Impact of vitamin C supplementation on placental DNA methylation changes related to maternal smoking: association with gene expression and respiratory outcomes

Lyndsey E Shorey-Kendrick, Cindy T McEvoy, Shannon M O'Sullivan, Kristin Milner, Brittany Vuylsteke, Robert S Tepper, David M Haas, Byung Park, Lina Gao, Annette Vu, Cynthia D Morris, Eliot R Spindel, Lyndsey E Shorey-Kendrick, Cindy T McEvoy, Shannon M O'Sullivan, Kristin Milner, Brittany Vuylsteke, Robert S Tepper, David M Haas, Byung Park, Lina Gao, Annette Vu, Cynthia D Morris, Eliot R Spindel

Abstract

Background: Maternal smoking during pregnancy (MSDP) affects development of multiple organ systems including the placenta, lung, brain, and vasculature. In particular, children exposed to MSDP show lifelong deficits in pulmonary function and increased risk of asthma and wheeze. Our laboratory has previously shown that vitamin C supplementation during pregnancy prevents some of the adverse effects of MSDP on offspring respiratory outcomes. Epigenetic modifications, including DNA methylation (DNAm), are a likely link between in utero exposures and adverse health outcomes, and MSDP has previously been associated with DNAm changes in blood, placenta, and buccal epithelium. Analysis of placental DNAm may reveal critical targets of MSDP and vitamin C relevant to respiratory health outcomes.

Results: DNAm was measured in placentas obtained from 72 smokers enrolled in the VCSIP RCT: NCT03203603 (37 supplemented with vitamin C, 35 with placebo) and 24 never-smokers for reference. Methylation at one CpG, cg20790161, reached Bonferroni significance and was hypomethylated in vitamin C supplemented smokers versus placebo. Analysis of spatially related CpGs identified 93 candidate differentially methylated regions (DMRs) between treatment groups, including loci known to be associated with lung function, oxidative stress, fetal development and growth, and angiogenesis. Overlap of nominally significant differentially methylated CpGs (DMCs) in never-smokers versus placebo with nominally significant DMCs in vitamin C versus placebo identified 9059 candidate "restored CpGs" for association with placental transcript expression and respiratory outcomes. Methylation at 274 restored candidate CpG sites was associated with expression of 259 genes (FDR < 0.05). We further identified candidate CpGs associated with infant lung function (34 CpGs) and composite wheeze (1 CpG) at 12 months of age (FDR < 0.05). Increased methylation in the DIP2C, APOH/PRKCA, and additional candidate gene regions was associated with improved lung function and decreased wheeze in offspring of vitamin C-treated smokers.

Conclusions: Vitamin C supplementation to pregnant smokers ameliorates changes associated with maternal smoking in placental DNA methylation and gene expression in pathways potentially linked to improved placental function and offspring respiratory health. Further work is necessary to validate candidate loci and elucidate the causal pathway between placental methylation changes and outcomes of offspring exposed to MSDP. Clinical trial registration ClinicalTrials.gov, NCT01723696. Registered November 6, 2012. https://ichgcp.net/clinical-trials-registry/NCT01723696 .

Keywords: DNA methylation; MSDP: maternal smoking during pregnancy; MethylationEPIC; Nicotine; RCT: randomized clinical trial; Vitamin C.

Conflict of interest statement

The authors declare that they have no competing interests.

© 2021. The Author(s).

