Whole-Transcriptome Sequencing Identifies Key Differentially Expressed mRNAs, miRNAs, lncRNAs, and circRNAs Associated with CHOL

Kai-Jian Chu, Yu-Shui Ma, Xiao-Hui Jiang, Ting-Miao Wu, Zhi-Jun Wu, Zhi-Zhen Li, Jing-Han Wang, Qing-Xiang Gao, Bin Yi, Yi Shi, Hui-Min Wang, Li-Peng Gu, Su-Qing Zhang, Gao-Ren Wang, Ji-Bin Liu, Da Fu, Xiao-Qing Jiang, Kai-Jian Chu, Yu-Shui Ma, Xiao-Hui Jiang, Ting-Miao Wu, Zhi-Jun Wu, Zhi-Zhen Li, Jing-Han Wang, Qing-Xiang Gao, Bin Yi, Yi Shi, Hui-Min Wang, Li-Peng Gu, Su-Qing Zhang, Gao-Ren Wang, Ji-Bin Liu, Da Fu, Xiao-Qing Jiang

Abstract

To systematically evaluate the whole-transcriptome sequencing data of cholangiocarcinoma (CHOL) to gain more insights into the transcriptomic landscape and molecular mechanism of this cancer, we performed whole-transcriptome sequencing based on the tumorous (C) and their corresponding non-tumorous adjacent to the tumors (CP) from eight CHOL patients. Subsequently, differential expression analysis was performed on the C and CP groups, followed by functional interaction prediction analysis to investigate gene-regulatory circuits in CHOL. In addition, The Cancer Genome Atlas (TCGA) for CHOL data was used to validate the results. In total, 2,895 differentially expressed messenger RNAs (dif-mRNAs), 56 differentially expressed microRNAs (dif-miRNAs), 151 differentially expressed long non-coding RNAs (dif-lncRNAs), and 110 differentially expressed circular RNAs (dif-circRNAs) were found in CHOL samples compared with controls. Enrichment analysis on those differentially expressed genes (DEGs) related to miRNA, lncRNA, and circRNA also identified the function of spliceosome. The downregulated hsa-miR-144-3p were significantly enriched in the competing endogenous RNA (ceRNA) complex network, which also included 7 upregulated and 13 downregulated circRNAs, 7 upregulated lncRNAs, and 90 upregulated and 40 downregulated mRNAs. Moreover, most of the DEGs and a few of the miRNAs (such as hsa-miR-144-3p) were successfully validated by TCGA data. The genes involved in RNA splicing and protein degradation processes and miR-144-3p may play fundamental roles in the pathogenesis of CHOL.

Keywords: CHOL; DEG; ceRNA; miR-144-3p; spliceosome.

Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.

Figures

Graphical abstract
Graphical abstract
Figure 1
Figure 1
Heatmaps of Differentially Expressed Molecules (A–D) Heatmaps of differentially expressed mRNAs (A), differentially expressed miRNAs (B), differentially expressed lncRNAs (C), and differentially expressed circRNAs (D). Red indicates upregulation, and green indicates downregulation.
Figure 2
Figure 2
Analysis of Gene Ontology Biological Process (GO-BP) and KEGG Pathway Top 20 pathways or GO-BP terms enriched by upregulated or downregulated mRNAs. (A) Top 20 GO-BP terms enriched by upregulated genes. (B) Top 20 GO-BP terms enriched by downregulated genes. (C) Top 20 pathways enriched by upregulated genes. (D) Top 20 pathways enriched by downregulated genes.
Figure 3
Figure 3
Four Modules Extracted from Protein-Protein Interaction (PPI) Network and GO-BP Enrichment Analysis Four modules extracted from PPI network and GO-BP enrichment analysis of genes in these four modules. (A) Significant clustered modules from the PPI network. Orange prism indicates upregulated genes. Node size corresponded to degree value; larger node has higher degree value. (B) Top 10 GO-BP terms enriched by genes in those four modules.
Figure 4
Figure 4
Bubble Maps of KEGG Pathway Enrichment (A) Pathways enriched by genes regulated by differentially expressed miRNAs. (B) Pathways enriched by genes regulated by differentially expressed lncRNAs. (C) Pathways enriched by genes regulated by differentially expressed circRNAs.
Figure 5
Figure 5
The lncRNA-miRNA-mRNA Network Orange prism represents the upregulated genes, green circle indicates downregulated genes, red triangle indicates upregulated miRNAs, green arrow shows the downregulated miRNAs, and white quadrilateral indicates the upregulated lncRNAs.
Figure 6
Figure 6
circRNA-miRNA-mRNA Network Orange prism represents the upregulated genes, green circle represents downregulated genes, red triangle indicates the upregulated miRNAs, green arrow indicates the downregulated miRNAs, white quadrilateral indicates the upregulated circRNA, and white hexagon indicates downregulated circRNA.
Figure 7
Figure 7
The Competing Endogenous RNA (ceRNA) Network Orange prism indicates the upregulated gene, green circle indicates the downregulated gene, red triangle indicates the upregulated miRNA, green arrow indicates the downregulated miRNA, yellow square indicates the upregulated lncRNA, white square indicates upregulated circRNA, and white hexagon indicates downregulated circRNA.

