Assessing the Costs and Cost-Effectiveness of Genomic Sequencing

Kurt D Christensen, Dmitry Dukhovny, Uwe Siebert, Robert C Green, Kurt D Christensen, Dmitry Dukhovny, Uwe Siebert, Robert C Green

Abstract

Despite dramatic drops in DNA sequencing costs, concerns are great that the integration of genomic sequencing into clinical settings will drastically increase health care expenditures. This commentary presents an overview of what is known about the costs and cost-effectiveness of genomic sequencing. We discuss the cost of germline genomic sequencing, addressing factors that have facilitated the decrease in sequencing costs to date and anticipating the factors that will drive sequencing costs in the future. We then address the cost-effectiveness of diagnostic and pharmacogenomic applications of genomic sequencing, with an emphasis on the implications for secondary findings disclosure and the integration of genomic sequencing into general patient care. Throughout, we ground the discussion by describing efforts in the MedSeq Project, an ongoing randomized controlled clinical trial, to understand the costs and cost-effectiveness of integrating whole genome sequencing into cardiology and primary care settings.

Keywords: cost; cost-effectiveness; whole exome sequencing; whole genomic sequencing.

References

    1. Hayden E.C. Technology: The $1000 genome. Nature. 2014;507:294–295. doi: 10.1038/507294a.
    1. Gilissen C., Hoischen A., Brunner H., Veltman J. Unlocking Mendelian disease using exome sequencing. Genome Biol. 2011 doi: 10.1186/gb-2011-12-9-228.
    1. Green E.D., Guyer M.S. Charting a course for genomic medicine from base pairs to bedside. Nature. 2011;470:204–213. doi: 10.1038/nature09764.
    1. Gonzaga-Jauregui C., Lupski J.R., Gibbs R.A. Human genome sequencing in health and disease. Annu. Rev. Med. 2012;63:35–61. doi: 10.1146/annurev-med-051010-162644.
    1. Boyd S.D. Diagnostic applications of high-throughput DNA sequencing. Annu. Rev. Pathol. 2013;8:381–410. doi: 10.1146/annurev-pathol-020712-164026.
    1. The President’s Council on Bioethics . The Changing Moral Focus of Newborn Screening: An Ethical Analysis by the President’s Council on Bioethics. DIANE Publishing; Washington, DC, USA: 2008.
    1. Fineberg H.V. A successful and sustainable health system—How to get there from here. N. Engl. J. Med. 2012;366:1020–1027. doi: 10.1056/NEJMsa1114777.
    1. Hartman M., Martin A.B., Lassman D., Catlin A. National health spending in 2013: Growth slows, remains in step with the overall economy. Health Aff. 2015;34:150–160. doi: 10.1377/hlthaff.2014.1107.
    1. Dixon-Salazar T.J., Silhavy J.L., Udpa N., Schroth J., Bielas S., Schaffer A.E., Olvera J., Bafna V., Zaki M.S., Abdel-Salam G.H., et al. Exome sequencing can improve diagnosis and alter patient management. Sci. Transl. Med. 2012 doi: 10.1126/scitranslmed.3003544.
    1. Graungaard A.H., Skov L. Why do we need a diagnosis? A qualitative study of parents’ experiences, coping and needs, when the newborn child is severely disabled. Child Care Health Dev. 2007;33:296–307. doi: 10.1111/j.1365-2214.2006.00666.x.
    1. Armstrong K. Can genomics bend the cost curve? JAMA. 2012;307:1031–1032. doi: 10.1001/jama.2012.261.
    1. Hood L., Lovejoy J.C., Price N.D. Integrating big data and actionable health coaching to optimize wellness. BMC Med. 2015 doi: 10.1186/s12916-014-0238-7.
    1. Bloss C.S., Jeste D.V., Schork N.J. Genomics for disease treatment and prevention. Psychiatr. Clin. North Am. 2011;34:147–166. doi: 10.1016/j.psc.2010.11.005.
