Thinking While Moving or Moving While Thinking - Concepts of Motor-Cognitive Training for Cognitive Performance Enhancement

Fabian Herold, Dennis Hamacher, Lutz Schega, Notger G Müller, Fabian Herold, Dennis Hamacher, Lutz Schega, Notger G Müller

Abstract

The demographic change in industrial countries, with increasingly sedentary lifestyles, has a negative impact on mental health. Normal and pathological aging leads to cognitive deficits. This development poses major challenges on national health systems. Therefore, it is necessary to develop efficient cognitive enhancement strategies. The combination of regular physical exercise with cognitive stimulation seems especially suited to increase an individual's cognitive reserve, i.e., his/her resistance to degenerative processes of the brain. Here, we outline insufficiently explored fields in exercise-cognition research and provide a classification approach for different motor-cognitive training regimens. We suggest to classify motor-cognitive training in two categories, (I) sequential motor-cognitive training (the motor and cognitive training are conducted time separated) and (II) simultaneous motor-cognitive training (motor and cognitive training are conducted sequentially). In addition, simultaneous motor-cognitive training may be distinguished based on the specific characteristics of the cognitive task. If successfully solving the cognitive task is not a relevant prerequisite to complete the motor-cognitive task, we would consider this type of training as (IIa) motor-cognitive training with additional cognitive task. In contrast, in ecologically more valid (IIb) motor cognitive training with incorporated cognitive task, the cognitive tasks are a relevant prerequisite to solve the motor-cognitive task. We speculate that incorporating cognitive tasks into motor tasks, rather than separate training of mental and physical functions, is the most promising approach to efficiently enhance cognitive reserve. Further research investigating the influence of motor(-cognitive) exercises with different quantitative and qualitative characteristics on cognitive performance is urgently needed.

Keywords: cognition; cognitive enhancement; dementia; dual task; exercise.

Figures

FIGURE 1
FIGURE 1
Schematic illustration of the “Guided plasticity facilitation” framework.
FIGURE 2
FIGURE 2
Schematic illustration of the classification of motor-cognitive training and a exemplifying illustrations of the differences between “additional” and “incorporated” cognitive training.

References

    1. Ahlskog J. E. (2011). Does vigorous exercise have a neuroprotective effect in Parkinson disease? Neurology 77 288–294. 10.1212/WNL.0b013e318225ab66
    1. Ahn S., Salisbury D., Yu F. (2017). Effects of physical exercise on cognition in persons with subjective cognitive decline or mild cognitive impairment: a review. J. Parkinsons Dis. Alzheimers Dis. 4 1–11. 10.13188/2376-922X.1000023
    1. Ainsworth B. E., Haskell W. L., Whitt M. C., Irwin M. L., Swartz A. M., Strath S. J., et al. (2000). Compendium of physical activities: an update of activity codes and MET intensities. Med. Sci. Sports Exerc. 32 S498–S504. 10.1097/00005768-200009001-00009
    1. Albert M. S. (1997). The ageing brain: normal and abnormal memory. Philos. Trans. R. Soc. Lond. B Biol. Sci. 352 1703–1709. 10.1098/rstb.1997.0152
    1. Alves C. R., Gualano B., Takao P. P., Avakian P., Fernandes R. M., Morine D., et al. (2012). Effects of acute physical exercise on executive functions: a comparison between aerobic and strength exercise. J. Sport Exerc. Psychol. 34 539–549. 10.1123/jsep.34.4.539
    1. Andersen C. K., Wittrup-Jensen K. U., Lolk A., Andersen K., Kragh-Sorensen P. (2004). Ability to perform activities of daily living is the main factor affecting quality of life in patients with dementia. Health Qual. Life Outcomes 2:52. 10.1186/1477-7525-2-52
    1. Assis G. G., Almondes K. M. (2017). Exercise-dependent BDNF as a modulatory factor for the executive processing of individuals in course of cognitive decline. A systematic review. Front. Psychol. 8:584. 10.3389/fpsyg.2017.00584
    1. Bamidis P. D., Vivas A. B., Styliadis C., Frantzidis C., Klados M., Schlee W., et al. (2014). A review of physical and cognitive interventions in aging. Neurosci. Biobehav. Rev. 44 206–220. 10.1016/j.neubiorev.2014.03.019
    1. Barha C. K., Galea L. A., Nagamatsu L. S., Erickson K. I., Liu-Ambrose T. (2017). Personalising exercise recommendations for brain health: considerations and future directions. Br. J. Sports Med. 51 636–639. 10.1136/bjsports-2016-096710