References

    1. Huang C.K., Iwagami Y., Zou J., Casulli S., Lu S., Nagaoka K., Ji C., Ogawa K., Cao K.Y., Gao J.S. Aspartate beta-hydroxylase promotes cholangiocarcinoma progression by modulating RB1 phosphorylation. Cancer Lett. 2018;429:1–10.
    1. Parasramka M., Yan I.K., Wang X., Nguyen P., Matsuda A., Maji S., Foye C., Asmann Y., Patel T. BAP1 dependent expression of long non-coding RNA NEAT-1 contributes to sensitivity to gemcitabine in cholangiocarcinoma. Mol. Cancer. 2017;16:22.
    1. Wang A., Wu L., Lin J., Han L., Bian J., Wu Y., Robson S.C., Xue L., Ge Y., Sang X. Whole-exome sequencing reveals the origin and evolution of hepato-cholangiocarcinoma. Nat. Commun. 2018;9:894.
    1. Saikawa S., Kaji K., Nishimura N., Seki K., Sato S., Nakanishi K., Kitagawa K., Kawaratani H., Kitade M., Moriya K. Angiotensin receptor blockade attenuates cholangiocarcinoma cell growth by inhibiting the oncogenic activity of Yes-associated protein. Cancer Lett. 2018;434:120–129.
    1. Thongchot S., Ferraresi A., Vidoni C., Loilome W., Yongvanit P., Namwat N., Isidoro C. Resveratrol interrupts the pro-invasive communication between cancer associated fibroblasts and cholangiocarcinoma cells. Cancer Lett. 2018;430:160–171.
    1. Mahipal A., Tella S.H., Kommalapati A., Anaya D., Kim R. FGFR2 genomic aberrations: Achilles heel in the management of advanced cholangiocarcinoma. Cancer Treat. Rev. 2019;78:1–7.
    1. Virshup D.M. Moving upstream in the war on WNTs. J. Clin. Invest. 2015;125:975–977.
    1. Sha M., Cao J., Sun H.Y., Tong Y., Xia Q. Neuroendocrine regulation of cholangiocarcinoma: A status quo review. Biochim. Biophys. Acta Rev. Cancer. 2019;1872:66–73.
    1. Wang Y., Liang Y., Yang G., Lan Y., Han J., Wang J., Yin D., Song R., Zheng T., Zhang S. Tetraspanin 1 promotes epithelial-to-mesenchymal transition and metastasis of cholangiocarcinoma via PI3K/AKT signaling. J. Exp. Clin. Cancer Res. 2018;37:300.
    1. Sheng Y., Wei J., Zhang Y., Gao X., Wang Z., Yang J., Yan S., Zhu Y., Zhang Z., Xu D. Mutated EPHA2 is a target for combating lymphatic metastasis in intrahepatic cholangiocarcinoma. Int. J. Cancer. 2019;144:2440–2452.
    1. Shao Y., Song X., Jiang W., Chen Y., Ning Z., Gu W., Jiang J. MicroRNA-621 acts as a tumor radiosensitizer by directly targeting SETDB1 in hepatocellular carcinoma. Mol. Ther. 2019;27:355–364.
    1. Hensel J.A., Khattar V., Ashton R., Ponnazhagan S. Recombinant AAV-CEA tumor vaccine in combination with an immune adjuvant breaks tolerance and provides protective immunity. Mol. Ther. Oncolytics. 2018;12:41–48.
    1. Cheng Z., Lei Z., Shen F. Coming of a precision era of the staging systems for intrahepatic cholangiocarcinoma? Cancer Lett. 2019;460:10–17.
    1. Ma Y.S., Huang T., Zhong X.M., Zhang H.W., Cong X.L., Xu H., Lu G.X., Yu F., Xue S.B., Lv Z.W., Fu D. Proteogenomic characterization and comprehensive integrative genomic analysis of human colorectal cancer liver metastasis. Mol. Cancer. 2018;17:139.