Figures

Fig. 1
Fig. 1
Manhattan plots of differential placental DNAm between a placebo and vitamin C smokers and b placebo smokers and never-smokers. The horizontal red line marks Bonferroni adjusted significance (unadjusted p < 0.05/714666 CpGs = 6.99 e−08). The top 3 Bonferroni significant CpGs per comparison are annotated to the nearest proximal gene
Fig. 2
Fig. 2
Selection of candidate CpG sites used for functional enrichment analysis, eQTM analysis, and association with FEF75 and wheeze at 12 months of age. a Venn diagram showing overlap of nominally significant DMCs between groups (n = 9541 CpGs overlapping). b Heatmap showing the magnitude and direction of methylation change (delta beta) between sample groups (P–N: placebo vs never-smoker; V–P: vitamin C vs placebo). Only the CpGs with a reversal in the direction of methylation change with vitamin C supplementation (n = 9059 CpGs “partially restored”) were considered in downstream analyses
Fig. 3
Fig. 3
Volcano plots of differentially methylated regions (DMRs) in placenta between a placebo and vitamin C smokers and b placebo smokers and never-smokers. DMRs with a Šidák adjusted p value < 0.05 are shown in red. The top 20 DMRs per comparison are annotated with the nearest gene and number of CpGs. The x-axis denotes the average delta-beta between sample groups across the DMR region
Fig. 4
Fig. 4
Overlap of genes containing restored DMRs and candidate loci nominally associated with respiratory outcomes (12 month FEF75 and/or composite wheeze score) and candidate lung development genes [61]
Fig. 5
Fig. 5
Top CpGs associated with a 12 month FEF75 and b composite wheeze score

