The glucagon-like peptide 1 analogue Exendin-4 attenuates the nicotine-induced locomotor stimulation, accumbal dopamine release, conditioned place preference as well as the expression of locomotor sensitization in mice

Emil Egecioglu, Jörgen A Engel, Elisabet Jerlhag, Emil Egecioglu, Jörgen A Engel, Elisabet Jerlhag

Abstract

The gastrointestinal peptide glucagon-like peptide 1 (GLP-1) is known to regulate consummatory behavior and is released in response to nutrient ingestion. Analogues of this peptide recently emerged as novel pharmacotherapies for treatment of type II diabetes since they reduce gastric emptying, glucagon secretion as well as enhance glucose-dependent insulin secretion. The findings that GLP-1 targets reward related areas including mesolimbic dopamine areas indicate that the physiological role of GLP-1 extends beyond food intake and glucose homeostasis control to include reward regulation. The present series of experiments was therefore designed to investigate the effects of the GLP-1 receptor agonist, Exendin-4 (Ex4), on established nicotine-induced effects on the mesolimbic dopamine system in mice. Specifically, we show that treatment with Ex4, at a dose with no effect per se, attenuate nicotine-induced locomotor stimulation, accumbal dopamine release as well as the expression of conditioned place preference in mice. In accordance, Ex4 also blocks nicotine-induced expression of locomotor sensitization in mice. Given that development of nicotine addiction largely depends on the effects of nicotine on the mesolimbic dopamine system these findings indicate that the GLP-1 receptor may be a potential target for the development of novel treatment strategies for nicotine cessations in humans.

Conflict of interest statement

Competing Interests: This study was financially supported by NovoNordisk. This does not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials.

Figures

Figure 1. A coronal mouse brain section…
Figure 1. A coronal mouse brain section showing probe placements (illustrated by vertical lines) in the nucleus of mice used in the present study.
The number given indicates millimeters anterior (+) from bregma.
Figure 2. Exendin-4 attenuates nicotine-induced locomotor stimulation,…
Figure 2. Exendin-4 attenuates nicotine-induced locomotor stimulation, accumbal dopamine release and conditioned place preference in mice.
(A) Nicotine-induced (0.5 mg/kg IP) locomotor stimulation was attenuated by a single injection of Ex4 (2.4 μg/kg IP) (n=8 in each group; **P<0.01 and ***P<0.001, one-way ANOVA followed by a Bonferroni post-hoc test). (B) First we demonstrated a significant effect of nicotine (0.5 mg/kg IP) to increase dopamine release in comparison to vehicle treatment at time intervals 40-180 minutes (**P<0.01, ***P<0.01, veh-nic compared to veh-veh treatment). Secondly we showed that pre-treatment with Ex4 (2.4 μg/kg IP) attenuated the nicotine-induced increase in dopamine release compared to vehicle pre-treatment at time interval 40-60 and 100-180 minutes (+<0.05, ++P<0.01, +++P<0.01, Ex4-nic compared to veh-nic treatment). There was no difference in response between the veh-veh and Ex4-nic groups at a dose of Ex4 that had no effect perse. Arrows represent time points of injection of Ex4, vehicle and nicotine. Data analyzed with a Two-way ANOVA followed by a Bonferroni post-hoc test (n=8 in each group) (C) The nicotine-induced (0.5 m/kg IP) condition place preference (CPP) was attenuated by an acute single IP injection of Ex4 (2.4 μg/kg IP) in mice (n=8 in each group, *P<0.05, unpaired t-test). All values represent mean ± SEM. Arrow shows time for injections.
Figure 3. Exendin-4 blocks the nicotine-induced locomotor…
Figure 3. Exendin-4 blocks the nicotine-induced locomotor sensitization in mice.
In the present experiment nicotine or vehicle for five days. 72 hours following this sub-chronic treatment Ex4 or vehicle was administered. Sub chronic nicotine treatment induced (0.5 mg/kg) a significant sensitization and this effect was attenuated by a single injection of Ex4 (2.4 μg/kg) (n=8; * ***P<0.001, two-way ANOVA followed by a Bonferroni post-hoc test). All values represent mean ± SEM.