    1. Dent T., Jbilou J., Rafi I., Segnan N., Tornberg S., Chowdhury S., Hall A., Lyratzopoulos G., Eeles R., Eccles D., et al. Stratified cancer screening: The practicalities of implementation. Public Health Genomics. 2013;16:94–99. doi: 10.1159/000345941.
    1. Nicholls S.G., Wilson B.J., Craigie S.M., Etchegary H., Castle D., Carroll J.C., Potter B.K., Lemyre L., Little J. Public attitudes towards genomic risk profiling as a component of routine population screening. Genome. 2013;56:626–633. doi: 10.1139/gen-2013-0070.
    1. United Health Center for Health Reform & Modernization . Personalized Medicine: Trends and Prospects for the New Science of Genetic Testing and Molecular Diagnostics. Working Paper 7. UnitedHealth Center for Health Reform & Modernization; Minnetonka, MN, USA: 2012.
    1. Sboner A., Mu X., Greenbaum D., Auerbach R., Gerstein M. The real cost of sequencing: Higher than you think! Genome Biol. 2011 doi: 10.1186/gb-2011-12-8-125.
    1. Beckmann J.S. Can we afford to sequence every newborn baby’s genome? Hum. Mutat. 2015;36:283–286. doi: 10.1002/humu.22748.
    1. Foley S.B., Rios J.J., Mgbemena V.E., Robinson L.S., Hampel H.L., Toland A.E., Durham L., Ross T.S. Use of whole genome sequencing for diagnosis and discovery in the cancer genetics clinic. EBioMedicine. 2015;2:74–81. doi: 10.1016/j.ebiom.2014.12.003.
    1. Green R.C., Rehm H.L., Kohane I.S. Clinical genome sequencing. In: Ginsberg G.S., Willard H.F., editors. Genomic and Personalized Medicine. 2nd ed. Volume 1. Academic Press; San Diego, CA, USA: 2013. pp. 102–122.
    1. Kohane I.S., Masys D.R., Altman R.B. The incidentalome: A threat to genomic medicine. JAMA. 2006;296:212–215. doi: 10.1001/jama.296.2.212.
    1. Green R.C., Berg J.S., Grody W.W., Kalia S.S., Korf B.R., Martin C.L., McGuire A.L., Nussbaum R.L., O’Daniel J.M., Ormond K.E., et al. ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genet. Med. 2013;15:565–574. doi: 10.1038/gim.2013.73.
    1. Yu J.H., Harrell T.M., Jamal S.M., Tabor H.K., Bamshad M.J. Attitudes of genetics professionals toward the return of incidental results from exome and whole-genome sequencing. Am. J. Hum. Genet. 2014;95:77–84. doi: 10.1016/j.ajhg.2014.06.004.
    1. Bennette C.S., Gallego C.J., Burke W., Jarvik G.P., Veenstra D.L. The cost-effectiveness of returning incidental findings from next-generation genomic sequencing. Genet. Med. 2015;17:587–595. doi: 10.1038/gim.2014.156.
    1. Phillips K.A., Ann Sakowski J., Trosman J., Douglas M.P., Liang S.Y., Neumann P. The economic value of personalized medicine tests: What we know and what we need to know. Genet. Med. 2014;16:251–257. doi: 10.1038/gim.2013.122.
    1. Douglas M.P., Ladabaum U., Pletcher M.J., Marshall D.A., Phillips K.A. Economic evidence on identifying clinically actionable findings with whole-genome sequencing: A scoping review. Genet. Med. 2015 doi: 10.1038/gim.2015.69.
    1. Deverka P.A., Dreyfus J.C. Clinical integration of next generation sequencing: Coverage and reimbursement challenges. J. Law Med. Ethics. 2014;42:22–41. doi: 10.1111/jlme.12160.