References

    1. Anderson TM, Lavista Ferres JM, Ren SY, Moon RY, Goldstein RD, Ramirez JM, et al. Maternal smoking before and during pregnancy and the risk of sudden unexpected infant death. Pediatrics. 2019;143(4).
    1. Berlanga Mdel R, Salazar G, Garcia C, Hernandez J. Maternal smoking effects on infant growth. Food Nutr Bull. 2002;23(3 Suppl):142–145. doi: 10.1177/15648265020233S128.
    1. Kalinka J, Hanke W. Tobacco smoking—a risk factor for intrauterine growth retardation, preterm delivery and low birth weight. Ginekol Pol. 1996;67(2):75–81.
    1. Horta BL, Victora CG, Menezes AM, Halpern R, Barros FC. Low birthweight, preterm births and intrauterine growth retardation in relation to maternal smoking. Paediatr Perinat Epidemiol. 1997;11(2):140–151. doi: 10.1046/j.1365-3016.1997.d01-17.x.
    1. Allen AM, Dietz PM, Tong VT, England L, Prince CB. Prenatal smoking prevalence ascertained from two population-based data sources: birth certificates and PRAMS questionnaires, 2004. Public Health Rep. 2008;123(5):586–592. doi: 10.1177/003335490812300508.
    1. Tong VT, Jones JR, Dietz PM, D'Angelo D, Bombard JM, et al. Trends in smoking before, during, and after pregnancy—Pregnancy Risk Assessment Monitoring System (PRAMS), United States, 31 sites, 2000–2005. MMWR Surveill Summ. 2009;58(4):1–29.
    1. Albuquerque CA, Smith KR, Johnson C, Chao R, Harding R. Influence of maternal tobacco smoking during pregnancy on uterine, umbilical and fetal cerebral artery blood flows. Early Hum Dev. 2004;80(1):31–42. doi: 10.1016/j.earlhumdev.2004.05.004.
    1. Gishti O, Jaddoe VW, Felix JF, Reiss I, Steegers E, Hofman A, et al. Impact of maternal smoking during pregnancy on microvasculature in childhood: the generation R study. Early Hum Dev. 2015;91(10):607–611. doi: 10.1016/j.earlhumdev.2015.07.009.
    1. Slotkin TA, Seidler FJ, Spindel ER. Prenatal nicotine exposure in rhesus monkeys compromises development of brainstem and cardiac monoamine pathways involved in perinatal adaptation and sudden infant death syndrome: amelioration by vitamin C. Neurotoxicol Teratol. 2011;33(3):431–434. doi: 10.1016/j.ntt.2011.02.001.
    1. Suzuki K, Nakai K, Hosokawa T, Oka T, Okamura K, Sakai T, et al. Association of maternal smoking during pregnancy and infant neurobehavioral status. Psychol Rep. 2006;99(1):97–106. doi: 10.2466/pr0.99.1.97-106.
    1. Rizzo G, Capponi A, Pietrolucci ME, Arduini D. Effects of maternal cigarette smoking on placental volume and vascularization measured by 3-dimensional power Doppler ultrasonography at 11+0 to 13+6 weeks of gestation. Am J Obstet Gynecol. 2009;200(4):415 e-5. doi: 10.1016/j.ajog.2008.10.041.
    1. McEvoy CT, Spindel ER. Pulmonary effects of maternal smoking on the fetus and child: effects on lung development, respiratory morbidities, and life long lung health. Paediatr Respir Rev. 2017;21:27–33.
    1. Cardenas A, Lutz SM, Everson TM, Perron P, Bouchard L, Hivert MF. Mediation by placental DNA methylation of the association of prenatal maternal smoking and birth weight. Am J Epidemiol. 2019;188(11):1878–1886. doi: 10.1093/aje/kwz184.
    1. Hannon E, Schendel D, Ladd-Acosta C, Grove J, Hansen CS, Hougaard DM, et al. Variable DNA methylation in neonates mediates the association between prenatal smoking and birth weight. Philos Trans R Soc Lond B Biol Sci. 2019;374(1770):20180120. doi: 10.1098/rstb.2018.0120.
    1. Joubert BR, Felix JF, Yousefi P, Bakulski KM, Just AC, Breton C, et al. DNA methylation in newborns and maternal smoking in pregnancy: genome-wide consortium meta-analysis. Am J Hum Genet. 2016;98(4):680–696. doi: 10.1016/j.ajhg.2016.02.019.