    1. Batouli S. A., Saba V. (2017). At least eighty percent of brain grey matter is modifiable by physical activity: a review study. Behav. Brain Res. 332 204–217. 10.1016/j.bbr.2017.06.002
    1. Benzing V., Heinks T., Eggenberger N., Schmidt M. (2016). Acute cognitively engaging exergame-based physical activity enhances executive functions in adolescents. PLoS One 11:e0167501. 10.1371/journal.pone.0167501
    1. Bergami M., Berninger B. (2012). A fight for survival: the challenges faced by a newborn neuron integrating in the adult hippocampus. Dev. Neurobiol. 72 1016–1031. 10.1002/dneu.22025
    1. Bherer L., Erickson K. I., Liu-Ambrose T. (2013). A review of the effects of physical activity and exercise on cognitive and brain functions in older adults. J. Aging Res. 2013:657508. 10.1155/2013/657508
    1. Blondell S. J., Hammersley-Mather R., Veerman J. L. (2014). Does physical activity prevent cognitive decline and dementia? A systematic review and meta-analysis of longitudinal studies. BMC Public Health 14:510. 10.1186/1471-2458-14-510
    1. Boissieu P. de, Denormandie P., Armaingaud D., Sanchez S., Jeandel C. (2017). Exergames and elderly: a non-systematic review of the literature. Eur. Geriatr. Med. 8 111–116. 10.1016/j.eurger.2017.02.003
    1. Borror A. (2017). Brain-derived neurotrophic factor mediates cognitive improvements following acute exercise. Med. Hypotheses 106 1–5. 10.1016/j.mehy.2017.06.024
    1. Borson S. (2010). Cognition, aging, and disabilities: conceptual issues. Phys. Med. Rehabil. Clin. N. Am. 21 375–382. 10.1016/j.pmr.2010.01.001
    1. Bostrom N., Sandberg A. (2009). Cognitive enhancement: methods, ethics, regulatory challenges. Sci. Eng. Ethics 15 311–341. 10.1007/s11948-009-9142-5
    1. Bourdon P. C., Cardinale M., Murray A., Gastin P., Kellmann M., Varley M. C., et al. (2017). Monitoring athlete training loads: consensus statement. Int. J. Sports Physiol. Perform. 12 S2161–S2170 10.1123/IJSPP.2017-0208
    1. Brigadski T., Leßmann V. (2014). BDNF: a regulator of learning and memory processes with clinical potential. e-Neuroforum 5 1–11. 10.1007/s13295-014-0053-9
    1. Bruel-Jungerman E., Rampon C., Laroche S. (2007). Adult hippocampal neurogenesis, synaptic plasticity and memory: facts and hypotheses. Rev. Neurosci. 18 93–114. 10.1515/REVNEURO.2007.18.2.93
    1. Bruin E. D. de, Schoene D., Pichierri G., Smith S. T. (2010). Use of virtual reality technique for the training of motor control in the elderly. Some theoretical considerations. Z. Gerontol. Geriatr. 43 229–234. 10.1007/s00391-010-0124-7
    1. Buckner R. L. (2004). Memory and executive function in aging and AD: multiple factors that cause decline and reserve factors that compensate. Neuron 44 195–208. 10.1016/j.neuron.2004.09.006
    1. Budde H., Schwarz R., Velasques B., Ribeiro P., Holzweg M., Machado S., et al. (2016). The need for differentiating between exercise, physical activity, and training. Autoimmun. Rev. 15 110–111. 10.1016/j.autrev.2015.09.004
    1. Budde H., Voelcker-Rehage C., Pietrabyk-Kendziorra S., Ribeiro P., Tidow G. (2008). Acute coordinative exercise improves attentional performance in adolescents. Neurosci. Lett. 441 219–223. 10.1016/j.neulet.2008.06.024
    1. Buford T. W., Pahor M. (2012). Making preventive medicine more personalized: implications for exercise-related research. Prev. Med. 55 34–36. 10.1016/j.ypmed.2012.05.001
    1. Buford T. W., Roberts M. D., Church T. S. (2013). Toward exercise as personalized medicine. Sports Med. 43 157–165. 10.1007/s40279-013-0018-0
    1. Burgess D. J. (2017). The research doesn’t always apply: practical solutions to evidence-based training-load monitoring in elite team sports. Int. J. Sports Physiol. Perform. 12 S2136–S2141. 10.1123/ijspp.2016-0608
    1. Cai Y., Abrahamson K. (2015). Does exercise impact cognitive performance research article op in community-dwelling older adults with mild cognitive impairment? A systematic review. Qual. Prim. Care 23 214–222.
    1. Carlson M. C., Saczynski J. S., Rebok G. W., Seeman T., Glass T. A., McGill S., et al. (2008). Exploring the effects of an “everyday” activity program on executive function and memory in older adults: experience Corps. Gerontologist 48 793–801. 10.1093/geront/48.6.793
    1. Carvalho A., Rea I. M., Parimon T., Cusack B. J. (2014). Physical activity and cognitive function in individuals over 60 years of age: a systematic review. Clin. Interv. Aging 9 661–682. 10.2147/CIA.S55520
    1. Caspersen C. J., Powell K. E., Christenson G. M. (1985). Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep. 100 126–131.
