Mutation spectrum of PRPF31, genotype-phenotype correlation in retinitis pigmentosa, and opportunities for therapy

Gabrielle Wheway, Andrew Douglas, Diana Baralle, Elsa Guillot, Gabrielle Wheway, Andrew Douglas, Diana Baralle, Elsa Guillot

Abstract

Pathogenic variants in pre-messenger RNA (pre-mRNA) splicing factor 31, PRPF31, are the second most common genetic cause of autosomal dominant retinitis pigmentosa (adRP) in most populations. This remains a completely untreatable and incurable form of blindness, and it can be difficult to predict the clinical course of disease. In order to design appropriate targeted therapies, a thorough understanding of the genetics and molecular mechanism of this disease is required. Here, we present the structure of the PRPF31 gene and PRPF31 protein, current understanding of PRPF31 protein function and the full spectrum of all reported clinically relevant variants in PRPF31. We delineate the correlation between specific PRPF31 genotype and RP phenotype, suggesting that, except in cases of complete gene deletion or large-scale deletions, dominant negative effects contribute to phenotype as well as haploinsufficiency. This has important impacts on design of targeted therapies, particularly the feasibility of gene augmentation as a broad approach for treatment of PRPF31-associated RP. We discuss other opportunities for therapy, including antisense oligonucleotide therapy and gene-independent approaches and offer future perspectives on treatment of this form of RP.

Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved.

Figures

Fig. 1
Fig. 1
Schematic representation of the first four steps of pre-mRNA splicing by the major spliceosome, with PRPF31 shown in red. In step 1, U1snRNP recognises and binds the splice donor site (the 5′ splice site). In step 2, binding of U1snRNP to the splice donor site promotes the binding of U2snRNP to the branch site. Independently of this, the U4/U6.U5 tri-snRNP forms in the cell. In step 3, the U4/U6.U5 tri-snRNP is recruited to the pre-mRNA, where U6snRNP replaces U1snRNP. This forms the catalytically active spliceosome, which in step 4 cuts away the intron and joins the exons through two transesterification reactions. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
Fig. 2
Fig. 2
Schematic representation of the protein and cDNA structure of PRPF31, showing major structural domains encoded by each exon.
Fig. 3
Fig. 3
Schematic representation PRPF31 gene, with all reported pathogenic variants labelled above, and total numbers of variants in each intron and exon displayed as a bar chart below. This shows that exons 7 and 8 are most enriched for pathogenic variants.
Fig. 4
Fig. 4
(a) Box and whisker plots showing upper and lower limits, median and interquartile range of reported age of onset of RP patients with different types of variant in PRPF31 (b) Box and whisker plots showing upper and lower limits, median and interquartile range of reported age of diagnosis of RP patients with different types of variant in PRPF31.

References

    1. Abdulridha-Aboud W., Kjellstrom U., Andreasson S., Ponjavic V. Characterization of macular structure and function in two Swedish families with genetically identified autosomal dominant retinitis pigmentosa. Mol. Vis. 2016;22:362–373.
    1. Abu-Safieh L., Vithana E.N., Mantel I., Holder G.E., Pelosini L., Bird A.C., Bhattacharya S.S. A large deletion in the adRP gene PRPF31: evidence that haploinsufficiency is the cause of disease. Mol. Vis. 2006;12:384–388.
    1. Agafonov D.E., Kastner B., Dybkov O., Hofele R.V., Liu W.T., Urlaub H., Luhrmann R., Stark H. Molecular architecture of the human U4/U6.U5 tri-snRNP. Science (New York, N.Y.) 2016;351:1416–1420.
    1. Alagramam K.N., Yuan H., Kuehn M.H., Murcia C.L., Wayne S., Srisailpathy C.R., Lowry R.B., Knaus R., Van Laer L., Bernier F.P., Schwartz S., Lee C., Morton C.C., Mullins R.F., Ramesh A., Van Camp G., Hageman G.S., Woychik R.P., Smith R.J. Mutations in the novel protocadherin PCDH15 cause Usher syndrome type 1F. Hum. Mol. Genet. 2001;10:1709–1718.
    1. Aleman T.S., Lam B.L., Cideciyan A.V., Sumaroka A., Windsor E.A., Roman A.J., Schwartz S.B., Stone E.M., Jacobson S.G. Genetic heterogeneity in autosomal dominant retinitis pigmentosa with low-frequency damped electroretinographic wavelets. Eye. 2009;23:230–233.
    1. Almoguera B., Li J., Fernandez-San Jose P., Liu Y., March M., Pellegrino R., Golhar R., Corton M., Blanco-Kelly F., Lopez-Molina M.I., Garcia-Sandoval B., Guo Y., Tian L., Liu X., Guan L., Zhang J., Keating B., Xu X., Hakonarson H., Ayuso C. Application of whole exome sequencing in six families with an initial diagnosis of autosomal dominant retinitis pigmentosa: lessons learned. PloS One. 2015;10
    1. Audo I., Bujakowska K., Mohand-Said S., Lancelot M.E., Moskova-Doumanova V., Waseem N.H., Antonio A., Sahel J.A., Bhattacharya S.S., Zeitz C. Prevalence and novelty of PRPF31 mutations in French autosomal dominant rod-cone dystrophy patients and a review of published reports. BMC Med. Genet. 2010;11:145–2350. 11-145.
    1. Azizzadeh Pormehr L., Ahmadian S., Daftarian N., Mousavi S.A., Shafiezadeh M. PRPF31 reduction causes mis-splicing of the phototransduction genes in human organotypic retinal culture. Eur. J. Hum. Genet. 2019 In press.
    1. Bertram K., Agafonov D.E., Dybkov O., Haselbach D., Leelaram M.N., Will C.L., Urlaub H., Kastner B., Luhrmann R., Stark H. Cryo-EM structure of a pre-catalytic human spliceosome primed for activation. Cell. 2017;170:701–713. e11.
    1. Bertram K., Agafonov D.E., Liu W.T., Dybkov O., Will C.L., Hartmuth K., Urlaub H., Kastner B., Stark H., Luhrmann R. Cryo-EM structure of a human spliceosome activated for step 2 of splicing. Nature. 2017;542:318–323.
    1. Bhatia S., Goyal S., Singh I.R., Singh D., Vanita V. 2018. A Novel Mutation in the PRPF31 in a North Indian adRP Family with Incomplete Penetrance. Documenta Ophthalmologica.Advances in Ophthalmology.
    1. Birtel J., Eisenberger T., Gliem M., Muller P.L., Herrmann P., Betz C., Zahnleiter D., Neuhaus C., Lenzner S., Holz F.G., Mangold E., Bolz H.J., Charbel Issa P. Clinical and genetic characteristics of 251 consecutive patients with macular and cone/cone-rod dystrophy. Sci. Rep. 2018;8:4824.