    1. Ma Y.S., Wu Z.J., Zhang H.W., Cai B., Huang T., Long H.D., Xu H., Zhao Y.Z., Yin Y.Z., Xue S.B. Dual regulatory mechanisms of expression and mutation involving metabolism-related genes FDFT1 and UQCR5 during CLM. Mol. Ther. Oncolytics. 2019;14:172–178.
    1. Padthaisong S., Dokduang H., Yothaisong S., Techasen A., Namwat N., Yongvanit P., Khuntikeo N., Titapun A., Sangkhamanon S., Loilome W. Inhibitory effect of NVP-BKM120 on cholangiocarcinoma cell growth. Oncol. Lett. 2018;16:1627–1633.
    1. Javle M., Bekaii-Saab T., Jain A., Wang Y., Kelley R.K., Wang K., Kang H.C., Catenacci D., Ali S., Krishnan S. Biliary cancer: Utility of next-generation sequencing for clinical management. Cancer. 2016;122:3838–3847.
    1. Arai Y., Totoki Y., Hosoda F., Shirota T., Hama N., Nakamura H., Ojima H., Furuta K., Shimada K., Okusaka T. Fibroblast growth factor receptor 2 tyrosine kinase fusions define a unique molecular subtype of cholangiocarcinoma. Hepatology. 2014;59:1427–1434.
    1. Yu F., Liu J.B., Wu Z.J., Xie W.T., Zhong X.J., Hou L.K., Wu W., Lu H.M., Jiang X.H., Jiang J.J. Tumor suppressive microRNA-124a inhibits stemness and enhances gefitinib sensitivity of non-small cell lung cancer cells by targeting ubiquitin-specific protease 14. Cancer Lett. 2018;427:74–84.
    1. Ma Y.-S., Yu F., Zhong X.-M., Lu G.-X., Cong X.-L., Xue S.-B., Xie W.-T., Hou L.-K., Pang L.-J., Wu W. miR-30 Family Reduction Maintains Self-Renewal and Promotes Tumorigenesis in NSCLC-Initiating Cells by Targeting Oncogene TM4SF1. Mol. Ther. 2018;26:2751–2765.
    1. Ma Y.S., Lv Z.W., Yu F., Chang Z.Y., Cong X.L., Zhong X.M., Lu G.X., Zhu J., Fu D. MicroRNA-302a/d inhibits the self-renewal capability and cell cycle entry of liver cancer stem cells by targeting the E2F7/AKT axis. J. Exp. Clin. Cancer Res. 2018;37:252.
    1. Tang X., Wu F., Fan J., Jin Y., Wang J., Yang G. Posttranscriptional regulation of interleukin-33 expression by microRNA-200 in bronchial asthma. Mol. Ther. 2018;26:1808–1817.
    1. Zhang S., Zhu D., Li H., Li H., Feng C., Zhang W. Characterization of circRNA-associated-ceRNA networks in a senescence-accelerated mouse prone 8 brain. Mol. Ther. 2017;25:2053–2061.
    1. Wu J., Jiang Z., Chen C., Hu Q., Fu Z., Chen J., Wang Z., Wang Q., Li A., Marks J.R. CircIRAK3 sponges miR-3607 to facilitate breast cancer metastasis. Cancer Lett. 2018;430:179–192.
    1. Xie S., Yu X., Li Y., Ma H., Fan S., Chen W., Pan G., Wang W., Zhang H., Li J., Lin Z. Upregulation of lncRNA ADAMTS9-AS2 promotes salivary adenoid cystic carcinoma metastasis via PI3K/Akt and MEK/Erk signaling. Mol. Ther. 2018;26:2766–2778.
    1. Li Q., Dai Y., Wang F., Hou S. Differentially expressed long non-coding RNAs and the prognostic potential in colorectal cancer. Neoplasma. 2016;63:977–983.
