. (1988). Evaluation monitoring of baroreceptor reflex by blood pressure in unanesthetized cats. Am. J. Physiol. 254 H377–H383.
    1. Blaber A. P., Hinghofer-Szalkay H., Goswami N. (2013a). Blood Volume Redistribution During Hypovolemia. Aviat. Space Environ. Med. 84 59–64. 10.3357/ASEM.3424.2013
    1. Blaber A. P., Yamamoto Y., Hughson R. L. (1995). Methodology of spontaneous baroreflex assessed by surrogate data analysis. Am. J. Physiol. Circ. Physiol. 4 H1682–H1687.
    1. Blaber A. P., Zuj K. A., Goswami N. (2013b). Cerebrovascular autoregulation: lessons learned from spaceflight research. Eur. J. Appl. Physiol. 113 1909–1917. 10.1007/s00421-012-2539-x
    1. Buckey J. C., Lane L. D., Levine B. D., Watenpaugh D. E., Wright S. J., Moore W. E., et al. (1996). Orthostatic intolerance after spaceflight. J. Appl. Physiol. 81 7–18.
    1. Bukley A., Lawrence D., Clément G. (2007). Generating artificial gravity onboard the Space Shuttle. Acta Astronaut. 60 472–478. 10.1016/j.actaastro.2006.09.013
    1. Clément G., Pavy-Le Traon A. (2004). Centrifugation as a countermeasure during actual and simulated microgravity: a review. Eur. J. Appl. Physiol. 92 235–248. 10.1007/s00421-004-1118-1
    1. Clément G. R., Bukley A. P., Paloski W. H. (2015). Artificial gravity as a countermeasure for mitigating physiological deconditioning during long-duration space missions. Front. Syst. Neurosci. 9:92. 10.3389/fnsys.2015.00092
    1. Clément G. R., Charles J. B., Paloski W. H. (2016). Revisiting the needs for artificial gravity during deep space missions. Reach Rev. Hum. Space Explor. 1 1–10. 10.1016/j.reach.2016.01.001
    1. Diaz A., Trigg C., Young L. R. (2015). Combining ergometer exercise and artificial gravity in a compact-radius centrifuge. Acta Astronaut. 113 80–88. 10.1016/j.actaastro.2015.03.034
    1. Durand M. T., Becari C., Tezini G. C., Fazan R., Oliveira M., Guatimosim S., et al. (2015). Autonomic cardiocirculatory control in mice with reduced expression of the vesicular acetylcholine transporter. Am. J. Physiol. Heart Circ. Physiol. 309 H655–H662. 10.1152/ajpheart.00114.2015
    1. Evans J. M., Stenger M. B., Moore F. B., Hinghofer-Szalkay H., Rössler A., Patwardhan A. R., et al. (2004). Centrifuge training increases presyncopal orthostatic tolerance in ambulatory men. Aviat. Space Environ. Med. 75 850–858.
    1. Faes L., Nollo G., Porta A. (2011). Information domain approach to the investigation of cardio-vascular, cardio-pulmonary, and vasculo-pulmonary causal couplings. Front. Physiol. 2:80. 10.3389/fphys.2011.00080
    1. Faes L., Nollo G., Porta A. (2013). Mechanisms of causal interaction between short-term RR interval and systolic arterial pressure oscillations during orthostatic challenge. J. Appl. Physiol. 114 1657–1667. 10.1152/japplphysiol.01172.2012
    1. Faes L., Widesott L., Del Greco M., Antolini R., Nollo G. (2006). Causal cross-spectral analysis of heart rate and blood pressure variability for describing the impairment of the cardiovascular control in neurally mediated syncope. IEEE Trans. Biomed. Eng. 53 65–73. 10.1109/TBME.2005.859788
    1. Fontolliet T., Pichot V., Antonutto G., Bonjour J., Capelli C., Tam E., et al. (2015). Effects of gravitational acceleration on cardiovascular autonomic control in resting humans. Eur. J. Appl. Physiol. 115 1417–1427. 10.1007/s00421-015-3117-9
    1. Frett T., Mayrhofer M., Schwandtner J., Anken R., Petrat G. (2014). An innovative short arm centrifuge for future studies on the effects of artificial gravity on the human body. Microgravity Sci. Technol. 26 249–255. 10.1007/s12217-014-9386-9
    1. Garg A., Xu D., Laurin A., Blaber A. P. (2014). Physiological interdependence of the cardiovascular and postural control systems under orthostatic stress. Am. J. Physiol. Heart Circ. Physiol. 307 H259–H264. 10.1152/ajpheart.00171.2014
