DETECT I & DETECT II: a study protocol for a prospective multicentre observational study to validate the UroMark assay for the detection of bladder cancer from urinary cells

Wei Shen Tan, Andrew Feber, Liqin Dong, Rachael Sarpong, Sheida Rezaee, Simon Rodney, Pramit Khetrapal, Patricia de Winter, Frelyn Ocampo, Rumana Jalil, Norman R Williams, Chris Brew-Graves, John D Kelly, Wei Shen Tan, Andrew Feber, Liqin Dong, Rachael Sarpong, Sheida Rezaee, Simon Rodney, Pramit Khetrapal, Patricia de Winter, Frelyn Ocampo, Rumana Jalil, Norman R Williams, Chris Brew-Graves, John D Kelly

Abstract

Background: Haematuria is a common finding in general practice which requires visual inspection of the bladder by cystoscopy as well as upper tract imaging. In addition, patients with non-muscle invasive bladder cancer (NMIBC) often require surveillance cystoscopy as often as three monthly depending on disease risk. However, cystoscopy is an invasive procedure which is uncomfortable, requires hospital attendance and is associated with a risk of urinary tract infection. We have developed the UroMark assay, which can detect 150 methylation specific alteration specific to bladder cancer using DNA from urinary sediment cells.

Methods: DETECT I and DETECT II are two multi-centre prospective observational studies designed to conduct a robust validation of the UroMark assay. DETECT I will recruit patients having diagnostic investigations for haematuria to determine the negative predictive value of the UroMark to rule out the presence of bladder cancer. DETECT II will recruit patients with new or recurrent bladder cancer to determine the sensitivity of the UroMark in detecting low, intermediate and high grade bladder cancer. NMIBC patients in DETECT II will be followed up with three monthly urine sample collection for 24 months while having surveillance cystoscopy. DETECT II will include a qualitative analysis of semi-structured interviews to explore patients' experience of being diagnosed with bladder cancer and having cystoscopy and a urinary test for bladder cancer surveillance. Results of the UroMark will be compared to cystoscopy findings and histopathological results in patients with bladder cancer.

Discussion: A sensitive and specific urinary biomarker will revolutionise the haematuria diagnostic pathway and surveillance strategies for NMIBC patients. None of the six approved US Food and Drug Administration urinary test are recommended as a standalone test. The UroMark assay is based on next generation sequencing technology which interrogates 150 loci and represents a step change compared to other biomarker panels. This enhances the sensitivity of the test and by using a random forest classifier approach, where the UroMark results are derived from a cut off generated from known outcomes of previous samples, addresses many shortcomings of previous assays.

Trial registration: Both trails are registered on clinicaltrials.gov.

Detect i: NCT02676180 (18th December 2015).

Detect ii: NCT02781428 (11th May 2016).

Keywords: Bladder cancer; Clinical trial; Diagnostic; Haematuria; Methylation; Next generation sequencing; Surveillance; Urinary assay; Urinary biomarker; Validation.

Conflict of interest statement

Ethics approval and consent to participate

DETECT I was approved by NHS Health Research Authority on the 18th May 2016 (IRAS project ID: 179,245, REC reference: 16/NW/0150, Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Study schedule for DETECT I
Fig. 2
Fig. 2
Study Schedule DETECT II

