Muscle miRNAome shows suppression of chronic inflammatory miRNAs with both prednisone and vamorolone

Alyson A Fiorillo, Christopher B Tully, Jesse M Damsker, Kanneboyina Nagaraju, Eric P Hoffman, Christopher R Heier, Alyson A Fiorillo, Christopher B Tully, Jesse M Damsker, Kanneboyina Nagaraju, Eric P Hoffman, Christopher R Heier

Abstract

Corticosteroids are highly prescribed and effective anti-inflammatory drugs but the burden of side effects with chronic use significantly detracts from patient quality of life, particularly in children. Developing safer steroids amenable to long-term use is an important goal for treatment of chronic inflammatory diseases such as Duchenne muscular dystrophy (DMD). We have developed vamorolone (VBP15), a first-in-class dissociative glucocorticoid receptor (GR) ligand that shows the anti-inflammatory efficacy of corticosteroids without key steroid side effects in animal models. miRNAs are increasingly recognized as key regulators of inflammatory responses. To define effects of prednisolone and vamorolone on the muscle miRNAome, we performed a preclinical discovery study in the mdx mouse model of DMD. miRNAs associated with inflammation were highly elevated in mdx muscle. Both vamorolone and prednisolone returned these toward wild-type levels (miR-142-5p, miR-142-3p, miR-146a, miR-301a, miR-324-3p, miR-455-5p, miR-455-3p, miR-497, miR-652). Effects of vamorolone were largely limited to reduction of proinflammatory miRNAs. In contrast, prednisolone activated a separate group of miRNAs associated with steroid side effects and a noncoding RNA cluster homologous to human chromosome 14q32. Effects were validated for inflammatory miRNAs in a second, independent preclinical study. For the anti-inflammatory miRNA signature, bioinformatic analyses showed all of these miRNAs are directly regulated by, or in turn activate, the inflammatory transcription factor NF-κB. Moving forward miR-146a and miR-142 are of particular interest as biomarkers or novel drug targets. These data validate NF-κB signaling as a target of dissociative GR-ligand efficacy in vivo and provide new insight into miRNA signaling in chronic inflammation.

Keywords: Duchenne muscular dystrophy; inflammation; miRNA; muscle; steroids.

Figures

Fig. 1.
Fig. 1.
Summary of muscle miRNA changes discovered in response to dystrophy and its treatment. Expression of the miRNAome was quantified in diaphragm muscle of mice from a discovery set of mice (n = 5 mice per group). Groups included WT (vehicle), mdx (vehicle), mdx treated with prednisolone (5 mg/kg), and mdx treated with vamorolone (15 mg/kg), with mice treated from 2 to 8 wk of age in a prophylactic trial design. A: a Venn diagram illustrates the proportion of miRNAs that are significantly different than untreated mdx muscle in the WT, prednisolone, and vamorolone groups. The nine miRNAs that were significantly different in all three groups vs. untreated mdx, highlighted here, were chosen as a focus set of efficacy-associated miRNAs. B: heat map visualization of the expression of the nine efficacy associated miRNA markers within each individual mouse. C: bar graph showing the number of miRNAs that significantly increased or decreased in response to either of the drug treatments. D: heat map of the eight unique miRNAs that were increased by prednisolone. Heat map: red, increased; green, decreased. Pred, prednisolone; Vam, vamorolone; WT, wild type.
Fig. 2.
Fig. 2.
Behavior of efficacy miRNA signature is maintained in an independent validation trial. A validation set of samples was obtained from a second, independent mdx trial performed at a different stage of the mdx disease. Mice received daily oral vehicle, prednisolone (5 mg/kg), or vamorolone (45 mg/kg) for 4 mo, with treadmill running to unmask mdx phenotypes and muscle harvested at 6 mo of age. The nine miRNAs identified as associated with efficacy in the TLDA arrays were quantified in diaphragm muscle using quantitative RT-PCR in this second set of mice. (Values are graphed as % of untreated mdx expression levels; 1 outlier removed from miR-455-5p after significant Grubb’s test; n = 5 per group; ANOVA with post hoc comparison to mdx vehicle; *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.0005). TLDA, Taqman low-density array.
Fig. 3.
Fig. 3.