    1. Chaddock-Heyman L., Hillman C. H., Cohen N. J., Kramer A. F. (2014). III. The importance of physical activity and aerobic fitness for cognitive control and memory in children. Monogr. Soc. Res. Child Dev. 79 25–50. 10.1111/mono.12129
    1. Chang Y. K., Labban J. D., Gapin J. I., Etnier J. L. (2012). The effects of acute exercise on cognitive performance: a meta-analysis. Brain Res. 1453 87–101. 10.1016/j.brainres.2012.02.068
    1. Church T. S., Thomas D. M., Tudor-Locke C., Katzmarzyk P. T., Earnest C. P., Rodarte R. Q., et al. (2011). Trends over 5 decades in U.S. occupation-related physical activity and their associations with obesity. PLoS One 6:e19657. 10.1371/journal.pone.0019657
    1. Coelho F G., de Melo Gobbi S., Andreatto C. A. A., Corazza I., Pedroso R. V., Santos-Galduroz R. F. (2013). Physical exercise modulates peripheral levels of brain-derived neurotrophic factor (BDNF): a systematic review of experimental studies in the elderly. Arch. Gerontol. Geriatr. 56 10–15. 10.1016/j.archger.2012.06.003
    1. Colcombe S., Kramer A. F. (2003). Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol. Sci. 14 125–130. 10.1111/1467-9280.t01-1-01430
    1. Colzato L. S. (2016). Editorial. J. Cogn. Enhanc. 1 1–2. 10.1007/s41465-016-0001-4
    1. Cotman C. W., Berchtold N. C., Christie L. -A. (2007). Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci. 30 464–472. 10.1016/j.tins.2007.06.011
    1. Coubard O. A., Duretz S., Lefebvre V., Lapalus P., Ferrufino L. (2011). Practice of contemporary dance improves cognitive flexibility in aging. Front. Aging Neurosci. 3:13. 10.3389/fnagi.2011.00013
    1. Cox E. P., O’Dwyer N., Cook R., Vetter M., Cheng H. L., Rooney K., et al. (2016). Relationship between physical activity and cognitive function in apparently healthy young to middle-aged adults: a systematic review. J. Sci. Med. Sport 19 616–628. 10.1016/j.jsams.2015.09.003
    1. Crabbe J. B., Dishman R. K. (2004). Brain electrocortical activity during and after exercise: a quantitative synthesis. Psychophysiology 41 563–574. 10.1111/j.1469-8986.2004.00176.x
    1. Crum A. J., Langer E. J. (2007). Mind-set matters: exercise and the placebo effect. Psychol. Sci. 18 165–171. 10.1111/j.1467-9280.2007.01867.x
    1. Dahlin E., Neely A. S., Larsson A., Bäckman L., Nyberg L. (2008). Transfer of learning after updating training mediated by the striatum. Science 320 1510–1512. 10.1126/science.1155466
    1. Dhami P., Moreno S., DeSouza J. F. (2014). New framework for rehabilitation - fusion of cognitive and physical rehabilitation: the hope for dancing. Front. Psychol. 5:1478. 10.3389/fpsyg.2014.01478
    1. Dinoff A., Herrmann N., Swardfager W., Lanctôt K. L. (2017). The effect of acute exercise on blood concentrations of brain-derived neurotrophic factor in healthy adults: a meta-analysis. Eur. J. Neurosci. 46 1635–1646. 10.1111/ejn.13603
    1. Erickson K. I., Gildengers A. G., Butters M. A. (2013). Physical activity and brain plasticity in late adulthood. Dialogues Clin. Neurosci. 15 99–108.
    1. Erickson K. I., Voss M. W., Prakash R. S., Basak C., Szabo A., Chaddock L., et al. (2011). Exercise training increases size of hippocampus and improves memory. Proc. Natl. Acad. Sci. U.S.A. 108 3017–3022. 10.1073/pnas.1015950108
    1. Esteban-Cornejo I., Tejero-Gonzalez C. M., Sallis J. F., Veiga O. L. (2015). Physical activity and cognition in adolescents: a systematic review. J. Sci. Med. Sport 18 534–539. 10.1016/j.jsams.2014.07.007
    1. Fabel K., Wolf S. A., Ehninger D., Babu H., Leal-Galicia P., Kempermann G. (2009). Additive effects of physical exercise and environmental enrichment on adult hippocampal neurogenesis in mice. Front. Neurosci. 3:50. 10.3389/neuro.22.002.2009
    1. Falck R. S., Davis J. C., Liu-Ambrose T. (2016). What is the association between sedentary behaviour and cognitive function? A systematic review. Br. J. Sports Med. 51 800–811. 10.1136/bjsports-2015-095551
    1. Fiest K. M., Jette N., Roberts J. I., Maxwell C. J., Smith E. E., Black S. E., et al. (2016). The prevalence and incidence of dementia: a systematic review and meta-analysis. Can. J. Neurol. Sci. 43(Suppl. 1), S3–S50. 10.1017/cjn.2016.18
    1. Fissler P., Küster O., Schlee W., Kolassa I. -T. (2013). Novelty interventions to enhance broad cognitive abilities and prevent dementia: synergistic approaches for the facilitation of positive plastic change. Prog. Brain Res. 207 403–434. 10.1016/B978-0-444-63327-9.00017-5
    1. Fjell A. M., Walhovd K. B. (2010). Structural brain changes in aging: courses, causes and cognitive consequences. Rev. Neurosci. 21 187–221. 10.1515/REVNEURO.2010.21.3.187
    1. Frith E., Sng E., Loprinzi P. D. (2017). Randomized controlled trial evaluating the temporal effects of high-intensity exercise on learning, short-term and long-term memory, and prospective memory. Eur. J. Neurosci. 46 2557–2564. 10.1111/ejn.13719