    1. Vassy J., Lautenbach D., McLaughlin H., Kong S., Christensen K., Krier J., Kohane I., Feuerman L., Blumenthal-Barby J., Roberts J., et al. The MedSeq Project: A randomized trial of integrating whole genome sequencing into clinical medicine. Trials. 2014 doi: 10.1186/1745-6215-15-85.
    1. Mardis E. Anticipating the $1000 genome. Genome Biol. 2006 doi: 10.1186/gb-2006-7-7-112.
    1. Rehm H.L., Bale S.J., Bayrak-Toydemir P., Berg J.S., Brown K.K., Deignan J.L., Friez M.J., Funke B.H., Hegde M.R., Lyon E. ACMG clinical laboratory standards for next-generation sequencing. Genet. Med. 2013;15:733–747. doi: 10.1038/gim.2013.92.
    1. Xuan J., Yu Y., Qing T., Guo L., Shi L. Next-generation sequencing in the clinic: Promises and challenges. Cancer Lett. 2013;340:284–295. doi: 10.1016/j.canlet.2012.11.025.
    1. Wetterstrand K.A. DNA Sequencing Costs: Data from the NHGRI Genome Sequencing Program (GSP) [(accessed on 21 October 2015)]; Available online:
    1. Grada A., Weinbrecht K. Next-generation sequencing: Methodology and application. J. Invest. Dermatol. 2013 doi: 10.1038/jid.2013.248.
    1. Evans B.J. The limits of FDA’s authority to regulate clinical research involving high-throughput DNA sequencing. Food Drug Law J. 2015;70:259–287.
    1. Dorschner M.O., Amendola L.M., Turner E.H., Robertson P.D., Shirts B.H., Gallego C.J., Bennett R.L., Jones K.L., Tokita M.J., Bennett J.T., et al. Actionable, pathogenic incidental findings in 1000 participants’ exomes. Am. J. Hum. Genet. 2013;93:631–640. doi: 10.1016/j.ajhg.2013.08.006.
    1. Amendola L.M., Dorschner M.O., Robertson P.D., Salama J.S., Hart R., Shirts B.H., Murray M.L., Tokita M.J., Gallego C.J., Kim D.S., et al. Actionable exomic incidental findings in 6503 participants: Challenges of variant classification. Genome Res. 2015;25:305–315. doi: 10.1101/gr.183483.114.
    1. Yang Y., Muzny D.M., Xia F., Niu Z., Person R., Ding Y., Ward P., Braxton A., Wang M., Buhay C., et al. Molecular findings among patients referred for clinical whole-exome sequencing. JAMA. 2014;312:1870–1879. doi: 10.1001/jama.2014.14601.
    1. Johnston J.J., Rubinstein W.S., Facio F.M., Ng D., Singh L.N., Teer J.K., Mullikin J.C., Biesecker L.G. Secondary variants in individuals undergoing exome sequencing: Screening of 572 individuals identifies high-penetrance mutations in cancer-susceptibility genes. Am. J. Hum. Genet. 2012;91:97–108. doi: 10.1016/j.ajhg.2012.05.021.
    1. American College of Medical Genetics ACMG Updates Recommendation on “Opt Out” for Genome Sequencing Return of Results. [(accessed on 21 October 2015)]. Available online: .
    1. Sanderson S.C., Linderman M.D., Suckiel S.A., Diaz G.A., Zinberg R.E., Ferryman K., Wasserstein M., Kasarskis A., Schadt E.E. Motivations, concerns and preferences of personal genome sequencing research participants: Baseline findings from the HealthSeq project. Eur. J. Hum. Genet. 2015 doi: 10.1038/ejhg.2015.179.
    1. Holm I.A., Iles B.R., Ziniel S.I., Bacon P.L., Savage S.K., Christensen K.D., Weitzman E.R., Green R.C., Huntington N.L. Participant stisfaction with a preference-setting tool for the return of individual research results in pediatric genomic research. J. Empir. Res. Hum. Res. Ethics. 2015;10:414–426. doi: 10.1177/1556264615599620.