    1. Birtel J., Gliem M., Mangold E., Muller P.L., Holz F.G., Neuhaus C., Lenzner S., Zahnleiter D., Betz C., Eisenberger T., Bolz H.J., Charbel Issa P. Next-generation sequencing identifies unexpected genotype-phenotype correlations in patients with retinitis pigmentosa. PloS One. 2018;13
    1. Bishop D.T., McDonald W.H., Gould K.L., Forsburg S.L. Isolation of an essential Schizosaccharomyces pombe gene, prp31(+), that links splicing and meiosis. Nucleic Acids Res. 2000;28:2214–2220.
    1. Bowne S.J., Sullivan L.S., Koboldt D.C., Ding L., Fulton R., Abbott R.M., Sodergren E.J., Birch D.G., Wheaton D.H., Heckenlively J.R., Liu Q., Pierce E.A., Weinstock G.M., Daiger S.P. Identification of disease-causing mutations in autosomal dominant retinitis pigmentosa (adRP) using next-generation DNA sequencing. Invest. Ophthalmol. Vis. Sci. 2011;52:494–503.
    1. Bryant L., Lozynska O., Marsh A., Papp T.E., van Gorder L., Serrano L.W., Gai X., Maguire Am M.D., Aleman T.S., Bennett J. Identification of a novel pathogenic missense mutation in PRPF31 using whole exome sequencing: a case report. The British Journal of Ophthalmology. 2019;103(6):761–767.
    1. Brydon E.M., Bronstein R., Buskin A., Lako M., Pierce E.A., Fernandez-Godino R. AAV-mediated gene augmentation therapy restores critical functions in mutant PRPF31. Mol Ther Methods Clin Dev. 2019;15:392–402.
    1. Buskin A., Zhu L., Chichagova V., Basu B., Mozaffari-Jovin S., Dolan D., Droop A., Collin J., Bronstein R., Mehrotra S., Farkas M., Hilgen G., White K., Pan K.T., Treumann A., Hallam D., Bialas K., Chung G., Mellough C., Ding Y., Krasnogor N., Przyborski S., Zwolinski S., Al-Aama J., Alharthi S., Xu Y., Wheway G., Szymanska K., McKibbin M., Inglehearn C.F., Elliott D.J., Lindsay S., Ali R.R., Steel D.H., Armstrong L., Sernagor E., Urlaub H., Pierce E., Luhrmann R., Grellscheid S.N., Johnson C.A., Lako M. Disrupted alternative splicing for genes implicated in splicing and ciliogenesis causes PRPF31 retinitis pigmentosa. Nat. Commun. 2018;9:4234.
    1. Cao H., Wu J., Lam S., Duan R., Newnham C., Molday R.S., Graziotto J.J., Pierce E.A., Hu J. Temporal and tissue specific regulation of RP-associated splicing factor genes PRPF3, PRPF31 and PRPC8--implications in the pathogenesis of RP. PloS One. 2011;6
    1. Carss K.J., Arno G., Erwood M., Stephens J., Sanchis-Juan A., Hull S., Megy K., Grozeva D., Dewhurst E., Malka S., Plagnol V., Penkett C., Stirrups K., Rizzo R., Wright G., Josifova D., Bitner-Glindzicz M., Scott R.H., Clement E., Allen L., Armstrong R., Brady A.F., Carmichael J., Chitre M., Henderson R.H.H., Hurst J., MacLaren R.E., Murphy E., Paterson J., Rosser E., Thompson D.A., Wakeling E., Ouwehand W.H., Michaelides M., Moore A.T., Webster A.R., Raymond F.L. Comprehensive rare variant analysis via whole-genome sequencing to determine the molecular pathology of inherited retinal disease. Am. J. Hum. Genet. 2017;100:75–90.
    1. Chakarova C.F., Cherninkova S., Tournev I., Waseem N., Kaneva R., Jordanova A., Veraitch B.K., Gill B., Colclough T., Nakova A., Oscar A., Mihaylova V., Nikolova-Hill A., Wright A.F., Black G.C., Ramsden S., Kremensky I., Bhattacharya S.S. Molecular genetics of retinitis pigmentosa in two Romani (Gypsy) families. Mol. Vis. 2006;12:909–914.
    1. Chanarat S., Seizl M., Strasser K. The Prp19 complex is a novel transcription elongation factor required for TREX occupancy at transcribed genes. Genes Dev. 2011;25:1147–1158.
    1. Chinchore Y., Begaj T., Wu D., Drokhlyansky E., Cepko C.L. Glycolytic reliance promotes anabolism in photoreceptors. Elife. 2017;6
    1. Cideciyan A.V., Sudharsan R., Dufour V.L., Massengill M.T., Iwabe S., Swider M., Lisi B., Sumaroka A., Marinho L.F., Appelbaum T., Rossmiller B., Hauswirth W.W., Jacobson S.G., Lewin A.S., Aguirre G.D., Beltran W.A. Mutation-independent rhodopsin gene therapy by knockdown and replacement with a single AAV vector. Proc. Natl. Acad. Sci. U. S. A. 2018;115:E8547–e8556.
    1. Comitato A., Spampanato C., Chakarova C., Sanges D., Bhattacharya S.S., Marigo V. Mutations in splicing factor PRPF3, causing retinal degeneration, form detrimental aggregates in photoreceptor cells. Hum. Mol. Genet. 2007;16:1699–1707.
    1. Coussa R.G., Chakarova C., Ajlan R., Taha M., Kavalec C., Gomolin J., Khan A., Lopez I., Ren H., Waseem N., Kamenarova K., Bhattacharya S.S., Koenekoop R.K. Genotype and phenotype studies in autosomal dominant retinitis pigmentosa (adRP) of the French Canadian founder population. Invest. Ophthalmol. Vis. Sci. 2015;56:8297–8305.
    1. da Cruz L., Fynes K., Georgiadis O., Kerby J., Luo Y.H., Ahmado A., Vernon A., Daniels J.T., Nommiste B., Hasan S.M., Gooljar S.B., Carr A.F., Vugler A., Ramsden C.M., Bictash M., Fenster M., Steer J., Harbinson T., Wilbrey A., Tufail A., Feng G., Whitlock M., Robson A.G., Holder G.E., Sagoo M.S., Loudon P.T., Whiting P., Coffey P.J. Phase 1 clinical study of an embryonic stem cell-derived retinal pigment epithelium patch in age-related macular degeneration. Nat. Biotechnol. 2018;36:328–337.