    1. Geibig C. S., Keiner S., Redecker C. (2012). Functional recruitment of newborn hippocampal neurons after experimental stroke. Neurobiol. Dis. 46 431–439. 10.1016/j.nbd.2012.02.007
    1. Greeff J. W. de, Bosker R. J., Oosterlaan J., Visscher C., Hartman E. (2017). Effects of physical activity on executive functions, attention and academic performance in preadolescent children: a meta-analysis. J. Sci. Med. Sport 21 501–507. 10.1016/j.jsams.2017.09.595
    1. Green C. S., Bavelier D. (2012). Learning, attentional control, and action video games. Curr. Biol. 22 R197–R206. 10.1016/j.cub.2012.02.012
    1. Groot C., Hooghiemstra A. M., Raijmakers P. H., van Berckel B. N., Scheltens P., Scherder E. J., et al. (2016). The effect of physical activity on cognitive function in patients with dementia: a meta-analysis of randomized control trials. Ageing Res. Rev. 25 13–23. 10.1016/j.arr.2015.11.005
    1. Hamacher D., Brennicke M., Behrendt T., Alt P., Törpel A., Schega L. (2017). Motor-cognitive dual-tasking under hypoxia. Exp. Brain Res. 235 2997–3001. 10.1007/s00221-017-5036-y
    1. Hamacher D., Hamacher D., Rehfeld K., Hökelmann A., Schega L. (2015a). The effect of a six-month dancing program on motor-cognitive dual-task performance in older adults. JAPA 23 647–652. 10.1123/japa.2014-0067
    1. Hamacher D., Hamacher D., Rehfeld K., Schega L. (2015b). Motor-cognitive dual-task training improves local dynamic stability of normal walking in older individuals. Clin. Biomech. 32 138–141. 10.1016/j.clinbiomech.2015.11.021
    1. Hamacher D., Hamacher D., Törpel A., Krowicki M., Herold F., Schega L. (2016). The reliability of local dynamic stability in walking while texting and performing an arithmetical problem. Gait Posture 44 200–203. 10.1016/j.gaitpost.2015.12.021
    1. Hamacher D., Herold F., Wiegel P., Hamacher D., Schega L. (2015c). Brain activity during walking: a systematic review. Neurosci. Biobehav. Rev. 57 310–327. 10.1016/j.neubiorev.2015.08.002
    1. Hashimoto H., Takabatake S., Miyaguchi H., Nakanishi H., Naitou Y. (2015). Effects of dance on motor functions, cognitive functions, and mental symptoms of Parkinson’s disease: a quasi-randomized pilot trial. Complement. Ther. Med 23 210–219. 10.1016/j.ctim.2015.01.010
    1. Hedden T., Gabrieli J. D. (2004). Insights into the ageing mind: a view from cognitive neuroscience. Nat. Rev. Neurosci. 5 87–96. 10.1038/nrn1323
    1. Helfer S. G., Elhai J. D., Geers A. L. (2015). Affect and exercise: positive affective expectations can increase post-exercise mood and exercise intentions. Ann. Behav. Med. 49 269–279. 10.1007/s12160-014-9656-1
    1. Heyn P., Abreu B. C., Ottenbacher K. J. (2004). The effects of exercise training on elderly persons with cognitive impairment and dementia: a meta-analysis11No commercial party having a direct financial interest in the results of the research supporting this article has or will confer a benefit upon the author(s) or upon any organization with which the author(s) is/are associated. Arch. Phys. Med. Rehabil. 85 1694–1704. 10.1016/j.apmr.2004.03.019
    1. Hillman C. H., Erickson K. I., Kramer A. F. (2008). Be smart, exercise your heart: exercise effects on brain and cognition. Nat. Rev. Neurosci. 9 58–65. 10.1038/nrn2298
    1. Hillman C. H., Schott N. (2013). Der Zusammenhang von Fitness, kognitiver Leistungsfähigkeit und Gehirnzustand im Schulkindalter. Z. Sportpsychol. 20 33–41. 10.1026/1612-5010/a000085
    1. Hofmann P., Tschakert G. (2010). Special needs to prescribe exercise intensity for scientific studies. Cardiol. Res. Pract. 2011:209302. 10.4061/2011/209302
    1. Hötting K., Röder B. (2013). Beneficial effects of physical exercise on neuroplasticity and cognition. Neurosci. Biobehav. Rev. 37 2243–2257. 10.1016/j.neubiorev.2013.04.005
    1. Howley E. T. (2001). Type of activity: resistance, aerobic and leisure versus occupational physical activity. Med. Sci. Sports Exerc. 33 S364–S369. 10.1097/00005768-200106001-00005
    1. Hurd M. D., Martorell P., Delavande A., Mullen K. J., Langa K. M. (2013). Monetary costs of dementia in the United States. N. Engl. J. Med. 368 1326–1334. 10.1056/NEJMsa1204629
    1. Janssen I. (2012). Health care costs of physical inactivity in Canadian adults. Appl. Physiol. Nutr. Metab. 37 803–806. 10.1139/h2012-061
    1. Jobe J. B., Smith D. M., Ball K., Tennstedt S. L., Marsiske M., Willis S. L., et al. (2001). Active: a cognitive intervention trial to promote independence in older adults. Control. Clin. Trials 22 453–479. 10.1016/S0197-2456(01)00139-8
    1. Kasai H., Matsuzaki M., Noguchi J., Yasumatsu N., Nakahara H. (2003). Structure–stability–function relationships of dendritic spines. Trends Neurosci. 26 360–368. 10.1016/S0166-2236(03)00162-0
    1. Kempermann G., Fabel K., Ehninger D., Babu H., Leal-Galicia P., Garthe A., et al. (2010). Why and how physical activity promotes experience-induced brain plasticity. Front. Neurosci. 4:189. 10.3389/fnins.2010.00189