    1. Joubert BR, Haberg SE, Nilsen RM, Wang X, Vollset SE, Murphy SK, et al. 450K Epigenome-wide scan identifies differential DNA methylation in newborns related to maternal smoking during pregnancy. Environ Health Perspect. 2012.
    1. Kheirkhah Rahimabad P, Anthony TM, Jones AD, Eslamimehr S, Mukherjee N, Ewart S, et al. Nicotine and its downstream metabolites in maternal and cord sera: biomarkers of prenatal smoking exposure associated with offspring DNA methylation. Int J Environ Res Public Health. 2020;17(24).
    1. Kupers LK, Xu X, Jankipersadsing SA, Vaez A, la Bastide-van GS, Scholtens S, et al. DNA methylation mediates the effect of maternal smoking during pregnancy on birthweight of the offspring. Int J Epidemiol. 2015;44(4):1224–1237. doi: 10.1093/ije/dyv048.
    1. Maccani JZ, Koestler DC, Houseman EA, Marsit CJ, Kelsey KT. Placental DNA methylation alterations associated with maternal tobacco smoking at the RUNX3 gene are also associated with gestational age. Epigenomics. 2013;5(6):619–630. doi: 10.2217/epi.13.63.
    1. Markunas CA, Xu Z, Harlid S, Wade PA, Lie RT, Taylor JA, et al. Identification of DNA methylation changes in newborns related to maternal smoking during pregnancy. Environ Health Perspect. 2014;122(10):1147–1153. doi: 10.1289/ehp.1307892.
    1. Morales E, Vilahur N, Salas LA, Motta V, Fernandez MF, Murcia M, et al. Genome-wide DNA methylation study in human placenta identifies novel loci associated with maternal smoking during pregnancy. Int J Epidemiol. 2016;45(5):1644–1655. doi: 10.1093/ije/dyw196.
    1. Richmond RC, Simpkin AJ, Woodward G, Gaunt TR, Lyttleton O, McArdle WL, et al. Prenatal exposure to maternal smoking and offspring DNA methylation across the lifecourse: findings from the Avon Longitudinal Study of Parents and Children (ALSPAC) Hum Mol Genet. 2015;24(8):2201–2217. doi: 10.1093/hmg/ddu739.
    1. Witt SH, Frank J, Gilles M, Lang M, Treutlein J, Streit F, et al. Impact on birth weight of maternal smoking throughout pregnancy mediated by DNA methylation. BMC Genomics. 2018;19(1):290. doi: 10.1186/s12864-018-4652-7.
    1. Breton CV, Byun HM, Wenten M, Pan F, Yang A, Gilliland FD. Prenatal tobacco smoke exposure affects global and gene-specific DNA methylation. Am J Respir Crit Care Med. 2009;180(5):462–467. doi: 10.1164/rccm.200901-0135OC.
    1. Elliot J, Vullermin P, Robinson P. Maternal cigarette smoking is associated with increased inner airway wall thickness in children who die from sudden infant death syndrome. Am J Respir Crit Care Med. 1998;158(3):802–806. doi: 10.1164/ajrccm.158.3.9709055.
    1. Gilliland FD, Berhane K, McConnell R, Gauderman WJ, Vora H, Rappaport EB, et al. Maternal smoking during pregnancy, environmental tobacco smoke exposure and childhood lung function. Thorax. 2000;55(4):271–276. doi: 10.1136/thorax.55.4.271.
    1. Jauniaux E, Burton GJ. Morphological and biological effects of maternal exposure to tobacco smoke on the feto-placental unit. Early Hum Dev. 2007;83(11):699–706. doi: 10.1016/j.earlhumdev.2007.07.016.
    1. Murphy VE, Smith R, Giles WB, Clifton VL. Endocrine regulation of human fetal growth: the role of the mother, placenta, and fetus. Endocr Rev. 2006;27(2):141–169. doi: 10.1210/er.2005-0011.
    1. Thornburg KL, O'Tierney PF, Louey S. Review: The placenta is a programming agent for cardiovascular disease. Placenta. 2010;31(Suppl):S54–S59. doi: 10.1016/j.placenta.2010.01.002.
    1. Barker DJ, Thornburg KL, Osmond C, Kajantie E, Eriksson JG. The surface area of the placenta and hypertension in the offspring in later life. Int J Dev Biol. 2010;54(2–3):525–530. doi: 10.1387/ijdb.082760db.
    1. Newnham JP, Patterson L, James I, Reid SE. Effects of maternal cigarette smoking on ultrasonic measurements of fetal growth and on Doppler flow velocity waveforms. Early Hum Dev. 1990;24(1):23–36. doi: 10.1016/0378-3782(90)90003-2.