    1. Townsend A., Adam S., Birch P.H., Lohn Z., Rousseau F., Friedman J.M. “I want to know what’s in Pandora’s box”: Comparing stakeholder perspectives on incidental findings in clinical whole genomic sequencing. Am. J. Med. Genet. A. 2012;158:2519–2525. doi: 10.1002/ajmg.a.35554.
    1. Diamandis E.P. The hundred person wellness project and google’s baseline study: Medical revolution or unnecessary and potentially harmful over-testing? BMC Med. 2015 doi: 10.1186/s12916-014-0239-6.
    1. Kohane I.S., Hsing M., Kong S.W. Taxonomizing, sizing, and overcoming the incidentalome. Genet. Med. 2012;14:399–404. doi: 10.1038/gim.2011.68.
    1. Krier J.B., Green R.C. Current Protocols in Human Genetics. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2013. Management of incidental findings in clinical genomic sequencing.
    1. Woolever D.R. The art and science of clinical decision making. Fam. Pract. Manag. 2008;15:31–36.
    1. Mansley E.C., Carroll N.V., Chen K.S., Shah N.D., Piech C.T., Hay J.W., Smeeding J. Good research practices for measuring drug costs in cost-effectiveness analyses: A managed care perspective: The ISPOR Drug Cost Task Force Report—part III. Value Health. 2010;13:14–17. doi: 10.1111/j.1524-4733.2009.00661.x.
    1. Bruggenjurgen B., Lorrot M., Sheppard F.R., Remy V. Do current cost-effectiveness analyses reflect the full value of childhood vaccination in Europe? A rotavirus case study. Hum. Vaccin. Immunother. 2014;10:2290–2294. doi: 10.4161/hv.29090.
    1. Green R.C., Lautenbach D., McGuire A.L. GINA, genetic discrimination, and genomic medicine. N. Engl. J. Med. 2015;372:397–399. doi: 10.1056/NEJMp1404776.
    1. Hegde M., Bale S., Bayrak-Toydemir P., Gibson J., Bone Jeng L.J., Joseph L., Laser J., Lubin I.M., Miller C.E., Ross L.F., et al. Reporting incidental findings in genomic scale clinical sequencing—A clinical laboratory perspective: A report of the Association for Molecular Pathology. J. Mol. Diagn. 2015;17:107–117. doi: 10.1016/j.jmoldx.2014.10.004.
    1. Korf B.R., Berry A.B., Limson M., Marian A.J., Murray M.F., O'Rourke P.P., Passamani E.R., Relling M.V., Tooker J., Tsongalis G.J., et al. Framework for development of physician competencies in genomic medicine: Report of the Competencies Working Group of the Inter-Society Coordinating Committee for Physician Education in Genomics. Genet. Med. 2014;16:804–809. doi: 10.1038/gim.2014.35.
    1. Demmer L.A., Waggoner D.J. Professional medical education and genomics. Annu. Rev. Genomics Hum. Genet. 2014;15:507–516. doi: 10.1146/annurev-genom-090413-025522.
    1. Christensen K.D., Vassy J.L., Jamal L., Lehmann L.S., Slashinski M.J., Perry D.L., Robinson J.O., Blumenthal-Barby J., Feuerman L.Z., Murray M.F., et al. Are physicians prepared for whole genome sequencing? A qualitative analysis. Clin. Genet. 2015 doi: 10.1111/cge.12626.
    1. Robson M.E., Bradbury A.R., Arun B., Domchek S.M., Ford J.M., Hampel H.L., Lipkin S.M., Syngal S., Wollins D.S., Lindor N.M. American society of clinical oncology policy statement update: Genetic and genomic testing for cancer susceptibility. J. Clin. Oncol. 2010;28:893–901. doi: 10.1200/JCO.2009.27.0660.