    1. Khan N. A., Hillman C. H. (2014). The relation of childhood physical activity and aerobic fitness to brain function and cognition: a review. Pediatr. Exerc. Sci. 26 138–146. 10.1123/pes.2013-0125
    1. Knaepen K., Goekint M., Heyman E. M., Meeusen R. (2010). Neuroplasticity - exercise-induced response of peripheral brain-derived neurotrophic factor: a systematic review of experimental studies in human subjects. Sports Med. 40 765–801. 10.2165/11534530-000000000-00000
    1. Koleske A. J. (2013). Molecular mechanisms of dendrite stability. Nat. Rev. Neurosci. 14 536–550. 10.1038/nrn3486
    1. Koutsandreou F., Wegner M., Niemann C., Budde H. (2016). Effects of motor versus cardiovascular exercise training on children’s working memory. Med. Sci. Sports Exerc. 48 1144–1152. 10.1249/MSS.0000000000000869
    1. Kraft E. (2012). Cognitive function, physical activity, and aging: possible biological links and implications for multimodal interventions. Neuropsychol. Dev. Cogn. B Aging Neuropsychol. Cogn. 19 248–263. 10.1080/13825585.2011.645010
    1. Ku P. -W., Liu Y. -T., Lo M. -K., Chen L. -J., Stubbs B. (2017). Higher levels of objectively measured sedentary behavior is associated with worse cognitive ability: two-year follow-up study in community-dwelling older adults. Exp. Gerontol. 99 110–114. 10.1016/j.exger.2017.09.014
    1. Lague-Beauvais M., Fraser S. A., Desjardins-Crepeau L., Castonguay N., Desjardins M., Lesage F., et al. (2015). Shedding light on the effect of priority instructions during dual-task performance in younger and older adults: a fNIRS study. Brain Cogn. 98 1–14. 10.1016/j.bandc.2015.05.001
    1. Lauenroth A., Ioannidis A. E., Teichmann B. (2016). Influence of combined physical and cognitive training on cognition: a systematic review. BMC Geriatr. 16:141. 10.1186/s12877-016-0315-1
    1. Lautenschlager N. T., Cox K. L. (2013). Can participation in mental and physical activity protect cognition in old age? Comment on “The Mental Activity and eXercise (MAX) trial: a randomized controlled trial to enhance cognitive function in older adults”. JAMA Intern. Med. 173 805–806. 10.1001/jamainternmed.2013.206
    1. Levin O., Netz Y., Ziv G. (2017). The beneficial effects of different types of exercise interventions on motor and cognitive functions in older age: a systematic review. Eur. Rev. Aging Phys. Act. 14:20. 10.1186/s11556-017-0189-z
    1. Li J. W., O’Connor H., O’Dwyer N., Orr R. (2017). The effect of acute and chronic exercise on cognitive function and academic performance in adolescents: a systematic review. J. Sci. Med. Sport 20 841–848. 10.1016/j.jsams.2016.11.025
    1. Lu B., Nagappan G., Guan X., Nathan P. J., Wren P. (2013). BDNF-based synaptic repair as a disease-modifying strategy for neurodegenerative diseases. Nat. Rev. Neurosci. 14 401–416. 10.1038/nrn3505
    1. Ludyga S., Gerber M., Brand S., Holsboer-Trachsler E., Puhse U. (2016). Acute effects of moderate aerobic exercise on specific aspects of executive function in different age and fitness groups: a meta-analysis. Psychophysiology 53 1611–1626. 10.1111/psyp.12736
    1. Lustig C., Shah P., Seidler R., Reuter-Lorenz P. A. (2009). Aging, training, and the brain: a review and future directions. Neuropsychol. Rev. 19 504–522. 10.1007/s11065-009-9119-9
    1. Mann T., Lamberts R. P., Lambert M. I. (2013). Methods of prescribing relative exercise intensity: physiological and practical considerations. Sports Med. 43 613–625. 10.1007/s40279-013-0045-x
    1. Mansoubi M., Pearson N., Clemes S. A., Biddle S. J., Bodicoat D. H., Tolfrey K., et al. (2015). Energy expenditure during common sitting and standing tasks: examining the 1.5 MET definition of sedentary behaviour. BMC Public Health 15:516. 10.1186/s12889-015-1851-x
    1. Marchetti R., Forte R., Borzacchini M., Vazou S., Tomporowski P. D., Pesce C. (2015). Physical and motor fitness, sport skills and executive function in adolescents: a moderated prediction model. Psychology 6 1915–1929. 10.4236/psych.2015.614189
    1. Mavilidi M. -F., Okely A., Chandler P., Louise Domazet S., Paas F. (2018). Immediate and delayed effects of integrating physical activity into preschool children’s learning of numeracy skills. J. Exp. Child Psychol. 166 502–519. 10.1016/j.jecp.2017.09.009
    1. Mavilidi M. -F., Okely A. D., Chandler P., Paas F. (2016). Infusing physical activities into the classroom: effects on preschool children’s geography learning. Mind Brain Educ. 10 256–263. 10.1111/mbe.12131
    1. Mavilidi M. -F., Okely A. D., Chandler P., Paas F. (2017). Effects of integrating physical activities into a science lesson on preschool children’s learning and enjoyment. Appl. Cogn. Psychol. 31 281–290. 10.1002/acp.3325
    1. Meyer T., Gabriel H. H., Kindermann W. (1999). Is determination of exercise intensities as percentages of VO2max or HRmax adequate? Med. Sci. Sports Exerc. 31 1342–1345. 10.1097/00005768-199909000-00017