    1. Daiger S.P., Bowne S.J., Sullivan L.S., Blanton S.H., Weinstock G.M., Koboldt D.C., Fulton R.S., Larsen D., Humphries P., Humphries M.M., Pierce E.A., Chen R., Li Y. Application of next-generation sequencing to identify genes and mutations causing autosomal dominant retinitis pigmentosa (adRP) Adv. Exp. Med. Biol. 2014;801:123–129.
    1. de la Cerda B., Diez-Lloret A., Ponte B., Valles-Saiz L., Calado S.M., Rodriguez-Bocanegra E., Garcia-Delgado A.B., Moya-Molina M., Bhattacharya S.S., Diaz-Corrales F.J. Generation and characterization of the human iPSC line CABi001-A from a patient with retinitis pigmentosa caused by a novel mutation in PRPF31 gene. Stem Cell Res. 2019;36:101426.
    1. de Sousa Dias M., Hernan I., Pascual B., Borras E., Mane B., Gamundi M.J., Carballo M. Detection of novel mutations that cause autosomal dominant retinitis pigmentosa in candidate genes by long-range PCR amplification and next-generation sequencing. Mol. Vis. 2013;19:654–664.
    1. Deery E.C., Vithana E.N., Newbold R.J., Gallon V.A., Bhattacharya S.S., Warren M.J., Hunt D.M., Wilkie S.E. Disease mechanism for retinitis pigmentosa (RP11) caused by mutations in the splicing factor gene PRPF31. Hum. Mol. Genet. 2002;11:3209–3219.
    1. Dong B., Chen J., Zhang X., Pan Z., Bai F., Li Y. Two novel PRP31 premessenger ribonucleic acid processing factor 31 homolog mutations including a complex insertion-deletion identified in Chinese families with retinitis pigmentosa. Mol. Vis. 2013;19:2426–2435.
    1. Eisenberger T., Neuhaus C., Khan A.O., Decker C., Preising M.N., Friedburg C., Bieg A., Gliem M., Charbel Issa P., Holz F.G., Baig S.M., Hellenbroich Y., Galvez A., Platzer K., Wollnik B., Laddach N., Ghaffari S.R., Rafati M., Botzenhart E., Tinschert S., Borger D., Bohring A., Schreml J., Kortge-Jung S., Schell-Apacik C., Bakur K., Al-Aama J.Y., Neuhann T., Herkenrath P., Nurnberg G., Nurnberg P., Davis J.S., Gal A., Bergmann C., Lorenz B., Bolz H.J. Increasing the yield in targeted next-generation sequencing by implicating CNV analysis, non-coding exons and the overall variant load: the example of retinal dystrophies. PloS One. 2013;8
    1. Ellingford J.M., Barton S., Bhaskar S., O'Sullivan J., Williams S.G., Lamb J.A., Panda B., Sergouniotis P.I., Gillespie R.L., Daiger S.P., Hall G., Gale T., Lloyd I.C., Bishop P.N., Ramsden S.C., Black G.C.M. Molecular findings from 537 individuals with inherited retinal disease. J. Med. Genet. 2016;53:761–767.
    1. Ellingford J.M., Barton S., Bhaskar S., Williams S.G., Sergouniotis P.I., O'Sullivan J., Lamb J.A., Perveen R., Hall G., Newman W.G., Bishop P.N., Roberts S.A., Leach R., Tearle R., Bayliss S., Ramsden S.C., Nemeth A.H., Black G.C. Whole genome sequencing increases molecular diagnostic yield compared with current diagnostic testing for inherited retinal disease. Ophthalmology. 2016;123:1143–1150.
    1. Farkas M.H., Lew D.S., Sousa M.E., Bujakowska K., Chatagnon J., Bhattacharya S.S., Pierce E.A., Nandrot E.F. Mutations in pre-mRNA processing factors 3, 8, and 31 cause dysfunction of the retinal pigment epithelium. Am. J. Pathol. 2014;184:2641–2652.
    1. Fernandez-San Jose P., Corton M., Blanco-Kelly F., Avila-Fernandez A., Lopez-Martinez M.A., Sanchez-Navarro I., Sanchez-Alcudia R., Perez-Carro R., Zurita O., Sanchez-Bolivar N., Lopez-Molina M.I., Garcia-Sandoval B., Riveiro-Alvarez R., Ayuso C. Targeted next-generation sequencing improves the diagnosis of autosomal dominant retinitis pigmentosa in Spanish patients. Invest. Ophthalmol. Vis. Sci. 2015;56:2173–2182.
    1. Finkel R.S., Mercuri E., Darras B.T., Connolly A.M., Kuntz N.L., Kirschner J., Chiriboga C.A., Saito K., Servais L., Tizzano E., Topaloglu H., Tulinius M., Montes J., Glanzman A.M., Bishop K., Zhong Z.J., Gheuens S., Bennett C.F., Schneider E., Farwell W., De Vivo D.C. Nusinersen versus sham control in infantile-onset spinal muscular atrophy. N. Engl. J. Med. 2017;377:1723–1732.
    1. Finn A.P., Grewal D.S., Vajzovic L. Argus II retinal prosthesis system: a review of patient selection criteria, surgical considerations, and post-operative outcomes. Clin. Ophthalmol. 2018;12:1089–1097.
    1. Gandra M., Anandula V., Authiappan V., Sundaramurthy S., Raman R., Bhattacharya S., Govindasamy K. Retinitis pigmentosa: mutation analysis of RHO, PRPF31, RP1, and IMPDH1 genes in patients from India. Mol. Vis. 2008;14:1105–1113.
    1. Ghazawy S., Springell K., Gauba V., McKibbin M.A., Inglehearn C.F. Dominant retinitis pigmentosa phenotype associated with a new mutation in the splicing factor PRPF31. Br. J. Ophthalmol. 2007;91:1411–1413.
    1. Glockle N., Kohl S., Mohr J., Scheurenbrand T., Sprecher A., Weisschuh N., Bernd A., Rudolph G., Schubach M., Poloschek C., Zrenner E., Biskup S., Berger W., Wissinger B., Neidhardt J. Panel-based next generation sequencing as a reliable and efficient technique to detect mutations in unselected patients with retinal dystrophies. Eur. J. Hum. Genet. 2014;22:99–104.
    1. Golovleva I., Kohn L., Burstedt M., Daiger S., Sandgren O. Mutation spectra in autosomal dominant and recessive retinitis pigmentosa in northern Sweden. Adv. Exp. Med. Biol. 2010;664:255–262.
    1. Grenell A., Wang Y., Yam M., Swarup A., Dilan T.L., Hauer A., Linton J.D., Philp N.J., Gregor E., Zhu S., Shi Q., Murphy J., Guan T., Lohner D., Kolandaivelu S., Ramamurthy V., Goldberg A.F.X., Hurley J.B., Du J. Loss of MPC1 reprograms retinal metabolism to impair visual function. Proc. Natl. Acad. Sci. U. S. A. 2019;116:3530–3535.