Promoter analysis of miRNAs indicates NF-κB signaling is a shared target of effective drugs. Transcription factor (NF-κB, GR) binding sites and histone (H3) modifications that mark regulatory regions were examined using ChIP-seq data from ENCODE. DNA-binding motifs for each transcription factor were identified through the Factorbook repository. A: schematic of the gene locus for miR-142, illustrating the binding site of 13 neighboring DNA loci that are bound directly by NF-κB. Corresponding epigenetic modification maps are provided showing the location of histone modifications associated with active promoters (H3K4me3) and poised/active enhancers (H3K4me1 and H3K27Ac) in the immediate vicinity of miR-142. B: sequence logo pictogram of base frequency at NF-κB binding sites, with the consensus NF-κB motif provided immediately below. Also provided are five representative NF-κB binding site sequences near miR-142, listed in order from the 5′ to 3′ direction. C: summary of promoter analysis and literature data indicating each miRNA and known factors or conditions associated with its transcriptional regulation. ChIP-seq, chromatin immunoprecipitation sequencing; COL27A1, collagen type 27 alpha 1 chain; ENCODE, Encyclopedia of DNA Elements; GR, glucocorticoid receptor; IL4, interleukin 4; MoDCs, monocyte-induced dendritic cells; φ, macrophage; NKRF, NF-κB-repressing factor; STAT6, signal transducer and activator of transcription 6; TWEAK, TNF-like weak inducer of apoptosis.
Fig. 4.
Fig. 4.
Prednisolone increases miRNAs associated with GR regulation and the 14q32 mega cluster. For the conserved miRNAs that were specifically elevated in prednisolone-treated mouse muscle, we analyzed the genomic loci, transcription factor binding sites (GR and NF-κB), and histone (H3) modifications using ChIP-seq data from ENCODE. DNA motifs bound by the GR were identified through Factorbook. A: all six of the miRNAs are transcribed from a well-conserved noncoding RNA cluster (mouse 12F1) which is extensively characterized in humans at the 14q32 locus; that human cluster is depicted here along with corresponding GR-binding sites, as well as histone modifications that correspond to active gene promoters (H3K4me3) and poised or active gene enhancer elements (H3K4me1, H3K27Ac). No NF-κB-binding sites are found at this locus. B: sequence logo pictogram of base frequency at GR binding sites, with the consensus GR motif sequence provided immediately below. Also provided are three representative GR-binding site sequences from this locus numbered from the 5′ to 3′ direction. C: summary of bioinformatic analyses for each miRNA, with a list of conditions that are associated with increased levels of each miRNA. †encoded by the 14q32 cluster of miRNAs with GR-bound enhancers. ChIP-seq, chromatin immunoprecipitation sequencing; ENCODE, Encyclopedia of DNA Elements; GR, glucocorticoid receptor; lncRNA, long noncoding RNA; MEG, maternally expressed gene; snoRNA, small nucleolar RNA.
Fig. 5.
Fig. 5.
Proposed model of NF-κB and GR-regulated miRNAs in the treatment of muscular dystrophy. In DMD, inflammatory signaling promotes the chronic activation of NF-κB. This, in turn, activates NF-κB gene targets, including miRNAs that regulate the expression of proteins in the NF-κB signaling pathway, creating a chronic inflammatory feedback loop. Here we show that the NF-κB-regulated miRNAs miR-142-3p, miR-142-5p, miR-146a, miR-301a, miR-455-3p, miR-455-5p, miR-497, and miR-652 are all elevated in dystrophic muscle. These NF-κB-regulated miRNAs are all effectively decreased by both vamorolone (Vam) and prednisone (Pred) treatment, via the GR. miR-324-3p, a miRNA that activates NF-κB in a positive feedback loop, is also decreased by both drugs. Acting through a separate pathway which can be selectively avoided by dissociative steroid chemistries, prednisone also directly causes GR-mediated transactivation of gene transcription. This results in elevated levels of a miRNA cluster located on chromosome 14q32. These microRNAs are associated with steroid side effects such as insulin resistance, hypertension, stress, and mood disturbances. Blue lines, pathways affected by vamorolone; red lines, pathways affected by prednisolone. DMD, Duchenne muscular dystrophy; GR, glucocorticoid receptor.

References

    1. Bello L, Gordish-Dressman H, Morgenroth LP, Henricson EK, Duong T, Hoffman EP, Cnaan A, McDonald CM; CINRG Investigators . Prednisone/prednisolone and deflazacort regimens in the CINRG Duchenne Natural History Study. Neurology 85: 1048–1055, 2015. doi:10.1212/WNL.0000000000001950.