    1. Pintican D, Poienar AA, Strilciuc S, Mihu D. Effects of maternal smoking on human placental vascularization: a systematic review. Taiwan J Obstet Gynecol. 2019;58(4):454–459. doi: 10.1016/j.tjog.2019.05.004.
    1. Zdravkovic T, Genbacev O, McMaster MT, Fisher SJ. The adverse effects of maternal smoking on the human placenta: a review. Placenta. 2005;26(Suppl A):S81–S86. doi: 10.1016/j.placenta.2005.02.003.
    1. Bollati V, Baccarelli A. Environmental epigenetics. Heredity (Edinb) 2010;105(1):105–112. doi: 10.1038/hdy.2010.2.
    1. Bianco-Miotto T, Mayne BT, Buckberry S, Breen J, Rodriguez Lopez CM, Roberts CT. Recent progress towards understanding the role of DNA methylation in human placental development. Reproduction. 2016;152(1):R23–30. doi: 10.1530/REP-16-0014.
    1. Tekola-Ayele F, Zeng X, Ouidir M, Workalemahu T, Zhang C, Delahaye F, et al. DNA methylation loci in placenta associated with birthweight and expression of genes relevant for early development and adult diseases. Clin Epigenetics. 2020;12(1):78. doi: 10.1186/s13148-020-00873-x.
    1. Tian FY, Everson TM, Lester B, Punshon T, Jackson BP, Hao K, et al. Selenium-associated DNA methylation modifications in placenta and neurobehavioral development of newborns: an epigenome-wide study of two US birth cohorts. Environ Int. 2020;137:105508. doi: 10.1016/j.envint.2020.105508.
    1. Liu J, Zhang Z, Xu J, Song X, Yuan W, Miao M, et al. Genome-wide DNA methylation changes in placenta tissues associated with small for gestational age newborns; cohort study in the Chinese population. Epigenomics. 2019;11(12):1399–1412. doi: 10.2217/epi-2019-0004.
    1. Paquette AG, Houseman EA, Green BB, Lesseur C, Armstrong DA, Lester B, et al. Regions of variable DNA methylation in human placenta associated with newborn neurobehavior. Epigenetics. 2016;11(8):603–613. doi: 10.1080/15592294.2016.1195534.
    1. Loke YJ, Muggli E, Nguyen L, Ryan J, Saffery R, Elliott EJ, et al. Time- and sex-dependent associations between prenatal alcohol exposure and placental global DNA methylation. Epigenomics. 2018;10(7):981–991. doi: 10.2217/epi-2017-0147.
    1. Cai J, Zhao Y, Liu P, Xia B, Zhu Q, Wang X, et al. Exposure to particulate air pollution during early pregnancy is associated with placental DNA methylation. Sci Total Environ. 2017;607–608:1103–1108. doi: 10.1016/j.scitotenv.2017.07.029.
    1. Rousseaux S, Seyve E, Chuffart F, Bourova-Flin E, Benmerad M, Charles MA, et al. Immediate and durable effects of maternal tobacco consumption alter placental DNA methylation in enhancer and imprinted gene-containing regions. BMC Med. 2020;18(1):306. doi: 10.1186/s12916-020-01736-1.
    1. Rauschert S, Melton PE, Heiskala A, Karhunen V, Burdge G, Craig JM, et al. Machine learning-based DNA methylation score for fetal exposure to maternal smoking: development and validation in samples collected from adolescents and adults. Environ Health Perspect. 2020;128(9):97003. doi: 10.1289/EHP6076.
    1. Nielsen CH, Larsen A, Nielsen AL. DNA methylation alterations in response to prenatal exposure of maternal cigarette smoking: a persistent epigenetic impact on health from maternal lifestyle? Arch Toxicol. 2016;90(2):231–245. doi: 10.1007/s00204-014-1426-0.
    1. Bozack AK, Cardenas A, Quamruzzaman Q, Rahman M, Mostofa G, Christiani DC, et al. DNA methylation in cord blood as mediator of the association between prenatal arsenic exposure and gestational age. Epigenetics. 2018;13(9):923–940. doi: 10.1080/15592294.2018.1516453.
    1. Gona S, Sanders AP, Miranda ML, Fry RC. Prenatal exposure to cadmium and cotinine and CpG island DNA methylation in Mother-Infant pairs. Genom Data. 2015;5:378–380. doi: 10.1016/j.gdata.2015.07.001.