    1. Goswami N. (2017). Falls and fall-prevention in older persons: geriatrics meets spaceflight! Front. Physiol. 8:603. 10.3389/fphys.2017.00603
    1. Goswami N., Bruner M., Xu D., Bareille M. P., Beck A., Hinghofer-Szalkay H., et al. (2015a). Short-arm human centrifugation with 0.4g at eye and 0.75g at heart level provides similar cerebrovascular and cardiovascular responses to standing. Eur. J. Appl. Physiol. 115 1569–1575. 10.1007/s00421-015-3142-8
    1. Goswami N., Evans J., Schneider S., Von Der Wiesche M., Mulder E., Rössler A., et al. (2015b). Effects of individualized centrifugation training on orthostatic tolerance in men and women. PLoS One 10:e0125780. 10.1371/journal.pone.0125780
    1. Goswami N., Loeppky J. A., Hinghofer-Szalkay H. (2008). LBNP: past protocols and technical considerations for experimental design. Aviat. Space Environ. Med. 79 459–471. 10.3357/ASEM.2161.2008
    1. Hallgren E., Migeotte P.-F., Kornilova L., DelieÌre Q., Fransen E., Glukhikh D., et al. (2015). Dysfunctional vestibular system causes a blood pressure drop in astronauts returning from space. Sci. Rep. 5:17627. 10.1038/srep17627
    1. Hargens A. R., Bhattacharya R., Schneider S. M. (2013). Space physiology VI: exercise, artificial gravity, and countermeasure development for prolonged space flight. Eur. J. Appl. Physiol. 113 2183–2192. 10.1007/s00421-012-2523-5
    1. Hargens A. R., Richardson S. (2009). Cardiovascular adaptations, fluid shifts, and countermeasures related to space flight. Respir. Physiol. Neurobiol. 169 30–33. 10.1016/j.resp.2009.07.005
    1. Harm D. L., Jennings R. T., Meck J. V., Powell M. R., Putcha L., Sams C. P. (2001). Invited Review: gender issues related to spaceflight: a NASA perspective. J. Appl. Physiol. 91 2374–2383.
    1. Harris L. R., Jenkin M., Jenkin H., Zacher J. E., Dyde R. T. (2017). The effect of long-term exposure to microgravity on the perception of upright. NPJ Microgravity 3:3. 10.1038/s41526-016-0005-5
    1. Heesch C. M. (1999). Reflexes that control cardiovascular function. Adv. Physiol. Educ. 277 S234–S243.
    1. Hughson R. L., Robertson A. D., Arbeille P., Shoemaker J. K., Rush J. W. E., Fraser K. S., et al. (2016). Increased postflight carotid artery stiffness and inflight insulin resistance resulting from 6-mo spaceflight in male and female astronauts. Am. J. Physiol. Heart Circ. Physiol. 310 H628–H638. 10.1152/ajpheart.00802.2015
    1. Iwasaki K. I., Sasaki T., Hirayanagi K., Yajima K. (2001). Usefulness of daily+ 2Gz load as a countermeasure against physiological problems during weightlessness. Acta Astronaut. 49 227–235.
    1. Javorka M., Czippelova B., Turianikova Z., Lazarova Z., Tonhajzerova I., Faes L. (2017). Causal analysis of short-term cardiovascular variability: state-dependent contribution of feedback and feedforward mechanisms. Med. Biol. Eng. Comput. 55 179–190. 10.1007/s11517-016-1492-y
    1. Jeong S.-M., Hwang G.-S., Kim S.-O., Levine B. D., Zhang R. (2013). Dynamic cerebral autoregulation after bed rest: effects of volume loading and exercise countermeasures. J. Appl. Physiol. 116 24–31. 10.1152/japplphysiol.00710.2013
    1. Kennel M., Brown R. (1992). Determining embedding dimension for phase-space reconstruction using geometrical construction. Phys. Rev. A 45:3403.
    1. Lambert E., Lambert G. (2014). Sympathetic dysfunction in vasovagal syncope and the postural orthostatic tachycardia syndrome. Front. Physiol. 5:280 10.3389/fphys.2014.00280
    1. Lambertz D., Goubel F., Kaspranski R., Pérot C. (2003). Effects of long-term spaceflight on mechanical properties of muscles in humans. J. Appl. Physiol. 94 490–498.