    1. Cai D, Frantz JD, Tawa NE Jr, Melendez PA, Oh BC, Lidov HG, Hasselgren PO, Frontera WR, Lee J, Glass DJ, Shoelson SE. IKKbeta/NF-kappaB activation causes severe muscle wasting in mice. Cell 119: 285–298, 2004. doi:10.1016/j.cell.2004.09.027.
    1. Chapman CG, Pekow J. The emerging role of miRNAs in inflammatory bowel disease: a review. Therap Adv Gastroenterol 8: 4–22, 2015. doi:10.1177/1756283X14547360.
    1. Charlier C, Segers K, Wagenaar D, Karim L, Berghmans S, Jaillon O, Shay T, Weissenbach J, Cockett N, Gyapay G, Georges M. Human-ovine comparative sequencing of a 250-kb imprinted domain encompassing the callipyge (clpg) locus and identification of six imprinted transcripts: DLK1, DAT, GTL2, PEG11, antiPEG11, and MEG8. Genome Res 11: 850–862, 2001. doi:10.1101/gr.172701.
    1. Chen X, Shi C, Wang C, Liu W, Chu Y, Xiang Z, Hu K, Dong P, Han X. The role of miR-497-5p in myofibroblast differentiation of LR-MSCs and pulmonary fibrogenesis. Sci Rep 7: 40958, 2017. doi:10.1038/srep40958.
    1. Chen Y, Wang SX, Mu R, Luo X, Liu ZS, Liang B, Zhuo HL, Hao XP, Wang Q, Fang DF, Bai ZF, Wang QY, Wang HM, Jin BF, Gong WL, Zhou T, Zhang XM, Xia Q, Li T. Dysregulation of the miR-324-5p-CUEDC2 axis leads to macrophage dysfunction and is associated with colon cancer. Cell Reports 7: 1982–1993, 2014. doi:10.1016/j.celrep.2014.05.007.
    1. Chen YW, Nagaraju K, Bakay M, McIntyre O, Rawat R, Shi R, Hoffman EP. Early onset of inflammation and later involvement of TGFbeta in Duchenne muscular dystrophy. Neurology 65: 826–834, 2005. doi:10.1212/01.wnl.0000173836.09176.c4.
    1. Christopher AF, Kaur RP, Kaur G, Kaur A, Gupta V, Bansal P. MicroRNA therapeutics: discovering novel targets and developing specific therapy. Perspect Clin Res 7: 68–74, 2016. doi:10.4103/2229-3485.179431.
    1. Curtale G, Citarella F, Carissimi C, Goldoni M, Carucci N, Fulci V, Franceschini D, Meloni F, Barnaba V, Macino G. An emerging player in the adaptive immune response: microRNA-146a is a modulator of IL-2 expression and activation-induced cell death in T lymphocytes. Blood 115: 265–273, 2010. doi:10.1182/blood-2009-06-225987.
    1. Czimmerer Z, Varga T, Kiss M, Vázquez CO, Doan-Xuan QM, Rückerl D, Tattikota SG, Yan X, Nagy ZS, Daniel B, Poliska S, Horvath A, Nagy G, Varallyay E, Poy MN, Allen JE, Bacso Z, Abreu-Goodger C, Nagy L. The IL-4/STAT6 signaling axis establishes a conserved microRNA signature in human and mouse macrophages regulating cell survival via miR-342-3p. Genome Med 8: 63, 2016. doi:10.1186/s13073-016-0315-y.
    1. Davis TE, Kis-Toth K, Szanto A, Tsokos GC. Glucocorticoids suppress T cell function by up-regulating microRNA-98. Arthritis Rheum 65: 1882–1890, 2013. doi:10.1002/art.37966.
    1. Dharap A, Bowen K, Place R, Li LC, Vemuganti R. Transient focal ischemia induces extensive temporal changes in rat cerebral microRNAome. J Cereb Blood Flow Metab 29: 675–687, 2009. doi:10.1038/jcbfm.2008.157.
    1. Dharap A, Pokrzywa C, Murali S, Pandi G, Vemuganti R. MicroRNA miR-324-3p induces promoter-mediated expression of RelA gene. PLoS One 8: e79467, 2013. doi:10.1371/journal.pone.0079467.
    1. Duijvis NW, Moerland PD, Kunne C, Slaman MMW, van Dooren FH, Vogels EW, de Jonge WJ, Meijer SL, Fluiter K, Te Velde AA. Inhibition of miR-142-5P ameliorates disease in mouse models of experimental colitis. PLoS One 12: e0185097, 2017. doi:10.1371/journal.pone.0185097.