    1. Xu P, Wu Z, Yang W, Wang L. Dysregulation of DNA methylation and expression of imprinted genes in mouse placentas of fetal growth restriction induced by maternal cadmium exposure. Toxicology. 2017;390:109–116. doi: 10.1016/j.tox.2017.08.003.
    1. Sharp GC, Arathimos R, Reese SE, Page CM, Felix J, Kupers LK, et al. Maternal alcohol consumption and offspring DNA methylation: findings from six general population-based birth cohorts. Epigenomics. 2018;10(1):27–42. doi: 10.2217/epi-2017-0095.
    1. Gruzieva O, Xu CJ, Yousefi P, Relton C, Merid SK, Breton CV, et al. Prenatal particulate air pollution and DNA methylation in newborns: an epigenome-wide meta-analysis. Environ Health Perspect. 2019;127(5):57012. doi: 10.1289/EHP4522.
    1. Suter M, Ma J, Harris A, Patterson L, Brown KA, Shope C, et al. Maternal tobacco use modestly alters correlated epigenome-wide placental DNA methylation and gene expression. Epigenetics. 2011;6(11):1284–1294. doi: 10.4161/epi.6.11.17819.
    1. Wiklund P, Karhunen V, Richmond RC, Parmar P, Rodriguez A, De Silva M, et al. DNA methylation links prenatal smoking exposure to later life health outcomes in offspring. Clin Epigenetics. 2019;11(1):97. doi: 10.1186/s13148-019-0683-4.
    1. McEvoy CT, Schilling D, Clay N, Jackson K, Go MD, Spitale P, et al. Vitamin C supplementation for pregnant smoking women and pulmonary function in their newborn infants: a randomized clinical trial. JAMA. 2014;311(20):2074–2082. doi: 10.1001/jama.2014.5217.
    1. McEvoy CT, Shorey-Kendrick LE, Milner K, Schilling D, Tiller C, Vuylsteke B, et al. Vitamin C to pregnant smokers persistently improves infant airway function to 12 months of age: a randomised trial. Eur Respir J. 2020.
    1. McEvoy CT, Shorey-Kendrick LE, Milner K, Schilling D, Tiller C, Vuylsteke B, et al. Oral Vitamin C (500 mg/d) to pregnant smokers improves infant airway function at 3 months (VCSIP): a randomized trial. Am J Respir Crit Care Med. 2019;199(9):1139–1147. doi: 10.1164/rccm.201805-1011OC.
    1. Shorey-Kendrick LE, McEvoy CT, Ferguson B, Burchard J, Park BS, Gao L, et al. Vitamin C prevents offspring DNA methylation changes associated with maternal smoking in pregnancy. Am J Respir Crit Care Med. 2017;196(6):745–755. doi: 10.1164/rccm.201610-2141OC.
    1. McEvoy CTSK, Lyndsey E., Tepper R, Morris CD, Haas D, Frias A, Spindel E. Vitamin C supplementation to pregnant smokers is associated with improved placental circulation and gene expression. Pediatric Academic Societies; 2020.
    1. Jaffe AE, Murakami P, Lee H, Leek JT, Fallin MD, Feinberg AP, et al. Bump hunting to identify differentially methylated regions in epigenetic epidemiology studies. Int J Epidemiol. 2012;41(1):200–209. doi: 10.1093/ije/dyr238.
    1. McEvoy CT, Milner KF, Scherman AJ, Schilling DG, Tiller CJ, Vuylsteke B, et al. Vitamin C to decrease the effects of smoking in pregnancy on infant lung function (VCSIP): rationale, design, and methods of a randomized, controlled trial of vitamin C supplementation in pregnancy for the primary prevention of effects of in utero tobacco smoke exposure on infant lung function and respiratory health. Contemp Clin Trials. 2017;58:66–77. doi: 10.1016/j.cct.2017.05.008.
    1. Pedersen BS, Schwartz DA, Yang IV, Kechris KJ. Comb-p: software for combining, analyzing, grouping and correcting spatially correlated P-values. Bioinformatics. 2012;28(22):2986–2988. doi: 10.1093/bioinformatics/bts545.
    1. Li D, Xie Z, Pape ML, Dye T. An evaluation of statistical methods for DNA methylation microarray data analysis. BMC Bioinform. 2015;16:217. doi: 10.1186/s12859-015-0641-x.