    1. LeBlanc A., Gogia P., Schneider V., Krebs J., Schonfeld E., Evans H. (1988). Calf muscle area and strength changes after five weeks of horizontal bed rest. Am. J. Sports Med. 16 624–629. 10.1177/036354658801600612
    1. Lee S. M. C., Feiveson A. H., Stein S., Stenger M. B., Platts S. H. (2015). Orthostatic intolerance after ISS and space shuttle missions. Aerosp. Med. Hum. Perform. 86 54–67. 10.3357/AMHP.EC08.2015
    1. Macaulay T. R., Macias B. R., Lee S. M., Boda W. L., Watenpaugh D. E., Hargens A. R. (2016). Treadmill exercise within lower-body negative pressure attenuates simulated spaceflight-induced reductions of balance abilities in men but not women. NPJ Microgravity 2:16022. 10.1038/npjmgrav.2016.22
    1. Malik M., Bigger J., Camm A., Kleiger R., Malliani A., Moss A., et al. (1996). Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Eur. Heart J. 17 354–381.
    1. Manzey D. (2004). Human missions to Mars: new psychological challenges and research issues. Acta Astronaut. 55 781–790.
    1. Marwan N. (2017). Cross Recurrence Plot Toolbox for MATLAB, Ver. 5.21 (R31.2). Available at: [accessed June 6 2017].
    1. Mccracken J. M. (2016). Exploratory Causal Analysis with Time Series Data. San Rafael, CA: Morgan & Claypool.
    1. Miller J. D., Pegelow D. F., Jacques A. J., Dempsey J. A. (2005). Skeletal muscle pump versus respiratory muscle pump: modulation of venous return from the locomotor limb in humans. J. Physiol. 563 925–943. 10.1113/jphysiol.2004.076422
    1. Morita H., Abe C., Tanaka K. (2016). Long-term exposure to microgravity impairs vestibulo-cardiovascular reflex. Sci. Rep. 6:33405. 10.1038/srep33405
    1. Norsk P. (2014). Blood pressure regulation IV: adaptive responses to weightlessness. Eur. J. Appl. Physiol. 114 481–497. 10.1007/s00421-013-2797-2
    1. Olufsen M. S., Ottesen J. T., Tran H. T., Ellwein L. M., Lipsitz L. A., Novak V. (2005). Blood pressure and blood flow variation during postural change from sitting to standing: model development and validation. J. Appl. Physiol. 99 1523–1537. 10.1152/japplphysiol.00177.2005
    1. Olufsen M. S., Tran H. T., Ottesen J. T. (2004). Modeling cerebral blood flow control during posture change from sitting to standing. Cardiovasc. Eng. 4 47–58.
    1. Otsuka K., Cornelissen G., Kubo Y., Hayashi M., Yamamoto N., Shibata K., et al. (2015). Intrinsic cardiovascular autonomic regulatory system of astronauts exposed long-term to microgravity in space: observational study. NPJ Microgravity 1:15018. 10.1038/npjmgrav.2015.18
    1. Porta A., Bassani T., Bari V., Pinna G. D., Maestri R., Guzzetti S., et al. (2012). Accounting for respiration is necessary to reliably infer granger causality from cardiovascular variability series. IEEE Trans. Biomed. Eng. 59 832–841. 10.1109/TBME.2011.2180379
    1. Robertson D. (1999). The epidemic of orthostatic tachycardia and orthostatic intolerance. Am. J. Med. Sci. 317 75–77.
    1. Shaw B. H., Claydon V. E. (2014). The relationship between orthostatic hypotension and falling in older adults. Clin. Auton. Res. 24 3–13. 10.1007/s10286-013-0219-5
    1. Silva A. S., Ariza D., Dias D. P. M., Crestani C. C., Martins-Pinge M. C. (2015). Cardiovascular and autonomic alterations in rats with Parkinsonism induced by 6-OHDA and treated with L-DOPA. Life Sci. 127 82–89. 10.1016/j.lfs.2015.01.032
    1. Silvani A., Calandra-buonaura G., Johnson B. D., Helmond N., Van Barletta G., Cecere A. G. (2017). Physiological mechanisms mediating the coupling between heart period and arterial pressure in response to postural changes in humans. Front. Physiol. 8:163. 10.3389/fphys.2017.00163
    1. Smith J. J., Porth C. M., Erickson M. (1994). Hemodynamic response to the upright posture. J. Clin. Pharmacol. 34 375–386.