    1. Grey M., Dusterhoft A., Henriques J.A., Brendel M. Allelism of PSO4 and PRP19 links pre-mRNA processing with recombination and error-prone DNA repair in Saccharomyces cerevisiae. Nucleic Acids Res. 1996;24:4009–4014.
    1. Hafler B.P., Comander J., Weigel DiFranco C., Place E.M., Pierce E.A. Course of ocular function in PRPF31 retinitis pigmentosa. Semin. Ophthalmol. 2016;31:49–52.
    1. Hamieh A., Nandrot E.F. Retinal pigment epithelial cells: the unveiled component in the etiology of Prpf splicing factor-associated retinitis pigmentosa. Adv. Exp. Med. Biol. 2019;1185:227–231.
    1. Hariri A.H., Gui W., Datoo O'Keefe G.A., Ip M.S., Sadda S.R., Gorin M.B. Ultra-widefield fundus autofluorescence imaging of patients with retinitis pigmentosa: a standardized grading system in different genotypes. Ophthalmol Retina. 2018;2:735–745.
    1. Haselbach D., Komarov I., Agafonov D.E., Hartmuth K., Graf B., Dybkov O., Urlaub H., Kastner B., Luhrmann R., Stark H. Structure and conformational dynamics of the human spliceosomal B(act) complex. Cell. 2018;172:454–464. e11.
    1. Hofmann J.C., Tegha-Dunghu J., Drager S., Will C.L., Luhrmann R., Gruss O.J. The Prp19 complex directly functions in mitotic spindle assembly. PloS One. 2013;8
    1. Huang X.F., Huang F., Wu K.C., Wu J., Chen J., Pang C.P., Lu F., Qu J., Jin Z.B. Genotype-phenotype correlation and mutation spectrum in a large cohort of patients with inherited retinal dystrophy revealed by next-generation sequencing. Genet. Med. 2015;17:271–278.
    1. Ivings L., Towns K.V., Matin M.A., Taylor C., Ponchel F., Grainger R.J., Ramesar R.S., Mackey D.A., Inglehearn C.F. Evaluation of splicing efficiency in lymphoblastoid cell lines from patients with splicing-factor retinitis pigmentosa. Mol. Vis. 2008;14:2357–2366.
    1. Jespersgaard C., Fang M., Bertelsen M., Dang X., Jensen H., Chen Y., Bech N., Dai L., Rosenberg T., Zhang J., Moller L.B., Tumer Z., Brondum-Nielsen K., Gronskov K. Molecular genetic analysis using targeted NGS analysis of 677 individuals with retinal dystrophy. Sci. Rep. 2019;9:1219.
    1. Jin Z.B., Okamoto S., Osakada F., Homma K., Assawachananont J., Hirami Y., Iwata T., Takahashi M. Modeling retinal degeneration using patient-specific induced pluripotent stem cells. PloS One. 2011;6
    1. Kashani A.H., Lebkowski J.S., Rahhal F.M., Avery R.L., Salehi-Had H., Dang W., Lin C.M., Mitra D., Zhu D., Thomas B.B., Hikita S.T., Pennington B.O., Johnson L.V., Clegg D.O., Hinton D.R., Humayun M.S. A bioengineered retinal pigment epithelial monolayer for advanced, dry age-related macular degeneration. Sci. Transl. Med. 2018;10
    1. Khan N., Eliopoulos H., Han L., Kinane T.B., Lowes L.P., Mendell J.R., Gordish-Dressman H., Henricson E.K., McDonald C.M. Eteplirsen treatment attenuates respiratory decline in ambulatory and non-ambulatory patients with Duchenne muscular dystrophy. J. Neuromuscul. Dis. 2019;6:213–225.
    1. Kim J.H., Ki S.M., Joung J.G., Scott E., Heynen-Genel S., Aza-Blanc P., Kwon C.H., Kim J., Gleeson J.G., Lee J.E. Genome-wide screen identifies novel machineries required for both ciliogenesis and cell cycle arrest upon serum starvation. Biochim. Biophys. Acta. 2016;1863:1307–1318.
    1. Kiser K., Webb-Jones K.D., Bowne S.J., Sullivan L.S., Daiger S.P., Birch D.G. Time course of disease progression of PRPF31-mediated retinitis pigmentosa. Am. J. Ophthalmol. 2019;200:76–84.
    1. Kohn L., Bowne S.J., L S.S., Daiger S.P., Burstedt M.S., Kadzhaev K., Sandgren O., Golovleva I. Breakpoint characterization of a novel approximately 59 kb genomic deletion on 19q13.42 in autosomal-dominant retinitis pigmentosa with incomplete penetrance. Eur. J. Hum. Genet. 2009;17:651–655.
    1. Koyanagi Y., Akiyama M., Nishiguchi K.M., Momozawa Y., Kamatani Y., Takata S., Inai C., Iwasaki Y., Kumano M., Murakami Y., Omodaka K., Abe T., Komori S., Gao D., Hirakata T., Kurata K., Hosono K., Ueno S., Hotta Y., Murakami A., Terasaki H., Wada Y., Nakazawa T., Ishibashi T., Ikeda Y., Kubo M., Sonoda K.H. Genetic characteristics of retinitis pigmentosa in 1204 Japanese patients. J. Med. Genet. 2019;56:662–670.
    1. Kurata K., Hosono K., Hotta Y. Long-term clinical course of 2 Japanese patients with PRPF31-related retinitis pigmentosa. Jpn. J. Ophthalmol. 2018;62:186–193.
    1. Lek M., Karczewski K.J., Minikel E.V., Samocha K.E., Banks E., Fennell T., O'Donnell-Luria A.H., Ware J.S., Hill A.J., Cummings B.B., Tukiainen T., Birnbaum D.P., Kosmicki J.A., Duncan L.E., Estrada K., Zhao F., Zou J., Pierce-Hoffman E., Berghout J., Cooper D.N., Deflaux N., DePristo M., Do R., Flannick J., Fromer M., Gauthier L., Goldstein J., Gupta N., Howrigan D., Kiezun A., Kurki M.I., Moonshine A.L., Natarajan P., Orozco L., Peloso G.M., Poplin R., Rivas M.A., Ruano-Rubio V., Rose S.A., Ruderfer D.M., Shakir K., Stenson P.D., Stevens C., Thomas B.P., Tiao G., Tusie-Luna M.T., Weisburd B., Won H.-H., Yu D., Altshuler D.M., Ardissino D., Boehnke M., Danesh J., Donnelly S., Elosua R., Florez J.C., Gabriel S.B., Getz G., Glatt S.J., Hultman C.M., Kathiresan S., Laakso M., McCarroll S., McCarthy M.I., McGovern D., McPherson R., Neale B.M., Palotie A., Purcell S.M., Saleheen D., Scharf J.M., Sklar P., Sullivan P.F., Tuomilehto J., Tsuang M.T., Watkins H.C., Wilson J.G., Daly M.J., MacArthur D.G., Exome Aggregation C. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285–291.