    1. Eisenberg I, Eran A, Nishino I, Moggio M, Lamperti C, Amato AA, Lidov HG, Kang PB, North KN, Mitrani-Rosenbaum S, Flanigan KM, Neely LA, Whitney D, Beggs AH, Kohane IS, Kunkel LM. Distinctive patterns of microRNA expression in primary muscular disorders. Proc Natl Acad Sci USA 104: 17016–17021, 2007. [Erratum in PNAS 105: 399, 2008]. doi:10.1073/pnas.0708115104.
    1. Fasseu M, Tréton X, Guichard C, Pedruzzi E, Cazals-Hatem D, Richard C, Aparicio T, Daniel F, Soulé JC, Moreau R, Bouhnik Y, Laburthe M, Groyer A, Ogier-Denis E. Identification of restricted subsets of mature microRNA abnormally expressed in inactive colonic mucosa of patients with inflammatory bowel disease. PLoS One 5: e13160, 2010. doi:10.1371/journal.pone.0013160.
    1. Fiorillo AA, Heier CR, Novak JS, Tully CB, Brown KJ, Uaesoontrachoon K, Vila MC, Ngheim PP, Bello L, Kornegay JN, Angelini C, Partridge TA, Nagaraju K, Hoffman EP. TNF-α-induced microRNAs control dystrophin expression in becker muscular dystrophy. Cell Reports 12: 1678–1690, 2015. doi:10.1016/j.celrep.2015.07.066.
    1. Fordham JB, Naqvi AR, Nares S. Regulation of miR-24, miR-30b, and miR-142-3p during macrophage and dendritic cell differentiation potentiates innate immunity. J Leukoc Biol 98: 195–207, 2015. doi:10.1189/jlb.1A1014-519RR.
    1. Ghorpade DS, Sinha AY, Holla S, Singh V, Balaji KN. NOD2-nitric oxide-responsive microRNA-146a activates Sonic hedgehog signaling to orchestrate inflammatory responses in murine model of inflammatory bowel disease. J Biol Chem 288: 33037–33048, 2013. doi:10.1074/jbc.M113.492496.
    1. Grounds MD, Shavlakadze T. Growing muscle has different sarcolemmal properties from adult muscle: a proposal with scientific and clinical implications. BioEssays 33: 458–468, 2011. doi:10.1002/bies.201000136.
    1. He C, Shi Y, Wu R, Sun M, Fang L, Wu W, Liu C, Tang M, Li Z, Wang P, Cong Y, Liu Z. miR-301a promotes intestinal mucosal inflammation through induction of IL-17A and TNF-α in IBD. Gut 65: 1938–1950, 2016. doi:10.1136/gutjnl-2015-309389.
    1. He F, Lv P, Zhao X, Wang X, Ma X, Meng W, Meng X, Dong S. Predictive value of circulating miR-328 and miR-134 for acute myocardial infarction. Mol Cell Biochem 394: 137–144, 2014. doi:10.1007/s11010-014-2089-0.
    1. Heier CR, Damsker JM, Yu Q, Dillingham BC, Huynh T, Van der Meulen JH, Sali A, Miller BK, Phadke A, Scheffer L, Quinn J, Tatem K, Jordan S, Dadgar S, Rodriguez OC, Albanese C, Calhoun M, Gordish-Dressman H, Jaiswal JK, Connor EM, McCall JM, Hoffman EP, Reeves EK, Nagaraju K. VBP15, a novel anti-inflammatory and membrane-stabilizer, improves muscular dystrophy without side effects. EMBO Mol Med 5: 1569–1585, 2013. doi:10.1002/emmm.201302621.
    1. Heier CR, Fiorillo AA, Chaisson E, Gordish-Dressman H, Hathout Y, Damsker JM, Hoffman EP, Conklin LS. Identification of pathway-specific serum biomarkers of response to glucocorticoid and infliximab treatment in children with inflammatory bowel disease. Clin Transl Gastroenterol 7: e192, 2016. doi:10.1038/ctg.2016.49.
    1. Heier CR, Guerron AD, Korotcov A, Lin S, Gordish-Dressman H, Fricke S, Sze RW, Hoffman EP, Wang P, Nagaraju K. Non-invasive MRI and spectroscopy of mdx mice reveal temporal changes in dystrophic muscle imaging and in energy deficits. PLoS One 9: e112477, 2014. doi:10.1371/journal.pone.0112477.