    1. Wang W.T., Ye H., Wei P.P., Han B.W., He B., Chen Z.H., Chen Y.Q. LncRNAs H19 and HULC, activated by oxidative stress, promote cell migration and invasion in cholangiocarcinoma through a ceRNA manner. J. Hematol. Oncol. 2016;9:117.
    1. Xu H., Wang C., Song H., Xu Y., Ji G. RNA-Seq profiling of circular RNAs in human colorectal Cancer liver metastasis and the potential biomarkers. Mol. Cancer. 2019;18:8.
    1. Hendriks G.J., Jung L.A., Larsson A.J.M., Lidschreiber M., Andersson Forsman O., Lidschreiber K., Cramer P., Sandberg R. NASC-seq monitors RNA synthesis in single cells. Nat. Commun. 2019;10:3138.
    1. Ho D.W., Tsui Y.M., Sze K.M., Chan L.K., Cheung T.T., Lee E., Sham P.C., Tsui S.K., Lee T.K., Ng I.O. Single-cell transcriptomics reveals the landscape of intra-tumoral heterogeneity and stemness-related subpopulations in liver cancer. Cancer Lett. 2019;459:176–185.
    1. Li X.N., Wang Z.J., Ye C.X., Zhao B.C., Li Z.L., Yang Y. RNA sequencing reveals the expression profiles of circRNA and indicates that circDDX17 acts as a tumor suppressor in colorectal cancer. J. Exp. Clin. Cancer Res. 2018;37:325.
    1. Gagan J., Van Allen E.M. Next-generation sequencing to guide cancer therapy. Genome Med. 2015;7:80.
    1. Wahl M.C., Will C.L., Lührmann R. The spliceosome: design principles of a dynamic RNP machine. Cell. 2009;136:701–718.
    1. Quidville V., Alsafadi S., Goubar A., Commo F., Scott V., Pioche-Durieu C., Girault I., Baconnais S., Le Cam E., Lazar V. Targeting the deregulated spliceosome core machinery in cancer cells triggers mTOR blockade and autophagy. Cancer Res. 2013;73:2247–2258.
    1. Jia H., Qi H., Gong Z., Yang S., Ren J., Liu Y., Li M.Y., Chen G.G. The expression of FOXP3 and its role in human cancers. Biochim. Biophys. Acta Rev. Cancer. 2019;1871:170–178.
    1. Leonard M.M., Bai Y., Serena G., Nickerson K.P., Camhi S., Sturgeon C., Yan S., Fiorentino M.R., Katz A., Nath B. RNA sequencing of intestinal mucosa reveals novel pathways functionally linked to celiac disease pathogenesis. PLoS ONE. 2019;14:e0215132.
    1. Del Río-Moreno M., Alors-Pérez E., González-Rubio S., Ferrín G., Reyes O., Rodríguez-Perálvarez M., Sánchez-Frías M.E., Sánchez-Sánchez R., Ventura S., López-Miranda J. Dysregulation of the splicing machinery is associated to the development of nonalcoholic fatty liver disease. J. Clin. Endocrinol. Metab. 2019;104:3389–3402.
    1. Blijlevens M., van der Meulen-Muileman I.H., de Menezes R.X., Smit E.F., van Beusechem V.W. High-throughput RNAi screening reveals cancer-selective lethal targets in the RNA spliceosome. Oncogene. 2019;38:4142–4153.
    1. Shen S.M., Ji Y., Zhang C., Dong S.S., Yang S., Xiong Z., Ge M.K., Yu Y., Xia L., Guo M. Nuclear PTEN safeguards pre-mRNA splicing to link Golgi apparatus for its tumor suppressive role. Nat. Commun. 2018;9:2392.
    1. Macrae T., Sargeant T., Lemieux S., Hébert J., Deneault E., Sauvageau G. RNA-Seq reveals spliceosome and proteasome genes as most consistent transcripts in human cancer cells. PLoS ONE. 2013;8:e72884.