    1. Levin A.A. Treating disease at the RNA level with oligonucleotides. N. Engl. J. Med. 2019;380:57–70.
    1. Lim K.P., Yip S.P., Cheung S.C., Leung K.W., Lam S.T., To C.H. Novel PRPF31 and PRPH2 mutations and co-occurrence of PRPF31 and RHO mutations in Chinese patients with retinitis pigmentosa. Arch. Ophthalmol. 2009;127:784–790.
    1. Liu J.Y., Dai X., Sheng J., Cui X., Wang X., Jiang X., Tu X., Tang Z., Bai Y., Liu M., Wang Q.K. Identification and functional characterization of a novel splicing mutation in RP gene PRPF31. Biochem. Biophys. Res. Commun. 2008;367:420–426.
    1. Liu S., Li P., Dybkov O., Nottrott S., Hartmuth K., Luhrmann R., Carlomagno T., Wahl M.C. Binding of the human Prp31 Nop domain to a composite RNA-protein platform in U4 snRNP. Science (New York, N.Y.) 2007;316:115–120.
    1. Lu F., Huang L., Lei C., Sha G., Zheng H., Liu X., Yang J., Shi Y., Lin Y., Gong B., Zhu X., Ma S., Qiao L., Lin H., Cheng J., Yang Z. A novel PRPF31 mutation in a large Chinese family with autosomal dominant retinitis pigmentosa and macular degeneration. PloS One. 2013;8
    1. Lu S.S., Zhao C., Cui Y., Li N.D., Zhang X.M., Zhao K.X. [Novel splice-site mutation in the pre-mRNA splicing gene PRPF31 in a Chinese family with autosomal dominant retinitis pigmentosa] Zhonghua Yan Ke Za Zhi. 2005;41:305–311.
    1. Makarova O.V., Makarov E.M., Liu S., Vornlocher H.P., Luhrmann R. Protein 61K, encoded by a gene (PRPF31) linked to autosomal dominant retinitis pigmentosa, is required for U4/U6*U5 tri-snRNP formation and pre-mRNA splicing. EMBO J. 2002;21:1148–1157.
    1. Marechal A., Li J.M., Ji X.Y., Wu C.S., Yazinski S.A., Nguyen H.D., Liu S., Jimenez A.E., Jin J., Zou L. PRP19 transforms into a sensor of RPA-ssDNA after DNA damage and drives ATR activation via a ubiquitin-mediated circuitry. Mol. Cell. 2014;53:235–246.
    1. Martin-Merida I., Aguilera-Garcia D., Fernandez-San Jose P., Blanco-Kelly F., Zurita O., Almoguera B., Garcia-Sandoval B., Avila-Fernandez A., Arteche A., Minguez P., Carballo M., Corton M., Ayuso C. Toward the mutational landscape of autosomal dominant retinitis pigmentosa: a comprehensive analysis of 258 Spanish families. Invest. Ophthalmol. Vis. Sci. 2018;59:2345–2354.
    1. Martinez-Gimeno M., Gamundi M.J., Hernan I., Maseras M., Milla E., Ayuso C., Garcia-Sandoval B., Beneyto M., Vilela C., Baiget M., Antinolo G., Carballo M. Mutations in the pre-mRNA splicing-factor genes PRPF3, PRPF8, and PRPF31 in Spanish families with autosomal dominant retinitis pigmentosa. Invest. Ophthalmol. Vis. Sci. 2003;44:2171–2177.
    1. McLenachan S., Zhang D., Zhang X., Chen S.C., Lamey T., Thompson J.A., McLaren T., De Roach J.N., Fletcher S., Chen F.K. Generation of two induced pluripotent stem cell lines from a patient with dominant PRPF31 mutation and a related non-penetrant carrier. Stem Cell Res. 2019;34:101357.
    1. Mendell J.R., Goemans N., Lowes L.P., Alfano L.N., Berry K., Shao J., Kaye E.M., Mercuri E. Longitudinal effect of eteplirsen versus historical control on ambulation in Duchenne muscular dystrophy. Ann. Neurol. 2016;79:257–271.
    1. Neveling K., Collin R.W., Gilissen C., van Huet R.A., Visser L., Kwint M.P., Gijsen S.J., Zonneveld M.N., Wieskamp N., de Ligt J., Siemiatkowska A.M., Hoefsloot L.H., Buckley M.F., Kellner U., Branham K.E., den Hollander A.I., Hoischen A., Hoyng C., Klevering B.J., van den Born L.I., Veltman J.A., Cremers F.P., Scheffer H. Next-generation genetic testing for retinitis pigmentosa. Hum. Mutat. 2012;33:963–972.
    1. Ng S.K., Wood J.P., Chidlow G., Han G., Kittipassorn T., Peet D.J., Casson R.J. Cancer-like metabolism of the mammalian retina. Clin. Exp. Ophthalmol. 2015;43:367–376.
    1. Pan Q., Shai O., Lee L.J., Frey B.J., Blencowe B.J. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat. Genet. 2008;40:1413–1415.
    1. Pan X., Chen X., Liu X., Gao X., Kang X., Xu Q., Chen X., Zhao K., Zhang X., Chu Q., Wang X., Zhao C. Mutation analysis of pre-mRNA splicing genes in Chinese families with retinitis pigmentosa. Mol. Vis. 2014;20:770–779.
    1. Pomares E., Riera M., Permanyer J., Mendez P., Castro-Navarro J., Andres-Gutierrez A., Marfany G., Gonzalez-Duarte R. Comprehensive SNP-chip for retinitis pigmentosa-Leber congenital amaurosis diagnosis: new mutations and detection of mutational founder effects. Eur. J. Hum. Genet. 2010;18:118–124.
    1. Rajala R.V., Rajala A., Kooker C., Wang Y., Anderson R.E. The warburg effect mediator pyruvate kinase M2 expression and regulation in the retina. Sci. Rep. 2016;6:37727.
    1. Rio Frio T., Civic N., Ransijn A., Beckmann J.S., Rivolta C. Two trans-acting eQTLs modulate the penetrance of PRPF31 mutations. Hum. Mol. Genet. 2008;17:3154–3165.