    1. Portas L, Pereira M, Shaheen SO, Wyss AB, London SJ, Burney PGJ, et al. Lung development genes and adult lung function. Am J Respir Crit Care Med. 2020;202(6):853–865. doi: 10.1164/rccm.201912-2338OC.
    1. Everson TM, Vives-Usano M, Seyve E, Cardenas A, Lacasaña M, Craig JM, et al. Placental DNA methylation signatures of maternal smoking during pregnancy and potential impacts on fetal growth. bioRxiv. 2019:663567.
    1. Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Proteomics tissue-based map of the human proteome. Science. 2015;347(6220):1260419. doi: 10.1126/science.1260419.
    1. Sah RK, Yang A, Bah FB, Adlat S, Bohio AA, Oo ZM, et al. Transcriptome profiling of mouse brain and lung under Dip2a regulation using RNA-sequencing. PLoS ONE. 2019;14(7):e0213702. doi: 10.1371/journal.pone.0213702.
    1. Sah RK, Ma J, Bah FB, Xing Z, Adlat S, Oo ZM, et al. Targeted disruption of mouse Dip2B leads to abnormal lung development and prenatal lethality. Int J Mol Sci. 2020;21(21).
    1. Adlat S, Sah RK, Hayel F, Chen Y, Bah FB, Al-Azab M, et al. Global transcriptome study of Dip2B-deficient mouse embryonic lung fibroblast reveals its important roles in cell proliferation and development. Comput Struct Biotechnol J. 2020;18:2381–2390. doi: 10.1016/j.csbj.2020.08.030.
    1. Lee MK, Hong Y, Kim SY, Kim WJ, London SJ. Epigenome-wide association study of chronic obstructive pulmonary disease and lung function in Koreans. Epigenomics. 2017;9(7):971–984. doi: 10.2217/epi-2017-0002.
    1. Xu H, Czerwinski P, Hortmann M, Sohn HY, Forstermann U, Li H. Protein kinase C alpha promotes angiogenic activity of human endothelial cells via induction of vascular endothelial growth factor. Cardiovasc Res. 2008;78(2):349–355. doi: 10.1093/cvr/cvm085.
    1. Vandenbroucke Amant E, Tauseef M, Vogel SM, Gao XP, Mehta D, Komarova YA, et al. PKCalpha activation of p120-catenin serine 879 phospho-switch disassembles VE-cadherin junctions and disrupts vascular integrity. Circ Res. 2012;111(6):739–749. doi: 10.1161/CIRCRESAHA.112.269654.
    1. Konopatskaya O, Gilio K, Harper MT, Zhao Y, Cosemans JM, Karim ZA, et al. PKCalpha regulates platelet granule secretion and thrombus formation in mice. J Clin Invest. 2009;119(2):399–407.
    1. Partovian C, Zhuang Z, Moodie K, Lin M, Ouchi N, Sessa WC, et al. PKCalpha activates eNOS and increases arterial blood flow in vivo. Circ Res. 2005;97(5):482–487. doi: 10.1161/01.RES.0000179775.04114.45.
    1. Muth JN, Bodi I, Lewis W, Varadi G, Schwartz A. A Ca(2+)-dependent transgenic model of cardiac hypertrophy: a role for protein kinase Calpha. Circulation. 2001;103(1):140–147. doi: 10.1161/01.CIR.103.1.140.
    1. Wang A, Nomura M, Patan S, Ware JA. Inhibition of protein kinase Calpha prevents endothelial cell migration and vascular tube formation in vitro and myocardial neovascularization in vivo. Circ Res. 2002;90(5):609–616. doi: 10.1161/01.RES.0000012503.30315.E8.
    1. Xaing M, Liu X, Zeng D, Wang R, Xu Y. Changes of protein kinase Calpha and cyclin D1 expressions in pulmonary arteries from smokers with and without chronic obstructive pulmonary disease. J Huazhong Univ Sci Technol Med Sci. 2010;30(2):159–164. doi: 10.1007/s11596-010-0205-2.
    1. Murphy A, Tantisira KG, Soto-Quiros ME, Avila L, Klanderman BJ, Lake S, et al. PRKCA: a positional candidate gene for body mass index and asthma. Am J Hum Genet. 2009;85(1):87–96. doi: 10.1016/j.ajhg.2009.06.011.
    1. Jung KH, Perzanowski M, Rundle A, Moors K, Yan B, Chillrud SN, et al. Polycyclic aromatic hydrocarbon exposure, obesity and childhood asthma in an urban cohort. Environ Res. 2014;128:35–41. doi: 10.1016/j.envres.2013.12.002.
    1. Tong M, Tsai BW, Chamley LW. Antiphospholipid antibodies and extracellular vesicles in pregnancy. Am J Reprod Immunol. 2020:e13312.