    1. McLaughlin H.M., Ceyhan-Birsoy O., Christensen K.D., Kohane I.S., Krier J., Lane W.J., Lautenbach D., Lebo M.S., Machini K., MacRae C.A., et al. A systematic approach to the reporting of medically relevant findings from whole genome sequencing. BMC Med. Genet. 2014 doi: 10.1186/s12881-014-0134-1.
    1. Whirl-Carrillo M., McDonagh E.M., Hebert J.M., Gong L., Sangkuhl K., Thorn C.F., Altman R.B., Klein T.E. Pharmacogenomics knowledge for personalized medicine. Clin. Pharmacol. Ther. 2012;92:414–417. doi: 10.1038/clpt.2012.96.
    1. Kong S.W., Lee I.H., Leshchiner I., Krier J., Kraft P., Rehm H.L., Green R.C., Kohane I.S., MacRae C.A. Summarizing polygenic risks for complex diseases in a clinical whole-genome report. Genet. Med. 2015;17:536–544. doi: 10.1038/gim.2014.143.
    1. U.S. Department of Labor, Bureau of Labor Statistics. [(accessed on 21 October 2015)]; Available online:
    1. Bentley D.R., Balasubramanian S., Swerdlow H.P., Smith G.P., Milton J., Brown C.G., Hall K.P., Evers D.J., Barnes C.L., Bignell H.R., et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature. 2008;456:53–59. doi: 10.1038/nature07517.
    1. Guidi T.U. Medicare’s hospital outpatient prospective payment system: OPPS 101 (part 1 of 2) J. Oncol. Pract. 2010;6:321–324. doi: 10.1200/JOP.2010.000163.
    1. Guidi T.U. Medicare’s hospital outpatient prospective payment System: OPPS 101 (part 2 of 2) J. Oncol. Pract. 2011;7:57–60. doi: 10.1200/JOP.2010.000191.
    1. Agency for Healthcare Research and Quality Medical Expenditure Panel Survey. [(accessed on 21 October 2015)]; Available online:
    1. Goetzel R.Z. Do prevention or treatment services save money? The wrong debate. Health Aff. 2009;28:37–41. doi: 10.1377/hlthaff.28.1.37.
    1. Weinstein M.C., Stason W.B. Foundations of cost-effectiveness analysis for health and medical practices. N. Engl. J. Med. 1977;296:716–721. doi: 10.1056/NEJM197703312961304.
    1. Mittal R., Robalino G., Gerring R., Chan B., Yan D., Grati M., Liu X.Z. Immunity genes and susceptibility to otitis media: A comprehensive review. J. Genet. Genomics. 2014;41:567–581. doi: 10.1016/j.jgg.2014.10.003.
    1. Schwartz B. New criteria for supplementation of selected micronutrients in the era of nutrigenetics and nutrigenomics. Int. J. Food Sci. Nutr. 2014;65:529–538. doi: 10.3109/09637486.2014.898258.
    1. Yngvadottir B., Macarthur D.G., Jin H., Tyler-Smith C. The promise and reality of personal genomics. Genome Biol. 2009 doi: 10.1186/gb-2009-10-9-237.
    1. Gagan J., van Allen E.M. Next-generation sequencing to guide cancer therapy. Genome Med. 2015;7:1–10. doi: 10.1186/s13073-015-0203-x.
    1. Jiang M., You J.H. Review of pharmacoeconomic evaluation of genotype-guided antiplatelet therapy. Expert Opin. Pharmacother. 2015;16:771–779. doi: 10.1517/14656566.2015.1013028.
    1. Soden S.E., Saunders C.J., Willig L.K., Farrow E.G., Smith L.D., Petrikin J.E., LePichon J.B., Miller N.A., Thiffault I., Dinwiddie D.L., et al. Effectiveness of exome and genome sequencing guided by acuity of illness for diagnosis of neurodevelopmental disorders. Sci. Transl. Med. 2014 doi: 10.1126/scitranslmed.3010076.