References

    1. Duaso M, Duncan D (2012) Health impact of smoking and smoking cessation strategies: current evidence. Br J Community Nurs 17: 356-363. PubMed: .
    1. Larsson A, Engel JA (2004) Neurochemical and behavioral studies on ethanol and nicotine interactions. Neurosci Biobehav Rev 27: 713-720. doi:10.1016/j.neubiorev.2003.11.010. PubMed: .
    1. Volkow ND, Li TK (2004) Drug addiction: the neurobiology of behaviour gone awry. Nat Rev Neurosci 5: 963-970. doi:10.1038/nrn1539. PubMed: .
    1. Tupala E, Tiihonen J (2004) Dopamine and alcoholism: neurobiological basis of ethanol abuse. Prog Neuropsychopharmacol Biol Psychiatry 28: 1221-1247. doi:10.1016/j.pnpbp.2004.06.022. PubMed: .
    1. Morganstern I, Barson JR, Leibowitz SF (2011) Regulation of drug and palatable food overconsumption by similar peptide systems. Curr Drugs Abuse Rev 4: 163-173. doi:10.2174/1874473711104030163. PubMed: .
    1. Brubaker PL, Anini Y (2003) Direct and indirect mechanisms regulating secretion of glucagon-like peptide-1 and glucagon-like peptide-2. Can J Physiol Pharmacol 81: 1005-1012. doi:10.1139/y03-107. PubMed: .
    1. Novak U, Wilks A, Buell G, McEwen S (1987) Identical mRNA for preproglucagon in pancreas and gut. Eur J Biochem 164: 553-558. doi:10.1111/j.1432-1033.1987.tb11162.x. PubMed: .
    1. Alvarez E, Roncero I, Chowen JA, Thorens B, Blázquez E (1996) Expression of the glucagon-like peptide-1 receptor gene in rat brain. J Neurochem 66: 920-927. PubMed: .
    1. Merchenthaler I, Lane M, Shughrue P (1999) Distribution of pre-pro-glucagon and glucagon-like peptide-1 receptor messenger RNAs in the rat central nervous system. J Comp Neurol 403: 261-280. doi:10.1002/(SICI)1096-9861(19990111)403:2. PubMed: .
    1. Holst JJ (2007) The physiology of glucagon-like peptide 1. Physiol Rev 87: 1409-1439. doi:10.1152/physrev.00034.2006. PubMed: .
    1. Baggio LL, Drucker DJ (2007) Biology of incretins: GLP-1 and GIP. Gastroenterology 132: 2131-2157. doi:10.1053/j.gastro.2007.03.054. PubMed: .
    1. Kreymann B, Williams G, Ghatei MA, Bloom SR (1987) Glucagon-like peptide-1 7-36: a physiological incretin in man. Lancet 2: 1300-1304. PubMed: .
    1. Turton MD, O'Shea D, Gunn I, Beak SA, Edwards CM et al. (1996) A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 379: 69-72. doi:10.1038/379069a0. PubMed: .
    1. Tang-Christensen M, Larsen PJ, Göke R, Fink-Jensen A, Jessop DS et al. (1996) Central administration of GLP-1-(7-36) amide inhibits food and water intake in rats. Am J Physiol 271: R848-R856. PubMed: .
    1. McMahon LR, Wellman PJ (1998) PVN infusion of GLP-1-(7-36) amide suppresses feeding but does not induce aversion or alter locomotion in rats. Am J Physiol 274: R23-R29. PubMed: .
    1. Hayes MR, Bradley L, Grill HJ (2009) Endogenous hindbrain glucagon-like peptide-1 receptor activation contributes to the control of food intake by mediating gastric satiation signaling. Endocrinology 150: 2654-2659. doi:10.1210/en.2008-1479. PubMed: .
    1. Alhadeff AL, Rupprecht LE, Hayes MR (2012) GLP-1 neurons in the nucleus of the solitary tract project directly to the ventral tegmental area and nucleus accumbens to control for food intake. Endocrinology 153: 647-658. doi:10.1210/en.2011-1443. PubMed: .
    1. Egecioglu E, Steensland P, Fredriksson I, Feltmann K, Engel JA et al. (2012) The glucagon-like peptide 1 analogue Exendin-4 attenuates alcohol mediated behaviors in rodents. Psychoneuroendocrinology, 38: 1259–70. doi:10.1016/j.psyneuen.2012.11.009. PubMed: .
    1. Egecioglu E, Engel JA, Jerlhag E (2013) The glucagon-like Peptide 1 analogue, exendin-4, attenuates the rewarding properties of psychostimulant drugs in mice. PLOS ONE 8: e69010. doi:10.1371/journal.pone.0069010. PubMed: .
    1. Jerlhag E, Engel JA (2011) Ghrelin receptor antagonism attenuates nicotine-induced locomotor stimulation, accumbal dopamine release and conditioned place preference in mice. Drug Alcohol Depend 117: 126-131. doi:10.1016/j.drugalcdep.2011.01.010. PubMed: .