    1. Smalley H, Rowe JM, Nieto F, Zeledon J, Pollard K, Tomich JM, et al. Beta2 glycoprotein I-derived therapeutic peptides induce sFlt-1 secretion to reduce melanoma vascularity and growth. Cancer Lett. 2020;495:66–75. doi: 10.1016/j.canlet.2020.08.039.
    1. Hung C, Linn G, Chow YH, Kobayashi A, Mittelsteadt K, Altemeier WA, et al. Role of lung pericytes and resident fibroblasts in the pathogenesis of pulmonary fibrosis. Am J Respir Crit Care Med. 2013;188(7):820–830. doi: 10.1164/rccm.201212-2297OC.
    1. Quintero-Ronderos P, Jimenez KM, Esteban-Perez C, Ojeda DA, Bello S, Fonseca DJ, et al. FOXD1 mutations are related to repeated implantation failure, intra-uterine growth restriction and preeclampsia. Mol Med. 2019;25(1):37. doi: 10.1186/s10020-019-0104-3.
    1. Shorey-Kendrick LE. Epigenome-wide analysis of placental DNA methylation associated with objective measures of maternal smoking. Pediatric Academic Societies; 2021; Virtual.
    1. Rana S, Burke SD, Karumanchi SA. Imbalances in circulating angiogenic factors in the pathophysiology of preeclampsia and related disorders. Am J Obstet Gynecol. 2020.
    1. Laddha AP, Kulkarni YA. VEGF and FGF-2: promising targets for the treatment of respiratory disorders. Respir Med. 2019;156:33–46. doi: 10.1016/j.rmed.2019.08.003.
    1. Chhabra D, Sharma S, Kho AT, Gaedigk R, Vyhlidal CA, Leeder JS, et al. Fetal lung and placental methylation is associated with in utero nicotine exposure. Epigenetics. 2014;9(11):1473–1484. doi: 10.4161/15592294.2014.971593.
    1. Kyrklund-Blomberg NB, Hu J, Gennser G. Chronic effects of maternal smoking on pulse waves in the fetal aorta. J Matern Fetal Neonatal Med. 2006;19(8):495–501. doi: 10.1080/14767050600850563.
    1. Geelhoed JJ, El Marroun H, Verburg BO, van Osch-Gevers L, Hofman A, Huizink AC, et al. Maternal smoking during pregnancy, fetal arterial resistance adaptations and cardiovascular function in childhood. BJOG. 2011;118(6):755–762. doi: 10.1111/j.1471-0528.2011.02900.x.
    1. Mansell G, Gorrie-Stone TJ, Bao Y, Kumari M, Schalkwyk LS, Mill J, et al. Guidance for DNA methylation studies: statistical insights from the Illumina EPIC array. BMC Genomics. 2019;20(1):366. doi: 10.1186/s12864-019-5761-7.
    1. Zhou W, Laird PW, Shen H. Comprehensive characterization, annotation and innovative use of Infinium DNA methylation BeadChip probes. Nucleic Acids Res. 2017;45(4):22.
    1. Nordlund J, Backlin CL, Wahlberg P, Busche S, Berglund EC, Eloranta ML, et al. Genome-wide signatures of differential DNA methylation in pediatric acute lymphoblastic leukemia. Genome Biol. 2013;14(9):r105. doi: 10.1186/gb-2013-14-9-r105.
    1. Stoller JK, Snider GL, Brantly ML, Fallat RJ, Stockley RA, Turino GM, et al. American thoracic society/european respiratory society statement: standards for the diagnosis and management of individuals with alpha-1 antitrypsin deficiency. Pneumologie. 2005;59(1):36–68. doi: 10.1055/s-2004-830176.
    1. Asher MI, Keil U, Anderson HR, Beasley R, Crane J, Martinez F, et al. International study of asthma and allergies in childhood (ISAAC): rationale and methods. Eur Respir J. 1995;8(3):483–491. doi: 10.1183/09031936.95.08030483.
    1. Kamburov A, Stelzl U, Lehrach H, Herwig R. The ConsensusPathDB interaction database: 2013 update. Nucleic Acids Res. 2013;41(Database issue):793–800.
    1. Kramer A, Green J, Pollard J, Jr, Tugendreich S. Causal analysis approaches in ingenuity pathway analysis. Bioinformatics. 2014;30(4):523–530. doi: 10.1093/bioinformatics/btt703.
    1. Ruiz-Arenas CGJ. MEAL: perform methylation analysis. R package version 1.16.0. (2019).

Source: PubMed

3
S'abonner