    1. Monteiro-Junior R. S., Vaghetti C. A. O., Nascimento O. J. M., Laks J., Deslandes A. C. (2016). Exergames: neuroplastic hypothesis about cognitive improvement and biological effects on physical function of institutionalized older persons. Neural Regen. Res. 11 201–204. 10.4103/1673-5374.177709
    1. Moreau D. (2015). Brains and brawn: complex motor activities to maximize cognitive enhancement. Educ. Psychol. Rev. 27 475–482. 10.1007/s10648-015-9323-5
    1. Moreau D., Conway A. R. A. (2013). Cognitive enhancement: a comparative review of computerized and athletic training programs. Int. Rev. Sport Exerc. Psychol. 6 155–183. 10.1080/1750984X.2012.758763
    1. Mothes H., Leukel C., Jo H. -G., Seelig H., Schmidt S., Fuchs R. (2016). Expectations affect psychological and neurophysiological benefits even after a single bout of exercise. J. Behav. Med. 40 293–306. 10.1007/s10865-016-9781-3
    1. Müller P., Rehfeld K., Lüders A., Schmicker M., Hökelmann A., Kaufman J., et al. (2016). Effekte eines Tanz- und eines Gesundheitssporttrainings auf die graue Hirnsubstanz gesunder Senioren. Sportwissenschaft 46 213–222. 10.1007/s12662-016-0411-6
    1. Müller P., Rehfeld K., Schmicker M., Hökelmann A., Dordevic M., Lessmann V., et al. (2017). Evolution of neuroplasticity in response to physical activity in old age: the case for dancing. Front. Aging Neurosci. 9:56. 10.3389/fnagi.2017.00056
    1. Nithianantharajah J., Hannan A. J. (2009). The neurobiology of brain and cognitive reserve: mental and physical activity as modulators of brain disorders. Prog. Neurobiol. 89 369–382. 10.1016/j.pneurobio.2009.10.001
    1. Northey J. M., Cherbuin N., Pumpa K. L., Smee D. J., Rattray B. (2017). Exercise interventions for cognitive function in adults older than 50: a systematic review with meta-analysis. Br. J. Sports Med. 52 154–160. 10.1136/bjsports-2016-096587
    1. Owen N., Sparling P. B., Healy G. N., Dunstan D. W., Matthews C. E. (2010). Sedentary behavior: emerging evidence for a new health risk. Mayo Clin. Proc. 85 1138–1141. 10.4065/mcp.2010.0444
    1. Paas F., Renkl A., Sweller J. (2003). Cognitive load theory and instructional design: recent developments. Educ. Psychol. 38 1–4. 10.1207/S15326985EP3801_1
    1. Paas F., Sweller J. (2012). An evolutionary upgrade of cognitive load theory: using the human motor system and collaboration to support the learning of complex cognitive tasks. Educ. Psychol. Rev. 24 27–45. 10.1007/s10648-011-9179-2
    1. Paillard T. (2015). Preventive effects of regular physical exercise against cognitive decline and the risk of dementia with age advancement. Sports Med. Open 1:20. 10.1186/s40798-015-0016-x
    1. Pal A., Biswas A., Pandit A., Roy A., Guin D., Gangopadhyay G., et al. (2016). Study of visuospatial skill in patients with dementia. Ann. Indian Acad. Neurol. 19 83–88. 10.4103/0972-2327.168636
    1. Park D. C., Lautenschlager G., Hedden T., Davidson N. S., Smith A. D., Smith P. K. (2002). Models of visuospatial and verbal memory across the adult life span. Psychol. Aging 17 299–320. 10.1037/0882-7974.17.2.299
    1. Peeters G. M., Mishra G. D., Dobson A. J., Brown W. J. (2014). Health care costs associated with prolonged sitting and inactivity. Am. J. Prev. Med. 46 265–272. 10.1016/j.amepre.2013.11.014
    1. Pesce C. (2012). Shifting the focus from quantitative to qualitative exercise characteristics in exercise and cognition research. J. Sport Exerc. Psychol. 34 766–786. 10.1123/jsep.34.6.766
    1. Pichierri G., Murer K., Bruin E. D. de. (2012). A cognitive-motor intervention using a dance video game to enhance foot placement accuracy and gait under dual task conditions in older adults: a randomized controlled trial. BMC Geriatr. 12:74. 10.1186/1471-2318-12-74
    1. Piepmeier A. T., Etnier J. L. (2015). Brain-derived neurotrophic factor (BDNF) as a potential mechanism of the effects of acute exercise on cognitive performance. J. Sport Health Sci. 4 14–23. 10.1016/j.jshs.2014.11.001
    1. Plummer P., Apple S., Dowd C., Keith E. (2015a). Texting and walking: effect of environmental setting and task prioritization on dual-task interference in healthy young adults. Gait Posture 41 46–51. 10.1016/j.gaitpost.2014.08.007
    1. Plummer P., Eskes G. (2015). Measuring treatment effects on dual-task performance: a framework for research and clinical practice. Front. Hum. Neurosci. 9:225. 10.3389/fnhum.2015.00225
    1. Plummer P., Eskes G., Wallace S., Giuffrida C., Fraas M., Campbell G., et al. (2013). Cognitive-motor interference during functional mobility after stroke: state of the science and implications for future research. Arch. Phys. Med. Rehabil. 94 2565–2574.e6. 10.1016/j.apmr.2013.08.002
    1. Plummer P., Grewal G., Najafi B., Ballard A. (2015b). Instructions and skill level influence reliability of dual-task performance in young adults. Gait Posture 41 964–967. 10.1016/j.gaitpost.2015.03.348