    1. Rio Frio T., McGee T.L., Wade N.M., Iseli C., Beckmann J.S., Berson E.L., Rivolta C. A single-base substitution within an intronic repetitive element causes dominant retinitis pigmentosa with reduced penetrance. Hum. Mutat. 2009;30:1340–1347.
    1. Rio Frio T., Wade N.M., Ransijn A., Berson E.L., Beckmann J.S., Rivolta C. Premature termination codons in PRPF31 cause retinitis pigmentosa via haploinsufficiency due to nonsense-mediated mRNA decay. J. Clin. Invest. 2008;118:1519–1531.
    1. Rivolta C., McGee T.L., Rio Frio T., Jensen R.V., Berson E.L., Dryja T.P. Variation in retinitis pigmentosa-11 (PRPF31 or RP11) gene expression between symptomatic and asymptomatic patients with dominant RP11 mutations. Hum. Mutat. 2006;27:644–653.
    1. Roberts L., Ratnapriya R., du Plessis M., Chaitankar V., Ramesar R.S., Swaroop A. Molecular diagnosis of inherited retinal diseases in indigenous african populations by whole-exome sequencing. Invest. Ophthalmol. Vis. Sci. 2016;57:6374–6381.
    1. Rose A.M., Bhattacharya S.S. Variant haploinsufficiency and phenotypic non-penetrance in PRPF31-associated retinitis pigmentosa. Clin. Genet. 2016;90:118–126.
    1. Rose A.M., Mukhopadhyay R., Webster A.R., Bhattacharya S.S., Waseem N.H. A 112 kb deletion in chromosome 19q13.42 leads to retinitis pigmentosa. Invest. Ophthalmol. Vis. Sci. 2011;52:6597–6603.
    1. Rose A.M., Shah A.Z., Venturini G., Krishna A., Chakravarti A., Rivolta C., Bhattacharya S.S. Transcriptional regulation of PRPF31 gene expression by MSR1 repeat elements causes incomplete penetrance in retinitis pigmentosa. Sci. Rep. 2016;6:19450.
    1. Rose A.M., Shah A.Z., Venturini G., Rivolta C., Rose G.E., Bhattacharya S.S. Dominant PRPF31 mutations are hypostatic to a recessive CNOT3 polymorphism in retinitis pigmentosa: a novel phenomenon of “linked trans-acting epistasis”. Ann. Hum. Genet. 2014;78:62–71.
    1. Rose A.M., Shah A.Z., Waseem N.H., Chakarova C.F., Alfano G., Coussa R.G., Ajlan R., Koenekoop R.K., Bhattacharya S.S. Expression of PRPF31 and TFPT: regulation in health and retinal disease. Hum. Mol. Genet. 2012;21:4126–4137.
    1. Saini S., Robinson P.N., Singh J.R., Vanita V. A novel 7 bp deletion in PRPF31 associated with autosomal dominant retinitis pigmentosa with incomplete penetrance in an Indian family. Exp. Eye Res. 2012;104:82–88.
    1. Samocha K.E., Robinson E.B., Sanders S.J., Stevens C., Sabo A., McGrath L.M., Kosmicki J.A., Rehnström K., Mallick S., Kirby A., Wall D.P., MacArthur D.G., Gabriel S.B., DePristo M., Purcell S.M., Palotie A., Boerwinkle E., Buxbaum J.D., Cook E.H., Gibbs R.A., Schellenberg G.D., Sutcliffe J.S., Devlin B., Roeder K., Neale B.M., Daly M.J. A framework for the interpretation of de novo mutation in human disease. Nat. Genet. 2014;46:944–950.
    1. Sato H., Wada Y., Itabashi T., Nakamura M., Kawamura M., Tamai M. Mutations in the pre-mRNA splicing gene, PRPF31, in Japanese families with autosomal dominant retinitis pigmentosa. Am. J. Ophthalmol. 2005;140:537–540.
    1. Schaffert N., Hossbach M., Heintzmann R., Achsel T., Luhrmann R. RNAi knockdown of hPrp31 leads to an accumulation of U4/U6 di-snRNPs in Cajal bodies. EMBO J. 2004;23:3000–3009.
    1. Schmidt-Kastner R., Yamamoto H., Hamasaki D., Yamamoto H., Parel J.M., Schmitz C., Dorey C.K., Blanks J.C., Preising M.N. Hypoxia-regulated components of the U4/U6.U5 tri-small nuclear riboprotein complex: possible role in autosomal dominant retinitis pigmentosa. Mol. Vis. 2008;14:125–135.
    1. Scoles D.R., Pulst S.M. Antisense therapies for movement disorders. Mov. Disord. 2019;34:1112–1119.
    1. Shinde V., Kotla P., Strang C., Gorbatyuk M. Unfolded protein response-induced dysregulation of calcium homeostasis promotes retinal degeneration in rat models of autosomal dominant retinitis pigmentosa. Cell Death Dis. 2016;7
    1. Sullivan L.S., Bowne S.J., Birch D.G., Hughbanks-Wheaton D., Heckenlively J.R., Lewis R.A., Garcia C.A., Ruiz R.S., Blanton S.H., Northrup H., Gire A.I., Seaman R., Duzkale H., Spellicy C.J., Zhu J., Shankar S.P., Daiger S.P. Prevalence of disease-causing mutations in families with autosomal dominant retinitis pigmentosa: a screen of known genes in 200 families. Invest. Ophthalmol. Vis. Sci. 2006;47:3052–3064.
    1. Sullivan L.S., Bowne S.J., Reeves M.J., Blain D., Goetz K., Ndifor V., Vitez S., Wang X., Tumminia S.J., Daiger S.P. Prevalence of mutations in eyeGENE probands with a diagnosis of autosomal dominant retinitis pigmentosa. Invest. Ophthalmol. Vis. Sci. 2013;54:6255–6261.
    1. Sullivan L.S., Bowne S.J., Seaman C.R., Blanton S.H., Lewis R.A., Heckenlively J.R., Birch D.G., Hughbanks-Wheaton D., Daiger S.P. Genomic rearrangements of the PRPF31 gene account for 2.5% of autosomal dominant retinitis pigmentosa. Invest. Ophthalmol. Vis. Sci. 2006;47:4579–4588.
    1. Taira K., Nakazawa M., Sato M. Mutation c. 1142 del G in the PRPF31 gene in a family with autosomal dominant retinitis pigmentosa (RP11) and its implications. Jpn. J. Ophthalmol. 2007;51:45–48.
    1. Terray A., Fort V., Slembrouck A., Nanteau C., Sahel J.A., Reichman S., Audo I., Goureau O. Establishment of an induced pluripotent stem (iPS) cell line from dermal fibroblasts of an asymptomatic patient with dominant PRPF31 mutation. Stem Cell Res. 2017;25:26–29.