    1. Willig L.K., Petrikin J.E., Smith L.D., Saunders C.J., Thiffault I., Miller N.A., Soden S.E., Cakici J.A., Herd S.M., Twist G., et al. Whole-genome sequencing for identification of Mendelian disorders in critically ill infants: A retrospective analysis of diagnostic and clinical findings. Lancet Respir. Med. 2015;3:377–387. doi: 10.1016/S2213-2600(15)00139-3.
    1. Lee H., Deignan J.L., Dorrani N., Strom S.P., Kantarci S., Quintero-Rivera F., Das K., Toy T., Harry B., Yourshaw M., et al. Clinical exome sequencing for genetic identification of rare Mendelian disorders. JAMA. 2014;312:1880–1887. doi: 10.1001/jama.2014.14604.
    1. Sawyer S.L., Hartley T., Dyment D.A., Beaulieu C.L., Schwartzentruber J., Smith A., Bedford H.M., Bernard G., Bernier F.P., Brais B., et al. Utility of whole-exome sequencing for those near the end of the diagnostic odyssey: time to address gaps in care. Clin. Genet. 2015 doi: 10.1111/cge.12654.
    1. Grozeva D., Carss K., Spasic-Boskovic O., Tejada M.I., Gecz J., Shaw M., Corbett M., Haan E., Thompson E., Friend K., et al. Targeted next-generation sequencing analysis of 1000 individuals with intellectual disability. Hum. Mutat. 2015;36:1197–1204. doi: 10.1002/humu.22901.
    1. Gambin T., Jhangiani S., Below J., Campbell I., Wiszniewski W., Muzny D., Staples J., Morrison A., Bainbridge M., Penney S., et al. Secondary findings and carrier test frequencies in a large multiethnic sample. Genome Med. 2015 doi: 10.1186/s13073-015-0171-1.
    1. Grosse S.D. Economic analyses of genetic tests in personalized medicine: Clinical utility first, then cost utility. Genet. Med. 2014;16:225–227. doi: 10.1038/gim.2013.158.
    1. Rogowski W. Genetic screening by DNA technology: A systematic review of health economic evidence. Int. J. Technol. Assess. Health Care. 2006;22:327–337. doi: 10.1017/S0266462306051221.
    1. Severin F., Stollenwerk B., Holinski-Feder E., Meyer E., Heinemann V., Giessen-Jung C., Rogowski W. Economic evaluation of genetic screening for Lynch syndrome in Germany. Genet. Med. 2015;17:765–773. doi: 10.1038/gim.2014.190.
    1. Snowsill T., Huxley N., Hoyle M., Jones-Hughes T., Coelho H., Cooper C., Frayling I., Hyde C. A systematic review and economic evaluation of diagnostic strategies for Lynch syndrome. Health Technol. Assess. 2014;18:1–406. doi: 10.3310/hta18580.
    1. Jiang M., You J.H. CYP2C19 genotype plus platelet reactivity-guided antiplatelet therapy in acute coronary syndrome patients: A decision analysis. Pharmacogenet. Genomics. 2015;25:609–617. doi: 10.1097/FPC.0000000000000177.
    1. Patel V., Lin F.J., Ojo O., Rao S., Yu S., Zhan L., Touchette D.R. Cost-utility analysis of genotype-guided antiplatelet therapy in patients with moderate-to-high risk acute coronary syndrome and planned percutaneous coronary intervention. Pharm. Pract. 2014;12:438–441. doi: 10.4321/S1886-36552014000300007.
    1. Kazi D.S., Garber A.M., Shah R.U., Dudley R.A., Mell M.W., Rhee C., Moshkevich S., Boothroyd D.B., Owens D.K., Hlatky M.A. Cost-effectiveness of genotype-guided and dual antiplatelet therapies in acute coronary syndrome. Ann. Intern. Med. 2014;160:221–232. doi: 10.7326/M13-1999.