    1. Hoffman EP, Riddle V, Siegler MA, Dickerson D, Backonja M, Kramer WG, Nagaraju K, Gordish-Dressman H, Damsker JM, McCall JM. Phase 1 trial of vamorolone, a first-in-class steroid, shows improvements in side effects via biomarkers bridged to clinical outcomes. Steroids 134: 43–52, 2018. doi:10.1016/j.steroids.2018.02.010.
    1. Hu X, Chi L, Zhang W, Bai T, Zhao W, Feng Z, Tian H. Down-regulation of the miR-543 alleviates insulin resistance through targeting the SIRT1. Biochem Biophys Res Commun 468: 781–787, 2015. doi:10.1016/j.bbrc.2015.11.032.
    1. Israeli D, Poupiot J, Amor F, Charton K, Lostal W, Jeanson-Leh L, Richard I. Circulating miRNAs are generic and versatile therapeutic monitoring biomarkers in muscular dystrophies. Sci Rep 6: 28097, 2016. doi:10.1038/srep28097.
    1. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D. The human genome browser at UCSC. Genome Res 12: 996–1006, 2002. doi:10.1101/gr.229102.
    1. Kramer NJ, Wang WL, Reyes EY, Kumar B, Chen CC, Ramakrishna C, Cantin EM, Vonderfecht SL, Taganov KD, Chau N, Boldin MP. Altered lymphopoiesis and immunodeficiency in miR-142 null mice. Blood 125: 3720–3730, 2015. doi:10.1182/blood-2014-10-603951.
    1. Krützfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M. Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438: 685–689, 2005. doi:10.1038/nature04303.
    1. Kumar S, Vijayan M, Reddy PH. MicroRNA-455-3p as a potential peripheral biomarker for Alzheimer’s disease. Hum Mol Genet 26: 3808–3822, 2017. doi:10.1093/hmg/ddx267.
    1. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120: 15–20, 2005. doi:10.1016/j.cell.2004.12.035.
    1. Lu J, Yan M, Wang Y, Zhang J, Yang H, Tian FF, Zhou W, Zhang N, Li J. Altered expression of miR-146a in myasthenia gravis. Neurosci Lett 555: 85–90, 2013. doi:10.1016/j.neulet.2013.09.014.
    1. Lu Z, Li Y, Takwi A, Li B, Zhang J, Conklin DJ, Young KH, Martin R, Li Y. miR-301a as an NF-κB activator in pancreatic cancer cells. EMBO J 30: 57–67, 2011. doi:10.1038/emboj.2010.296.
    1. Lukiw WJ. Micro-RNA speciation in fetal, adult and Alzheimer’s disease hippocampus. Neuroreport 18: 297–300, 2007. doi:10.1097/WNR.0b013e3280148e8b.
    1. Lukiw WJ, Zhao Y, Cui JG. An NF-kappaB-sensitive micro RNA-146a-mediated inflammatory circuit in Alzheimer disease and in stressed human brain cells. J Biol Chem 283: 31315–31322, 2008. doi:10.1074/jbc.M805371200.
    1. Ma X, Becker Buscaglia LE, Barker JR, Li Y. MicroRNAs in NF-kappaB signaling. J Mol Cell Biol 3: 159–166, 2011. doi:10.1093/jmcb/mjr007.
    1. Ma X, Zhou J, Zhong Y, Jiang L, Mu P, Li Y, Singh N, Nagarkatti M, Nagarkatti P. Expression, regulation and function of microRNAs in multiple sclerosis. Int J Med Sci 11: 810–818, 2014. doi:10.7150/ijms.8647.
    1. Maciotta S, Meregalli M, Cassinelli L, Parolini D, Farini A, Fraro GD, Gandolfi F, Forcato M, Ferrari S, Gabellini D, Bicciato S, Cossu G, Torrente Y. Hmgb3 is regulated by microRNA-206 during muscle regeneration. PLoS One 7: e43464, 2012. doi:10.1371/journal.pone.0043464.
    1. Mathelier A, Fornes O, Arenillas DJ, Chen CY, Denay G, Lee J, Shi W, Shyr C, Tan G, Worsley-Hunt R, Zhang AW, Parcy F, Lenhard B, Sandelin A, Wasserman WW. JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles. Nucleic Acids Res 44, D1: D110–D115, 2016. doi:10.1093/nar/gkv1176.
    1. Mechtler P, Singhal R, Kichina JV, Bard JE, Buck MJ, Kandel ES. MicroRNA analysis suggests an additional level of feedback regulation in the NF-κB signaling cascade. Oncotarget 6: 17097–17106, 2015. doi:10.18632/oncotarget.4005.