    1. Plummer P., Villalobos R. M., Vayda M. S., Moser M., Johnson E. (2014). Feasibility of dual-task gait training for community-dwelling adults after stroke: a case series. Stroke Res. Treat. 2014:538602. 10.1155/2014/538602
    1. Pontifex M. B., Hillman C. H., Fernhall B., Thompson K. M., Valentini T. A. (2009). The effect of acute aerobic and resistance exercise on working memory. Med. Sci. Sports Exerc. 41 927–934. 10.1249/MSS.0b013e3181907d69
    1. Pouw W. T. J. L., Nooijer J. A. de, van Gog T., Zwaan R. A., Paas F. (2014a). Toward a more embedded/extended perspective on the cognitive function of gestures. Front. Psychol. 5:359. 10.3389/fpsyg.2014.00359
    1. Pouw W. T. J. L., van Gog T., Paas F. (2014b). An embedded and embodied cognition review of instructional manipulatives. Educ. Psychol. Rev. 26 51–72. 10.1007/s10648-014-9255-5
    1. Prince M., Bryce R., Albanese E., Wimo A., Ribeiro W., Ferri C. P. (2013). The global prevalence of dementia: a systematic review and metaanalysis. Alzheimers Dement. 9 63.e2–75.e2. 10.1016/j.jalz.2012.11.007
    1. Raichlen D. A., Alexander G. E. (2017). Adaptive capacity: an evolutionary neuroscience model linking exercise, cognition, and brain health. Trends Neurosci. 40 408–421. 10.1016/j.tins.2017.05.001
    1. Rehfeld K., Müller P., Aye N., Schmicker M., Dordevic M., Kaufmann J., et al. (2017). Dancing or fitness sport? The effects of two training programs on hippocampal plasticity and balance abilities in healthy seniors. Front. Hum. Neurosci. 11:261. 10.3389/fnhum.2017.00305
    1. Roig M., Nordbrandt S., Geertsen S. S., Nielsen J. B. (2013). The effects of cardiovascular exercise on human memory: a review with meta-analysis. Neurosci. Biobehav. Rev. 37 1645–1666. 10.1016/j.neubiorev.2013.06.012
    1. Roig M., Skriver K., Lundbye-Jensen J., Kiens B., Nielsen J. B. (2012). A single bout of exercise improves motor memory. PLoS One 7:e44594. 10.1371/journal.pone.0044594
    1. Rolland Y., van Abellan Kan G., Vellas B. (2010). Healthy brain aging: role of exercise and physical activity. Clin. Geriatr. Med. 26 75–87. 10.1016/j.cger.2009.11.002
    1. Ruiter M., Loyens S., Paas F. (2015). Watch your step children! learning two-digit numbers through mirror-based observation of self-initiated body movements. Educ. Psychol. Rev. 27 457–474. 10.1007/s10648-015-9324-4
    1. Scharhag-Rosenberger F., Meyer T., Gässler N., Faude O., Kindermann W. (2010). Exercise at given percentages of VO2max: heterogeneous metabolic responses between individuals. J. Sci. Med. Sport 13 74–79. 10.1016/j.jsams.2008.12.626
    1. Scherder E., Eggermont L., Visscher C., Scheltens P., Swaab D. (2011). Understanding higher level gait disturbances in mild dementia in order to improve rehabilitation: ‘Last in–first out’. Neurosci. Biobehav. Rev. 35 699–714. 10.1016/j.neubiorev.2010.08.009
    1. Scherder E. J.A., Bogen T., Eggermont L. P., Hamers J. P., Swaab D. F. (2010). The more physical inactivity, the more agitation in dementia. Int. Psychogeriatr. 22 1203–1208. 10.1017/S1041610210001493
    1. Schlaffke L., Lissek S., Lenz M., Brune M., Juckel G., Hinrichs T., et al. (2014). Sports and brain morphology - a voxel-based morphometry study with endurance athletes and martial artists. Neuroscience 259 35–42. 10.1016/j.neuroscience.2013.11.046
    1. Schneider S., Brummer V., Abel T., Askew C. D., Struder H. K. (2009). Changes in brain cortical activity measured by EEG are related to individual exercise preferences. Physiol. Behav. 98 447–452. 10.1016/j.physbeh.2009.07.010
    1. Schott N. (2015). Trail Walking Test zur Erfassung der motorisch-kognitiven Interferenz bei alteren Erwachsenen. Entwicklung und Uberprufung der psychometrischen Eigenschaften des Verfahrens. Z. Gerontol. Geriatr. 48 722–733. 10.1007/s00391-015-0866-3
    1. Shams L., Seitz A. R. (2008). Benefits of multisensory learning. Trends Cogn. Sci. 12 411–417. 10.1016/j.tics.2008.07.006
    1. Skjæret N., Nawaz A., Morat T., Schoene D., Helbostad J. L., Vereijken B. (2016). Exercise and rehabilitation delivered through exergames in older adults: an integrative review of technologies, safety and efficacy. Int. J. Med. Inf. 85 1–16. 10.1016/j.ijmedinf.2015.10.008
    1. Smith J. C., Nielson K. A., Woodard J. L., Seidenberg M., Rao S. M. (2013). Physical activity and brain function in older adults at increased risk for Alzheimer’s disease. Brain Sci. 3 54–83. 10.3390/brainsci3010054
    1. Sofi F., Valecchi D., Bacci D., Abbate R., Gensini G. F., Casini A., et al. (2011). Physical activity and risk of cognitive decline: a meta-analysis of prospective studies. J. Intern. Med. 269 107–117. 10.1111/j.1365-2796.2010.02281.x
    1. Song D., Yu D. S. F., Li P. W. C., Lei Y. (2018). The effectiveness of physical exercise on cognitive and psychological outcomes in individuals with mild cognitive impairment: a systematic review and meta-analysis. Int. J. Nurs. Stud. 79 155–164. 10.1016/j.ijnurstu.2018.01.002