    1. Lala A., Berger J.S., Sharma G., Hochman J.S., Scott Braithwaite R., Ladapo J.A. Genetic testing in patients with acute coronary syndrome undergoing percutaneous coronary intervention: A cost-effectiveness analysis. J. Thromb. Haemost. 2013;11:81–91. doi: 10.1111/jth.12059.
    1. You J.H. Universal versus genotype-guided use of direct oral anticoagulants in atrial fibrillation patients: A decision analysis. Pharmacogenomics. 2015;16:1089–1100. doi: 10.2217/pgs.15.64.
    1. Patrick A.R., Avorn J., Choudhry N.K. Cost-effectiveness of genotype-guided warfarin dosing for patients with atrial fibrillation. Circ. Cardiovasc. Qual. Outcomes. 2009;2:429–436. doi: 10.1161/CIRCOUTCOMES.108.808592.
    1. Ware J.E., Kosinki M., Keller S.D. A 12-item short-form health survey: construction of scales and preliminary tests of reliability and validity. Med. Care. 1996;34:220–233. doi: 10.1097/00005650-199603000-00003.
    1. Brazier J.E., Roberts J. The estimation of a preference-based measure of health from the SF-12. Med. Care. 2004;42:851–859. doi: 10.1097/01.mlr.0000135827.18610.0d.
    1. Siebert U. When should decision-analytic modeling be used in the economic evaluation of health care? Eur. J. Health Econ. 2003;4:143–150. doi: 10.1007/s10198-003-0205-2.
    1. Van Dongen J.M., Proper K.I., van Wier M.F., van der Beek A.J., Bongers P.M., van Mechelen W., van Tulder M.W. A systematic review of the cost-effectiveness of worksite physical activity and/or nutrition programs. Scand. J. Work Environ. Health. 2012;38:393–408. doi: 10.5271/sjweh.3275.
    1. Garrett S., Elley C.R., Rose S.B., O’Dea D., Lawton B.A., Dowell A.C. Are physical activity interventions in primary care and the community cost-effective? A systematic review of the evidence. Br. J. Gen. Pract. 2011;61:e125–e133. doi: 10.3399/bjgp11X561249.
    1. Wong A.I., Lo Y.M. Noninvasive fetal genomic, methylomic, and transcriptomic analyses using maternal plasma and clinical implications. Trends Mol. Med. 2015;21:98–108. doi: 10.1016/j.molmed.2014.12.006.
    1. Benn P., Cuckle H., Pergament E. Non-invasive prenatal testing for aneuploidy: Current status and future prospects. Ultrasound Obstet. Gynecol. 2013;42:15–33. doi: 10.1002/uog.12513.
    1. Mardis E.R., Wilson R.K. Cancer genome sequencing: A review. Hum. Mol. Genet. 2009;18:R163–R168. doi: 10.1093/hmg/ddp396.
    1. Goldstein D.A., Shaib W.L., Flowers C.R. Costs and effectiveness of genomic testing in the management of colorectal cancer. Oncology. 2015;29:175–183.
    1. Siebert U., Jahn B., Rochau U., Schnell-Inderst P., Kisser A., Hunger T., Sroczynski G., Muhlberger N., Willenbacher W., Schnaiter S., et al. Oncotyrol—Center for personalized cancer medicine: Methods and applications of health technology assessment and outcomes research. Z. Evid. Fortbild.Qual. Gesundhwes. 2015;109:330–340. doi: 10.1016/j.zefq.2015.06.012.
    1. Rovigatti U. Cancer modelling in the NGS era—Part I: Emerging technology and initial modelling. Crit. Rev. Oncol. Hematol. 2015;96:274–307. doi: 10.1016/j.critrevonc.2015.05.017.

Source: PubMed

3
S'abonner