    1. Meerson A, Cacheaux L, Goosens KA, Sapolsky RM, Soreq H, Kaufer D. Changes in brain MicroRNAs contribute to cholinergic stress reactions. J Mol Neurosci 40: 47–55, 2010. doi:10.1007/s12031-009-9252-1.
    1. Mildner A, Chapnik E, Manor O, Yona S, Kim KW, Aychek T, Varol D, Beck G, Itzhaki ZB, Feldmesser E, Amit I, Hornstein E, Jung S. Mononuclear phagocyte miRNome analysis identifies miR-142 as critical regulator of murine dendritic cell homeostasis. Blood 121: 1016–1027, 2013. doi:10.1182/blood-2012-07-445999.
    1. Milosevic J, Pandit K, Magister M, Rabinovich E, Ellwanger DC, Yu G, Vuga LJ, Weksler B, Benos PV, Gibson KF, McMillan M, Kahn M, Kaminski N. Profibrotic role of miR-154 in pulmonary fibrosis. Am J Respir Cell Mol Biol 47: 879–887, 2012. doi:10.1165/rcmb.2011-0377OC.
    1. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O’Briant KC, Allen A, Lin DW, Urban N, Drescher CW, Knudsen BS, Stirewalt DL, Gentleman R, Vessella RL, Nelson PS, Martin DB, Tewari M. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 105: 10513–10518, 2008. doi:10.1073/pnas.0804549105.
    1. Monici MC, Aguennouz M, Mazzeo A, Messina C, Vita G. Activation of nuclear factor-kappaB in inflammatory myopathies and Duchenne muscular dystrophy. Neurology 60: 993–997, 2003. doi:10.1212/01.WNL.0000049913.27181.51.
    1. Monk CE, Hutvagner G, Arthur JS. Regulation of miRNA transcription in macrophages in response to Candida albicans. PLoS One 5: e13669, 2010. doi:10.1371/journal.pone.0013669.
    1. Olivieri F, Lazzarini R, Recchioni R, Marcheselli F, Rippo MR, Di Nuzzo S, Albertini MC, Graciotti L, Babini L, Mariotti S, Spada G, Abbatecola AM, Antonicelli R, Franceschi C, Procopio AD. MiR-146a as marker of senescence-associated pro-inflammatory status in cells involved in vascular remodelling. Age (Dordr) 35: 1157–1172, 2013. doi:10.1007/s11357-012-9440-8.
    1. Palmieri O, Creanza TM, Bossa F, Latiano T, Corritore G, Palumbo O, Martino G, Biscaglia G, Scimeca D, Carella M, Ancona N, Andriulli A, Latiano A. Functional implications of microRNAs in Crohn’s disease revealed by integrating microRNA and messenger RNA expression profiling. Int J Mol Sci 18: E1580, 2017. doi:10.3390/ijms18071580.
    1. Panguluri SK, Bhatnagar S, Kumar A, McCarthy JJ, Srivastava AK, Cooper NG, Lundy RF, Kumar A. Genomic profiling of messenger RNAs and microRNAs reveals potential mechanisms of TWEAK-induced skeletal muscle wasting in mice. PLoS One 5: e8760, 2010. doi:10.1371/journal.pone.0008760.
    1. Pekow JR, Kwon JH. MicroRNAs in inflammatory bowel disease. Inflamm Bowel Dis 18: 187–193, 2012. doi:10.1002/ibd.21691.
    1. Piccoli MT, Gupta SK, Viereck J, Foinquinos A, Samolovac S, Kramer FL, Garg A, Remke J, Zimmer K, Batkai S, Thum T. Inhibition of the cardiac fibroblast-enriched lncRNA Meg3 Prevents cardiac fibrosis and diastolic dysfunction. Circ Res 121: 575–583, 2017. doi:10.1161/CIRCRESAHA.117.310624.
    1. Pilbrow AP, Cordeddu L, Cameron VA, Frampton CM, Troughton RW, Doughty RN, Whalley GA, Ellis CJ, Yandle TG, Richards AM, Foo RS. Circulating miR-323-3p and miR-652: candidate markers for the presence and progression of acute coronary syndromes. Int J Cardiol 176: 375–385, 2014. doi:10.1016/j.ijcard.2014.07.068.
    1. Plumb-Rudewiez N, Clotman F, Strick-Marchand H, Pierreux CE, Weiss MC, Rousseau GG, Lemaigre FP. Transcription factor HNF-6/OC-1 inhibits the stimulation of the HNF-3alpha/Foxa1 gene by TGF-beta in mouse liver. Hepatology 40: 1266–1274, 2004. doi:10.1002/hep.20459.