References

    1. Mohr DN, Offord KP, Owen RA. Melton LJ, 3rd: Asymptomatic microhematuria and urologic disease. A population-based study. JAMA. 1986;256(2):224–229. doi: 10.1001/jama.1986.03380020086028.
    1. Nielsen M, Qaseem A. Hematuria as a marker of occult urinary tract cancer: advice for high-value care from the American College of Physicians. Ann Intern Med. 2016;164(7):488–497. doi: 10.7326/M15-1496.
    1. Price SJ, Shephard EA, Stapley SA, Barraclough K, Hamilton WT. Non-visible versus visible haematuria and bladder cancer risk: a study of electronic records in primary care. Br J Gen Pract. 2014;64(626)
    1. Khadra M, Pickard R, Charlton M, Powell P, Neal D. A prospective analysis of 1,930 patients with hematuria to evaluate current diagnostic practice. J Urol. 2000;163(2):524–527. doi: 10.1016/S0022-5347(05)67916-5.
    1. Burke DM, Shackley DC, O'Reilly PH. The community-based morbidity of flexible cystoscopy. BJU Int. 2002;89(4):347–349. doi: 10.1046/j.1464-4096.2001.01899.x.
    1. Sangar VK, Ragavan N, Matanhelia SS, Watson MW, Blades RA. The economic consequences of prostate and bladder cancer in the UK. BJU Int. 2005;95(1):59–63. doi: 10.1111/j.1464-410X.2005.05249.x.
    1. Sylvester RJ, van der Meijden AP, Oosterlinck W, Witjes JA, Bouffioux C, Denis L, Newling DW, Kurth K: Predicting recurrence and progression in individual patients with stage ta T1 bladder cancer using EORTC risk tables: a combined analysis of 2596 patients from seven EORTC trials. Eur Urol 2006, 49(3):466–477.
    1. Rodgers M, Nixon J, Hempel S, Aho T, Kelly J, Neal D, Duffy S, Ritchie G, Kleijnen J, Westwood M. Diagnostic tests and algorithms used in the investigation of haematuria: systematic reviews and economic evaluation. Health Technol Assess. 2006;10(18):xi–259. doi: 10.3310/hta10180.
    1. Mowatt G, N'Dow J, Vale L, Nabi G, Boachie C, Cook JA, Fraser C, Griffiths TR. Photodynamic diagnosis of bladder cancer compared with white light cystoscopy: systematic review and meta-analysis. Int J Technol Assess Health Care. 2011;27(1):3–10. doi: 10.1017/S0266462310001364.
    1. Chou R, Gore JL, Buckley D, Fu R, Gustafson K, Griffin JC, Grusing S, Selph S. Urinary biomarkers for diagnosis of bladder cancer: a systematic review and meta-analysis. Ann Intern Med. 2015;163(12):922–931. doi: 10.7326/M15-0997.
    1. Kandimalla R, Masius R, Beukers W, Bangma CH, Orntoft TF, Dyrskjot L, van Leeuwen N, Lingsma H, van Tilborg AA, Zwarthoff EC. A 3-plex methylation assay combined with the FGFR3 mutation assay sensitively detects recurrent bladder cancer in voided urine. Clin Cancer Res. 2013;19(17):4760–9. doi: 10.1158/1078-0432.CCR-12-3276.
    1. Kelly JD, Dudderidge TJ, Wollenschlaeger A, Okoturo O, Burling K, Tulloch F, Halsall I, Prevost T, Prevost AT, Vasconcelos JC, et al. Bladder cancer diagnosis and identification of clinically significant disease by combined urinary detection of Mcm5 and nuclear matrix protein 22. PLoS One. 2012;7(7):e40305. doi: 10.1371/journal.pone.0040305.
    1. Feber A, Dhami P, Dong L, de Winter P, Tan WS, Martínez-Fernández M, Paul DS, Hynes-Allen A, Rezaee S, Gurung P. UroMark—a urinary biomarker assay for the detection of bladder cancer. Clin Epigenetics. 2017;9(1):8. doi: 10.1186/s13148-016-0303-5.
    1. Paul DS, Guilhamon P, Karpathakis A, Butcher LM, Thirlwell C, Feber A, Beck S. Assessment of RainDrop BS-seq as a method for large-scale, targeted bisulfite sequencing. Epigenetics. 2014;9(5):678–84. doi: 10.4161/epi.28041.
    1. Guilhamon P, Eskandarpour M, Halai D, Wilson GA, Feber A, Teschendorff AE, Gomez V, Hergovich A, Tirabosco R, Fernanda Amary M, et al. Meta-analysis of IDH-mutant cancers identifies EBF1 as an interaction partner for TET2. Nat Commun. 2013;4:2166. doi: 10.1038/ncomms3166.
    1. Komori HK, LaMere SA, Torkamani A, Hart GT, Kotsopoulos S, Warner J, Samuels ML, Olson J, Head SR, Ordoukhanian P, et al. Application of microdroplet PCR for large-scale targeted bisulfite sequencing. Genome Res. 2011;21(10):1738–1745. doi: 10.1101/gr.116863.110.
    1. Tan WS, Rodney S, Lamb B, Feneley M, Kelly J. Management of non-muscle invasive bladder cancer: a comprehensive analysis of guidelines from the United States, Europe and Asia. Cancer Treat Rev. 2016;47:22–31. doi: 10.1016/j.ctrv.2016.05.002.
    1. Mowatt G, Zhu S, Kilonzo M, Boachie C, Fraser C, Griffiths TR, N'Dow J, Nabi G, Cook J, Vale L. Systematic review of the clinical effectiveness and cost-effectiveness of photodynamic diagnosis and urine biomarkers (FISH, ImmunoCyt, NMP22) and cytology for the detection and follow-up of bladder cancer. Health Technol Assess. 2010;14(4):1–331. doi: 10.3310/hta14040.
    1. Mbeutcha A, Lucca I, Mathieu R, Lotan Y, Shariat SF. Current status of urinary biomarkers for detection and surveillance of bladder cancer. Urol Clin N Am. 2016;43(1):47–62. doi: 10.1016/j.ucl.2015.08.005.
    1. Dahmcke CM, Steven KE, Larsen LK, Poulsen AL, Abdul-Al A, Dahl C, Guldberg P. A prospective blinded evaluation of urine-DNA testing for detection of urothelial bladder carcinoma in patients with gross hematuria. Eur Urol. 2016;70(6):916–9. doi: 10.1016/j.eururo.2016.06.035.
    1. Presti JC, Jr., Reuter VE, Galan T, Fair WR, Cordon-Cardo C: Molecular genetic alterations in superficial and locally advanced human bladder cancer. Cancer Res 1991, 51(19):5405–5409.
    1. Moorthy K, Mohamad MS. Random forest for gene selection and microarray data classification. Bioinformation. 2011;7(3):142–146. doi: 10.6026/97320630007142.
    1. Cancer Research UK. Bladder Cancer. [].
    1. Cancer Research UK. Bladder Cancer Incidence Statistics 2016. .
    1. Vriesema JL, Poucki MH, Kiemeney LA, Witjes JA. Patient opinion of urinary tests versus flexible urethrocystoscopy in follow-up examination for superficial bladder cancer: a utility analysis. Urology. 2000;56(5):793–797. doi: 10.1016/S0090-4295(00)00777-9.
    1. Yossepowitch O, Herr HW, Donat SM. Use of urinary biomarkers for bladder cancer surveillance: patient perspectives. J Urol. 2007;177(4):1277–1282. doi: 10.1016/j.juro.2006.11.066.

Source: PubMed

3
S'abonner