    1. Tiwari A., Lemke J., Altmueller J., Thiele H., Glaus E., Fleischhauer J., Nurnberg P., Neidhardt J., Berger W. Identification of novel and recurrent disease-causing mutations in retinal dystrophies using whole exome sequencing (WES): benefits and limitations. PloS One. 2016;11
    1. Utz V.M., Beight C.D., Marino M.J., Hagstrom S.A., Traboulsi E.I. Autosomal dominant retinitis pigmentosa secondary to pre-mRNA splicing-factor gene PRPF31 (RP11): review of disease mechanism and report of a family with a novel 3-base pair insertion. Ophthalmic Genet. 2013;34:183–188.
    1. Valdés-Sánchez L., Calado S.M., de la Cerda B., Aramburu A., García-Delgado A.B., Massalini S., Montero-Sánchez A., Bhatia V., Rodríguez-Bocanegra E., Diez-Lloret A., Rodríguez-Martínez D., Chakarova C., Bhattacharya S.S., Díaz-Corrales F.J. Retinal pigment epithelium degeneration caused by aggregation of PRPF31 and the role of HSP70 family of proteins. Mol. Med. 2019;26:1.
    1. Van Cauwenbergh C., Coppieters F., Roels D., De Jaegere S., Flipts H., De Zaeytijd J., Walraedt S., Claes C., Fransen E., Van Camp G., Depasse F., Casteels I., de Ravel T., Leroy B.P., De Baere E. Mutations in splicing factor genes are a major cause of autosomal dominant retinitis pigmentosa in Belgian families. PloS One. 2017;12
    1. van Huet R.A., Pierrache L.H., Meester-Smoor M.A., Klaver C.C., van den Born L.I., Hoyng C.B., de Wijs I.J., Collin R.W., Hoefsloot L.H., Klevering B.J. The efficacy of microarray screening for autosomal recessive retinitis pigmentosa in routine clinical practice. Mol. Vis. 2015;21:461–476.
    1. Vander Kooi C.W., Ohi M.D., Rosenberg J.A., Oldham M.L., Newcomer M.E., Gould K.L., Chazin W.J. The Prp19 U-box crystal structure suggests a common dimeric architecture for a class of oligomeric E3 ubiquitin ligases. Biochemistry. 2006;45:121–130.
    1. Venturini G., Rose A.M., Shah A.Z., Bhattacharya S.S., Rivolta C. CNOT3 is a modifier of PRPF31 mutations in retinitis pigmentosa with incomplete penetrance. PLoS Genet. 2012;8
    1. Villanueva A., Willer J.R., Bryois J., Dermitzakis E.T., Katsanis N., Davis E.E. Whole exome sequencing of a dominant retinitis pigmentosa family identifies a novel deletion in PRPF31. Invest. Ophthalmol. Vis. Sci. 2014;55:2121–2129.
    1. Vithana E.N., Abu-Safieh L., Allen M.J., Carey A., Papaioannou M., Chakarova C., Al-Maghtheh M., Ebenezer N.D., Willis C., Moore A.T., Bird A.C., Hunt D.M., Bhattacharya S.S. A human homolog of yeast pre-mRNA splicing gene, PRP31, underlies autosomal dominant retinitis pigmentosa on chromosome 19q13.4 (RP11) Mol. Cell. 2001;8:375–381.
    1. Wang F., Wang H., Tuan H.F., Nguyen D.H., Sun V., Keser V., Bowne S.J., Sullivan L.S., Luo H., Zhao L., Wang X., Zaneveld J.E., Salvo J.S., Siddiqui S., Mao L., Wheaton D.K., Birch D.G., Branham K.E., Heckenlively J.R., Wen C., Flagg K., Ferreyra H., Pei J., Khan A., Ren H., Wang K., Lopez I., Qamar R., Zenteno J.C., Ayala-Ramirez R., Buentello-Volante B., Fu Q., Simpson D.A., Li Y., Sui R., Silvestri G., Daiger S.P., Koenekoop R.K., Zhang K., Chen R. Next generation sequencing-based molecular diagnosis of retinitis pigmentosa: identification of a novel genotype-phenotype correlation and clinical refinements. Hum. Genet. 2014;133:331–345.
    1. Wang L., Ribaudo M., Zhao K., Yu N., Chen Q., Sun Q., Wang L., Wang Q. Novel deletion in the pre-mRNA splicing gene PRPF31 causes autosomal dominant retinitis pigmentosa in a large Chinese family. Am. J. Med. Genet. 2003;121a:235–239.
    1. Waseem N.H., Vaclavik V., Webster A., Jenkins S.A., Bird A.C., Bhattacharya S.S. Mutations in the gene coding for the pre-mRNA splicing factor, PRPF31, in patients with autosomal dominant retinitis pigmentosa. Invest. Ophthalmol. Vis. Sci. 2007;48:1330–1334.
    1. Weidenhammer E.M., Ruiz-Noriega M., Woolford J.L., Jr. Prp31p promotes the association of the U4/U6 x U5 tri-snRNP with prespliceosomes to form spliceosomes in Saccharomyces cerevisiae. Mol. Cell Biol. 1997;17:3580–3588.
    1. Weidenhammer E.M., Singh M., Ruiz-Noriega M., Woolford J.L., Jr. The PRP31 gene encodes a novel protein required for pre-mRNA splicing in Saccharomyces cerevisiae. Nucleic Acids Res. 1996;24:1164–1170.
    1. Weisschuh N., Mayer A.K., Strom T.M., Kohl S., Glockle N., Schubach M., Andreasson S., Bernd A., Birch D.G., Hamel C.P., Heckenlively J.R., Jacobson S.G., Kamme C., Kellner U., Kunstmann E., Maffei P., Reiff C.M., Rohrschneider K., Rosenberg T., Rudolph G., Vamos R., Varsanyi B., Weleber R.G., Wissinger B. Mutation detection in patients with retinal dystrophies using targeted next generation sequencing. PloS One. 2016;11
    1. Wheway G., Nazlamova L., Meshad N., Hunt S., Jackson N., Churchill A. A combined in silico, in vitro and clinical approach to characterize novel pathogenic missense variants in PRPF31 in retinitis pigmentosa. Front. Genet. 2019;10:248.