    1. Ustundag Y., Bronk S.F., Gores G.J. Proteasome inhibition-induces endoplasmic reticulum dysfunction and cell death of human cholangiocarcinoma cells. World J. Gastroenterol. 2007;13:851–857.
    1. Zhai W., Li S., Zhang J., Chen Y., Ma J., Kong W., Gong D., Zheng J., Xue W., Xu Y. Sunitinib-suppressed miR-452-5p facilitates renal cancer cell invasion and metastasis through modulating SMAD4/SMAD7 signals. Mol. Cancer. 2018;17:157.
    1. El Fatimy R., Subramanian S., Uhlmann E.J., Krichevsky A.M. Genome editing reveals glioblastoma addiction to microRNA-10b. Mol. Ther. 2017;25:368–378.
    1. Lu Y.F., Yu J.R., Yang Z., Zhu G.X., Gao P., Wang H., Chen S.Y., Zhang J., Liu M.Y., Niu Y. Promoter hypomethylation mediated upregulation of MicroRNA-10b-3p targets FOXO3 to promote the progression of esophageal squamous cell carcinoma (ESCC) J. Exp. Clin. Cancer Res. 2018;37:301.
    1. Guo D., Guo J., Li X., Guan F. Enhanced motility and proliferation by miR-10b/FUT8/p-AKT axis in breast cancer cells. Oncol. Lett. 2018;16:2097–2104.
    1. Li D., Zhang Y., Zhang H., Zhan C., Li X., Ba T., Qiu Z., E F., Lv G., Zou C. CADM2, as a new target of miR-10b, promotes tumor metastasis through FAK/AKT pathway in hepatocellular carcinoma. J. Exp. Clin. Cancer Res. 2018;37:46.
    1. Wang Y., Zhang Y., Yang T., Zhao W., Wang N., Li P., Zeng X., Zhang W. Long non-coding RNA MALAT1 for promoting metastasis and proliferation by acting as a ceRNA of miR-144-3p in osteosarcoma cells. Oncotarget. 2017;8:59417–59434.
    1. Janiaud P., Serghiou S., Ioannidis J.P.A. New clinical trial designs in the era of precision medicine: An overview of definitions, strengths, weaknesses, and current use in oncology. Cancer Treat. Rev. 2019;73:20–30.
    1. Chen F., Long Q., Fu D., Zhu D., Ji Y., Han L., Zhang B., Xu Q., Liu B., Li Y. Targeting SPINK1 in the damaged tumour microenvironment alleviates therapeutic resistance. Nat. Commun. 2018;9:4315.
    1. Yuan H., Li N., Fu D., Ren J., Hui J., Peng J., Liu Y., Qiu T., Jiang M., Pan Q. Histone methyltransferase SETD2 modulates alternative splicing to inhibit intestinal tumorigenesis. J. Clin. Invest. 2017;127:3375–3391.
    1. Li Z., Shen J., Chan M.T., Wu W.K. The role of microRNAs in intrahepatic cholangiocarcinoma. J. Cell. Mol. Med. 2017;21:177–184.
    1. Ma Y.S., Wu Z.J., Bai R.Z., Dong H., Xie B.X., Wu X.H., Hang X.S., Liu A.N., Jiang X.H., Wang G.R. DRR1 promotes glioblastoma cell invasion and epithelial-mesenchymal transition via regulating AKT activation. Cancer Lett. 2018;423:86–94.
    1. Dong P., Xiong Y., Yue J., Xu D., Ihira K., Konno Y., Kobayashi N., Todo Y., Watari H. Long noncoding RNA NEAT1 drives aggressive endometrial cancer progression via miR-361-regulated networks involving STAT3 and tumor microenvironment-related genes. J. Exp. Clin. Cancer Res. 2019;38:295.