    1. Stenger M. B., Evans J. M., Knapp C. F., Lee S. M. C., Phillips T. R., Perez S. A., et al. (2012). Artificial gravity training reduces bed rest-induced cardiovascular deconditioning. Eur. J. Appl. Physiol. 112 605–616. 10.1007/s00421-011-2005-1
    1. Stenger M. B., Evans J. M., Patwardhan A. R., Moore F. B., Hinghofer-Szalkay H., Rössler A., et al. (2007). Artificial gravity training improves orthostatic tolerance in ambulatory men and women. Acta Astronaut. 60 267–272. 10.1016/j.actaastro.2006.08.008
    1. Stewart J. M., Medow M. S., Montgomery L. D., McLeod K. (2004). Decreased skeletal muscle pump activity in patients with postural tachycardia syndrome and low peripheral blood flow. Am. J. Physiol. Heart Circ. Physiol. 286 H1216–H1222. 10.1152/ajpheart.00738.2003
    1. Sugihara G., May R., Ye H., Hsieh C. H., Deyle E., Fogarty M., et al. (2012). Detecting causality in complex ecosystems. Science 338 496–500. 10.1126/science.1227079
    1. Svacinova J., Javorka M., Novakova Z., Zavodina E., Czippelova B., Honzikova N. (2015). Development of causal interactions between systolic blood pressure and inter-beat intervals in adolescents. Physiol. Res. 64821–829.
    1. Takamatsu Y., Koike W., Takenouchi T., Sugama S., Wei J., Waragai M., et al. (2016). Protection against neurodegenerative disease on Earth and in space. NPJ Microgravity 2:16013. 10.1038/npjmgrav.2016.13
    1. Tanaka K., Nishimura N., Kawai Y. (2016). Adaptation to microgravity, deconditioning, and countermeasures. J. Physiol. Sci. 67 271–281. 10.1007/s12576-016-0514-8
    1. Taneja I., Moran C., Medow M. S., Glover J. L., Montgomery L. D., Stewart J. M. (2007). Differential effects of lower body negative pressure and upright tilt on splanchnic blood volume. Am. J. Physiol. Heart Circ. Physiol. 292 H1420–H1426. 10.1152/ajpheart.01096.2006
    1. Verma A. K., Garg A., Xu D., Bruner M., Fazel-Rezai R., Blaber A. P., et al. (2017a). Skeletal muscle pump drives control of cardiovascular and postural systems. Sci. Rep. 7:45301. 10.1038/srep45301
    1. Verma A. K., Xu D., Garg A., Cote A. T., Goswami N., Blaber A. P., et al. (2017b). Non-linear heart rate and blood pressure interaction in response to lower-body negative pressure. Front. Physiol. 8:767. 10.3389/fphys.2017.00767
    1. White R. J., Averner M. (2001). Humans in space. Nature 409 1115–1118. 10.1038/35059243
    1. Williams D., Kuipers A., Mukai C., Thirsk R. (2016). Acclimation during space flight: effects on human physiology. Mil. Med. Res. 180 1317–1323. 10.1503/cmaj.090628
    1. Xu D., Verma A. K., Garg A., Bruner M., Fazel-rezai R., Blaber A. P., et al. (2017). Significant role of the cardiopostural interaction in blood pressure regulation during standing. Am. J. Physiol. Heart Circ. Physiol. 313 H568–H577. 10.1152/ajpheart.00836.2016
    1. Yanagida R., Ogawa Y., Ueda K., Aoki K., Iwasaki K. (2014). Sustained mild hypergravity reduces spontaneous cardiac baroreflex sensitivity. Auton. Neurosci. Basic Clin. 185 123–128. 10.1016/j.autneu.2014.07.010
    1. Zander V., Anken R., Pesquet T., Brungs S., Latsch J. (2013). Short radius centrifuges – a new approach for life science experiments under hyper-g conditions for applications in space and beyond. Recent Patents Space Technol. 3 74–81.
    1. Zhong Y., Jan K., Ju K. H., Chon K. H. (2006). Quantifying cardiac sympathetic and parasympathetic nervous activities using principal dynamic modes analysis of heart rate variability. Am. J. Physiol. Heart Circ. Physiol. 291 H1475–H1483. 10.1152/ajpheart.00005.2006

Source: PubMed

3
S'abonner