    1. Wheway G., Schmidts M., Mans D.A., Szymanska K., Nguyen T.M., Racher H., Phelps I.G., Toedt G., Kennedy J., Wunderlich K.A., Sorusch N., Abdelhamed Z.A., Natarajan S., Herridge W., van Reeuwijk J., Horn N., Boldt K., Parry D.A., Letteboer S.J., Roosing S., Adams M., Bell S.M., Bond J., Higgins J., Morrison E.E., Tomlinson D.C., Slaats G.G., van Dam T.J., Huang L., Kessler K., Giessl A., Logan C.V., Boyle E.A., Shendure J., Anazi S., Aldahmesh M., Al Hazzaa S., Hegele R.A., Ober C., Frosk P., Mhanni A.A., Chodirker B.N., Chudley A.E., Lamont R., Bernier F.P., Beaulieu C.L., Gordon P., Pon R.T., Donahue C., Barkovich A.J., Wolf L., Toomes C., Thiel C.T., Boycott K.M., McKibbin M., Inglehearn C.F., Consortium U.K., University of Washington Center for Mendelian G., Stewart F., Omran H., Huynen M.A., Sergouniotis P.I., Alkuraya F.S., Parboosingh J.S., Innes A.M., Willoughby C.E., Giles R.H., Webster A.R., Ueffing M., Blacque O., Gleeson J.G., Wolfrum U., Beales P.L., Gibson T., Doherty D., Mitchison H.M., Roepman R., Johnson C.A. An siRNA-based functional genomics screen for the identification of regulators of ciliogenesis and ciliopathy genes. Nat. Cell Biol. 2015;17:1074–1087.
    1. Wilkie S.E., Morris K.J., Bhattacharya S.S., Warren M.J., Hunt D.M. A study of the nuclear trafficking of the splicing factor protein PRPF31 linked to autosomal dominant retinitis pigmentosa (ADRP) Biochim. Biophys. Acta. 2006;1762:304–311.
    1. Wilkie S.E., Vaclavik V., Wu H., Bujakowska K., Chakarova C.F., Bhattacharya S.S., Warren M.J., Hunt D.M. Disease mechanism for retinitis pigmentosa (RP11) caused by missense mutations in the splicing factor gene PRPF31. Mol. Vis. 2008;14:683–690.
    1. Will C.L., Luhrmann R. Spliceosome structure and function. Cold Spring Harbor perspectives in biology. 2011;3
    1. Wu Z., Zhong M., Li M., Huang H., Liao J., Lu A., Guo K., Ma N., Lin J., Duan J., Liu L., Xu F., Zhong Z., Chen J. Mutation analysis of pre-mRNA splicing genes PRPF31, PRPF8, and SNRNP200 in Chinese families with autosomal dominant retinitis pigmentosa. Curr. Mol. Med. 2018;18:287–294.
    1. Xi X.H., Zheng D., Xia K., Pan Q., Lei L.Y., Liu Z., Tang C.Z., Xia J.H., Jiang D.Y., Deng H.X. [Splicing site mutation of D19S418 in PRPF-31 gene and its phenotypic characters with autosomal dominant retinitis pigmentosa] Zhonghua Yan Ke Za Zhi. 2005;41:1020–1026.
    1. Xia K., Zheng D., Pan Q., Liu Z., Xi X., Hu Z., Deng H., Liu X., Jiang D., Deng H., Xia J. A novel PRPF31 splice-site mutation in a Chinese family with autosomal dominant retinitis pigmentosa. Mol. Vis. 2004;10:361–365.
    1. Xiao X., Cao Y., Zhang Z., Xu Y., Zheng Y., Chen L.J., Pang C.P., Chen H. Novel mutations in PRPF31 causing retinitis pigmentosa identified using whole-exome sequencing. Invest. Ophthalmol. Vis. Sci. 2017;58:6342–6350.
    1. Xie D., Peng K., Yi Q., Liu W., Yang Y., Sun K., Zhu X., Lu F. Targeted next generation sequencing revealed novel PRPF31 mutations in autosomal dominant retinitis pigmentosa. Genet. Test. Mol. Biomarkers. 2018;22:425–432.
    1. Xu F., Sui R., Liang X., Li H., Jiang R., Dong F. Novel PRPF31 mutations associated with Chinese autosomal dominant retinitis pigmentosa patients. Mol. Vis. 2012;18:3021–xxx.
    1. Yang L., Yin X., Wu L., Chen N., Zhang H., Li G., Ma Z. Targeted exome capture and sequencing identifies novel PRPF31 mutations in autosomal dominant retinitis pigmentosa in Chinese families. BMJ Open. 2013;3
    1. Yang Y., Tian D., Lee J., Zeng J., Zhang H., Chen S., Guo H., Xiong Z., Xia K., Hu Z., Luo J. Clinical and genetic identification of a large Chinese family with autosomal dominant retinitis pigmentosa. Ophthalmic Genet. 2015;36:64–69.
    1. Yin J., Brocher J., Fischer U., Winkler C. Mutant Prpf31 causes pre-mRNA splicing defects and rod photoreceptor cell degeneration in a zebrafish model for Retinitis pigmentosa. Mol. Neurodegener. 2011;6 56-1326-6-56.
    1. Yuan L., Kawada M., Havlioglu N., Tang H., Wu J.Y. Mutations in PRPF31 inhibit pre-mRNA splicing of rhodopsin gene and cause apoptosis of retinal cells. J. Neurosci. : the official journal of the Society for Neuroscience. 2005;25:748–757.
    1. Zhang N., Kaur R., Lu X., Shen X., Li L., Legerski R.J. The Pso4 mRNA splicing and DNA repair complex interacts with WRN for processing of DNA interstrand cross-links. J. Biol. Chem. 2005;280:40559–40567.
    1. Zhang Q., Xu M., Verriotto J.D., Li Y., Wang H., Gan L., Lam B.L., Chen R. Next-generation sequencing-based molecular diagnosis of 35 Hispanic retinitis pigmentosa probands. Sci. Rep. 2016;6:32792.
    1. Zhao L., Wang F., Wang H., Li Y., Alexander S., Wang K., Willoughby C.E., Zaneveld J.E., Jiang L., Soens Z.T., Earle P., Simpson D., Silvestri G., Chen R. Next-generation sequencing-based molecular diagnosis of 82 retinitis pigmentosa probands from Northern Ireland. Hum. Genet. 2015;134:217–230.
    1. Zheng Y., Wang H.-L., Li J.-K., Xu L., Tellier L., Li X.-L., Huang X.-Y., Li W., Niu T.-T., Yang H.-M., Zhang J.-G., Liu D.-N. A novel mutation in PRPF31, causative of autosomal dominant retinitis pigmentosa, using the BGISEQ-500 sequencer. Int. J. Ophthalmol. 2018;11:31–35.
    1. Ziegler A., Colin E., Goudenège D., Bonneau D. A snapshot of some pLI score pitfalls. Hum. Mutat. 2019;40:839–841.

Source: PubMed

3
S'abonner