    1. Liu Y., Peng J., Sun T., Li N., Zhang L., Ren J., Yuan H., Kan S., Pan Q., Li X. Epithelial EZH2 serves as an epigenetic determinant in experimental colitis by inhibiting TNFα-mediated inflammation and apoptosis. Proc. Natl. Acad. Sci. USA. 2017;114:E3796–E3805.
    1. Lu H.M., Yi W.W., Ma Y.S., Wu W., Yu F., Fan H.W., Lv Z.W., Yang H.Q., Chang Z.Y., Zhang C. Prognostic implications of decreased microRNA-101-3p expression in patients with non-small cell lung cancer. Oncol. Lett. 2018;16:7048–7056.
    1. Jiang Z.Y., Jiang J.J., Ma Y.S., Li H.Y., Shi W., Fu P.L., Xu C.F., Lu J.Z., Fu D., Xu J.G. Downregulation of miR-223 and miR-19a induces differentiation and promotes recruitment of osteoclast cells in giant-cell tumor of the bone via the Runx2/TWIST-RANK/RANKL pathway. Biochem. Biophys. Res. Commun. 2018;505:1003–1009.
    1. Zhang Y.J., Ma Y.S., Xia Q., Yu F., Lv Z.W., Jia C.Y., Jiang X.X., Zhang L., Shao Y.C., Xie W.T. MicroRNA-mRNA integrated analysis based on a case of well-differentiated thyroid cancer with both metastasis and metastatic recurrence. Oncol. Rep. 2018;40:3803–3811.
    1. Tang Y., Li M., Wang J., Pan Y., Wu F.X. CytoNCA: a cytoscape plugin for centrality analysis and evaluation of protein interaction networks. Biosystems. 2015;127:67–72.
    1. Bandettini W.P., Kellman P., Mancini C., Booker O.J., Vasu S., Leung S.W., Wilson J.R., Shanbhag S.M., Chen M.Y., Arai A.E. MultiContrast Delayed Enhancement (MCODE) improves detection of subendocardial myocardial infarction by late gadolinium enhancement cardiovascular magnetic resonance: a clinical validation study. J. Cardiovasc. Magn. Reson. 2012;14:83.
    1. Dweep H., Gretz N. miRWalk2.0: a comprehensive atlas of microRNA-target interactions. Nat. Methods. 2015;12:697.
    1. Li J.H., Liu S., Zhou H., Qu L.H., Yang J.H. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014;42:D92–D97.
    1. Yu G., Wang L.G., Han Y., He Q.Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16:284–287.
    1. Yang H., Li Y., Zhong X., Luo P., Luo P., Sun R., Xie R., Fu D., Ma Y., Cong X., Li W. Upregulation of microRNA-32 is associated with tumorigenesis and poor prognosis in patients with hepatocellular carcinoma. Oncol. Lett. 2018;15:4097–4104.
    1. Zhang B., Zhou M., Zou L., Miao J., Wang Y., Li Y., Lu S., Yu J. Long non-coding RNA LOXL1-AS1 acts as a ceRNA for miR-324-3p to contribute to cholangiocarcinoma progression via modulation of ATP-binding cassette transporter A1. Biochem. Biophys. Res. Commun. 2019;513:827–833.
    1. Smoot M.E., Ono K., Ruscheinski J., Wang P.L., Ideker T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics. 2011;27:431–432.
    1. Wang X., Hu K.B., Zhang Y.Q., Yang C.J., Yao H.H. Comprehensive analysis of aberrantly expressed profiles of lncRNAs, miRNAs and mRNAs with associated ceRNA network in cholangiocarcinoma. Cancer Biomark. 2018;23:549–559.
    1. Ritchie M.E., Phipson B., Wu D., Hu Y., Law C.W., Shi W., Smyth G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47.

Source: PubMed

3
S'abonner