    1. Stern Y. (2002). What is cognitive reserve? Theory and research application of the reserve concept. J. Int. Neuropsychol. Soc. 8 448–460. 10.1017/S1355617702813248
    1. Stern Y. (2009). Cognitive reserve. Neuropsychologia 47 2015–2028. 10.1016/j.neuropsychologia.2009.03.004
    1. Stern Y. (2012). Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurol. 11 1006–1012. 10.1016/S1474-4422(12)70191-6
    1. Stern Y. (2013). Cognitive reserve: implications for assessment and intervention. Folia Phoniatr. Logop. 65 49–54. 10.1159/000353443
    1. Stillman C. M., Cohen J., Lehman M. E., Erickson K. I. (2016). Mediators of physical activity on neurocognitive function: a review at multiple levels of analysis. Front. Hum. Neurosci. 10:626. 10.3389/fnhum.2016.00626
    1. Stimpson N. J., Davison G., Javadi A. -H. (2018). Joggin’ the noggin: towards a physiological understanding of exercise-induced cognitive benefits. Neurosci. Biobehav. Rev. 88 177–186. 10.1016/j.neubiorev.2018.03.018
    1. Szuhany K. L., Bugatti M., Otto M. W. (2015). A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor. J. Psychiatr. Res. 60 56–64. 10.1016/j.jpsychires.2014.10.003
    1. Tait J. L., Duckham R. L., Milte C. M., Main L. C., Daly R. M. (2017). Influence of sequential vs. simultaneous dual-task exercise training on cognitive function in older adults. Front. Aging Neurosci. 9:368. 10.3389/fnagi.2017.00368
    1. Tarr M. J., Warren W. H. (2002). Virtual reality in behavioral neuroscience and beyond. Nat. Neurosci. 5 1089–1092. 10.1038/nn948
    1. Toumpaniari K., Loyens S., Mavilidi M. -F., Paas F. (2015). Preschool children’s foreign language vocabulary learning by embodying words through physical activity and gesturing. Educ. Psychol. Rev. 27 445–456. 10.1007/s10648-015-9316-4
    1. Trachtenberg J. T., Chen B. E., Knott G. W., Feng G., Sanes J. R., Welker E., et al. (2002). Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420 788–794. 10.1038/nature01273
    1. Trombly C. A. (1995). Occupation: purposefulness and meaningfulness as therapeutic mechanisms. 1995 Eleanor Clarke Slagle Lecture. Am. J. Occup. Ther. 49 960–972. 10.5014/ajot.49.10.960
    1. van Dongen E. V., Kersten I. H. P., Wagner I. C., Morris R. G. M., Fernandez G. (2016). Physical exercise performed four hours after learning improves memory retention and increases hippocampal pattern similarity during retrieval. Curr. Biol. 26 1722–1727. 10.1016/j.cub.2016.04.071
    1. Vanrenterghem J., Nedergaard N. J., Robinson M. A., Drust B. (2017). Training load monitoring in team sports: a novel framework separating physiological and biomechanical load-adaptation pathways. Sports Med. 47 2135–2142. 10.1007/s40279-017-0714-2
    1. Verburgh L., Konigs M., Scherder E. J. A., Oosterlaan J. (2014). Physical exercise and executive functions in preadolescent children, adolescents and young adults: a meta-analysis. Br. J. Sports Med. 48 973–979. 10.1136/bjsports-2012-091441
    1. Verghese J., Lipton R. B., Katz M. J., Hall C. B., Derby C. A., Kuslansky G., et al. (2003). Leisure activities and the risk of dementia in the elderly. N. Engl. J. Med. 348 2508–2516. 10.1056/NEJMoa022252
    1. Voelcker-Rehage C., Godde B., Staudinger U. M. (2010). Physical and motor fitness are both related to cognition in old age. Eur. J. Neurosci. 31 167–176. 10.1111/j.1460-9568.2009.07014.x
    1. Voelcker-Rehage C., Godde B., Staudinger U. M. (2011). Cardiovascular and coordination training differentially improve cognitive performance and neural processing in older adults. Front. Hum. Neurosci. 5:26. 10.3389/fnhum.2011.00026
    1. Voelcker-Rehage C., Niemann C. (2013). Structural and functional brain changes related to different types of physical activity across the life span. Neurosci. Biobehav. Rev. 37 2268–2295. 10.1016/j.neubiorev.2013.01.028
    1. Wilson M. (2002). Six views of embodied cognition. Psychon. Bull. Rev. 9 625–636. 10.3758/BF03196322
    1. Wimo A., Jonsson L., Bond J., Prince M., Winblad B. (2013). The worldwide economic impact of dementia 2010. Alzheimers Dement. 9 1.e3–11.e3. 10.1016/j.jalz.2012.11.006
    1. Yogev-Seligmann G., Hausdorff J. M., Giladi N. (2012a). Do we always prioritize balance when walking? Towards an integrated model of task prioritization. Mov. Disord. 27 765–770. 10.1002/mds.24963
    1. Yogev-Seligmann G., Rotem-Galili Y., Dickstein R., Giladi N., Hausdorff J. M. (2012b). Effects of explicit prioritization on dual task walking in patients with Parkinson’s disease. Gait Posture 35 641–646. 10.1016/j.gaitpost.2011.12.016
    1. Zach S., Shalom E. (2016). The influence of acute physical activity on working memory. Percept. Mot. Skills 122 365–374. 10.1177/0031512516631066
    1. Zelinski E. M. (2009). Far transfer in cognitive training of older adults. Restor. Neurol. Neurosci. 27 455–471. 10.3233/RNN-2009-0495

Source: PubMed

3
S'abonner