    1. Poncelet AC, Schnaper HW. Sp1 and Smad proteins cooperate to mediate transforming growth factor-beta 1-induced alpha 2(I) collagen expression in human glomerular mesangial cells. J Biol Chem 276: 6983–6992, 2001. doi:10.1074/jbc.M006442200.
    1. Quattrocelli M, Barefield DY, Warner JL, Vo AH, Hadhazy M, Earley JU, Demonbreun AR, McNally EM. Intermittent glucocorticoid steroid dosing enhances muscle repair without eliciting muscle atrophy. J Clin Invest 127: 2418–2432, 2017. doi:10.1172/JCI91445.
    1. Ray A, Prefontaine KE. Physical association and functional antagonism between the p65 subunit of transcription factor NF-kappa B and the glucocorticoid receptor. Proc Natl Acad Sci USA 91: 752–756, 1994. doi:10.1073/pnas.91.2.752.
    1. Recchiuti A, Krishnamoorthy S, Fredman G, Chiang N, Serhan CN. MicroRNAs in resolution of acute inflammation: identification of novel resolvin D1-miRNA circuits. FASEB J 25: 544–560, 2011. doi:10.1096/fj.10-169599.
    1. Rieu I, Powers SJ. Real-time quantitative RT-PCR: design, calculations, and statistics. Plant Cell 21: 1031–1033, 2009. doi:10.1105/tpc.109.066001.
    1. Roderburg C, Mollnow T, Bongaerts B, Elfimova N, Vargas Cardenas D, Berger K, Zimmermann H, Koch A, Vucur M, Luedde M, Hellerbrand C, Odenthal M, Trautwein C, Tacke F, Luedde T. Micro-RNA profiling in human serum reveals compartment-specific roles of miR-571 and miR-652 in liver cirrhosis. PLoS One 7: e32999, 2012. doi:10.1371/journal.pone.0032999.
    1. Sato T, Yamamoto T, Sehara-Fujisawa A. miR-195/497 induce postnatal quiescence of skeletal muscle stem cells. Nat Commun 5: 4597, 2014. doi:10.1038/ncomms5597.
    1. Seitz H, Royo H, Bortolin ML, Lin SP, Ferguson-Smith AC, Cavaillé J. A large imprinted microRNA gene cluster at the mouse Dlk1-Gtl2 domain. Genome Res 14: 1741–1748, 2004. doi:10.1101/gr.2743304.
    1. Sonkoly E, Pivarcsi A. microRNAs in inflammation. Int Rev Immunol 28: 535–561, 2009. doi:10.3109/08830180903208303.
    1. Stedman HH, Sweeney HL, Shrager JB, Maguire HC, Panettieri RA, Petrof B, Narusawa M, Leferovich JM, Sladky JT, Kelly AM. The mdx mouse diaphragm reproduces the degenerative changes of Duchenne muscular dystrophy. Nature 352: 536–539, 1991. doi:10.1038/352536a0.
    1. Su S, Zhao Q, He C, Huang D, Liu J, Chen F, Chen J, Liao JY, Cui X, Zeng Y, Yao H, Su F, Liu Q, Jiang S, Song E. miR-142-5p and miR-130a-3p are regulated by IL-4 and IL-13 and control profibrogenic macrophage program. Nat Commun 6: 8523, 2015. doi:10.1038/ncomms9523.
    1. Swingler TE, Wheeler G, Carmont V, Elliott HR, Barter MJ, Abu-Elmagd M, Donell ST, Boot-Handford RP, Hajihosseini MK, Münsterberg A, Dalmay T, Young DA, Clark IM. The expression and function of microRNAs in chondrogenesis and osteoarthritis. Arthritis Rheum 64: 1909–1919, 2012. doi:10.1002/art.34314.
    1. Taganov KD, Boldin MP, Chang KJ, Baltimore D. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA 103: 12481–12486, 2006. doi:10.1073/pnas.0605298103.
    1. Tao L, Bei Y, Chen P, Lei Z, Fu S, Zhang H, Xu J, Che L, Chen X, Sluijter JP, Das S, Cretoiu D, Xu B, Zhong J, Xiao J, Li X. Crucial Role of miR-433 in regulating cardiac fibrosis. Theranostics 6: 2068–2083, 2016. doi:10.7150/thno.15007.
    1. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3: H0034, 2002. doi:10.1186/gb-2002-3-7-research0034.
    1. Vasa-Nicotera M, Chen H, Tucci P, Yang AL, Saintigny G, Menghini R, Mahè C, Agostini M, Knight RA, Melino G, Federici M. miR-146a is modulated in human endothelial cell with aging. Atherosclerosis 217: 326–330, 2011. doi:10.1016/j.atherosclerosis.2011.03.034.
    1. Walden TB, Timmons JA, Keller P, Nedergaard J, Cannon B. Distinct expression of muscle-specific microRNAs (myomirs) in brown adipocytes. J Cell Physiol 218: 444–449, 2009. doi:10.1002/jcp.21621.
    1. Wang HW, Su SH, Wang YL, Chang ST, Liao KH, Lo HH, Chiu YL, Hsieh TH, Huang TS, Lin CS, Cheng SM, Cheng CC. MicroRNA-134 contributes to glucose-induced endothelial cell dysfunction and this effect can be reversed by far-infrared irradiation. PLoS One 11: e0147067, 2016. doi:10.1371/journal.pone.0147067.
    1. Wang J, Zhuang J, Iyer S, Lin X, Whitfield TW, Greven MC, Pierce BG, Dong X, Kundaje A, Cheng Y, Rando OJ, Birney E, Myers RM, Noble WS, Snyder M, Weng Z. Sequence features and chromatin structure around the genomic regions bound by 119 human transcription factors. Genome Res 22: 1798–1812, 2012. doi:10.1101/gr.139105.112.
    1. Wang WX, Huang Q, Hu Y, Stromberg AJ, Nelson PT. Patterns of microRNA expression in normal and early Alzheimer’s disease human temporal cortex: white matter versus gray matter. Acta Neuropathol 121: 193–205, 2011. doi:10.1007/s00401-010-0756-0.
    1. Wang Y, Liang J, Qin H, Ge Y, Du J, Lin J, Zhu X, Wang J, Xu J. Elevated expression of miR-142-3p is related to the pro-inflammatory function of monocyte-derived dendritic cells in SLE. Arthritis Res Ther 18: 263, 2016. doi:10.1186/s13075-016-1158-z.
    1. Wei L, MacDonald TM, Walker BR. Taking glucocorticoids by prescription is associated with subsequent cardiovascular disease. Ann Intern Med 141: 764–770, 2004. doi:10.7326/0003-4819-141-10-200411160-00007.
    1. White BD, Nguyen NK, Moon RT. Wnt signaling: it gets more humorous with age. Curr Biol 17: R923–R925, 2007. doi:10.1016/j.cub.2007.08.062.
    1. Yue X, Cao D, Lan F, Pan Q, Xia T, Yu H. MiR-301a is activated by the Wnt/β-catenin pathway and promotes glioma cell invasion by suppressing SEPT7. Neuro-oncol 18: 1288–1296, 2016. doi:10.1093/neuonc/now044.
    1. Zeng Y, Wagner EJ, Cullen BR. Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol Cell 9: 1327–1333, 2002. doi:10.1016/S1097-2765(02)00541-5.
    1. Zhang XR, Fu XJ, Zhu DS, Zhang CZ, Hou S, Li M, Yang XH. Salidroside-regulated lipid metabolism with down-regulation of miR-370 in type 2 diabetic mice. Eur J Pharmacol 779: 46–52, 2016. doi:10.1016/j.ejphar.2016.03.011.
    1. Zhang Z, Hou C, Meng F, Zhao X, Zhang Z, Huang G, Chen W, Fu M, Liao W. MiR-455-3p regulates early chondrogenic differentiation via inhibiting Runx2. FEBS Lett 589: 3671–3678, 2015. doi:10.1016/j.febslet.2015.09.032.
    1. Zhou L, Porter JD, Cheng G, Gong B, Hatala DA, Merriam AP, Zhou X, Rafael JA, Kaminski HJ. Temporal and spatial mRNA expression patterns of TGF-beta1, 2, 3 and TbetaRI, II, III in skeletal muscles of mdx mice. Neuromuscul Disord 16: 32–38, 2006. doi:10.1016/j.nmd.2005.09.009.
    1. Zhou M, Wang M, Wang X, Liu K, Wan Y, Li M, Liu L, Zhang C. Abnormal expression of MicroRNAs induced by chronic unpredictable mild stress in rat hippocampal tissues. Mol Neurobiol 55: 917–935, 2018. doi:10.1007/s12035-016-0365-6.

Source: PubMed

3
S'abonner