    1. Thorens B, Porret A, Bühler L, Deng SP, Morel P et al. (1993) Cloning and functional expression of the human islet GLP-1 receptor. Demonstration that exendin-4 is an agonist and exendin-(9-39) an antagonist of the receptor. Diabetes 42: 1678-1682. doi:10.2337/diabetes.42.11.1678. PubMed: .
    1. Göke R, Larsen PJ, Mikkelsen JD, Sheikh SP (1995) Distribution of GLP-1 binding sites in the rat brain: evidence that exendin-4 is a ligand of brain GLP-1 binding sites. Eur J Neurosci 7: 2294-2300. doi:10.1111/j.1460-9568.1995.tb00650.x. PubMed: .
    1. Jerlhag E, Egecioglu E, Dickson SL, Andersson M, Svensson L et al. (2006) Ghrelin stimulates locomotor activity and accumbal dopamine-overflow via central cholinergic systems in mice: implications for its involvement in brain reward. Addict Biol 11: 45-54. doi:10.1111/j.1369-1600.2006.00002.x. PubMed: .
    1. Franklin KBJ, Paxinos G (1996) The Mouse Brain in Stereotaxic Coordinates. New York: Academic Press.
    1. Jerlhag E (2008) Systemic administration of ghrelin induces conditioned place preference and stimulates accumbal dopamine. Addict Biol 13: 358-363. doi:10.1111/j.1369-1600.2008.00125.x. PubMed: .
    1. Sanchis-Segura C, Spanagel R (2006) Behavioural assessment of drug reinforcement and addictive features in rodents: an overview. Addict Biol 11: 2-38. doi:10.1111/j.1369-1600.2006.00012.x. PubMed: .
    1. Segal DS, Mandell AJ (1974) Long-term administration of d-amphetamine: progressive augmentation of motor activity and stereotypy. Pharmacol Biochem Behav 2: 249-255. doi:10.1016/0091-3057(74)90060-4. PubMed: .
    1. Clifford PS, Rodriguez J, Schul D, Hughes S, Kniffin T et al. (2011) Attenuation of cocaine-induced locomotor sensitization in rats sustaining genetic or pharmacologic antagonism of ghrelin receptors. Addict Biol 17(6): 956-963. PubMed: .
    1. Robinson TE, Berridge KC (1993) The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Brain. Res Rev 18: 247-291. doi:10.1016/0165-0173(93)90013-P.
    1. Rinaman L (2010) Ascending projections from the caudal visceral nucleus of the solitary tract to brain regions involved in food intake and energy expenditure. Brain Res 1350: 18-34. doi:10.1016/j.brainres.2010.03.059. PubMed: .
    1. Engel JA, Fahlke C, Hulthe P, Hård E, Johannessen K et al. (1988) Biochemical and behavioral evidence for an interaction between ethanol and calcium channel antagonists. J Neural Transm 74: 181-193. doi:10.1007/BF01244784. PubMed: .
    1. Dickson SL, Shirazi RH, Hansson C, Bergquist F, Nissbrandt H et al. (2012) The glucagon-like peptide 1 (GLP-1) analogue, exendin-4, decreases the rewarding value of food: a new role for mesolimbic GLP-1 receptors. J Neurosci 32: 4812-4820. doi:10.1523/JNEUROSCI.6326-11.2012. PubMed: .
    1. Dossat AM, Lilly N, Kay K, Williams DL (2011) Glucagon-like peptide 1 receptors in nucleus accumbens affect food intake. J Neurosci 31: 14453-14457. doi:10.1523/JNEUROSCI.3262-11.2011. PubMed: .
    1. Shirazi RH, Dickson SL, Skibicka KP (2013) Gut peptide GLP-1 and its analogue, Exendin-4, decrease alcohol intake and reward. PLOS ONE 8: e61965. doi:10.1371/journal.pone.0061965. PubMed: .
    1. Sandoval DA, Bagnol D, Woods SC, D'Alessio DA, Seeley RJ (2008) Arcuate glucagon-like peptide 1 receptors regulate glucose homeostasis but not food intake. Diabetes 57: 2046-2054. doi:10.2337/db07-1824. PubMed: .
    1. Kastin AJ, Akerstrom V (2003) Entry of exendin-4 into brain is rapid but may be limited at high doses. Int J Obes Relat Metab Disord 27: 313-318. doi:10.1038/sj.ijo.0802206. PubMed: .
    1. Rüttimann EB, Arnold M, Hillebrand JJ, Geary N, Langhans W (2009) Intrameal hepatic portal and intraperitoneal infusions of glucagon-like peptide-1 reduce spontaneous meal size in the rat via different mechanisms. Endocrinology 150: 1174-1181. PubMed: .
    1. Malendowicz LK, Nussdorfer GG, Nowak KW, Ziolkowska A, Tortorella C et al. (2003) Exendin-4, a GLP-1 receptor agonist, stimulates pituitary-adrenocortical axis in the rat: Investigations into the mechanism(s) underlying Ex4 effect. Int J Mol Med 12: 237-241. PubMed: .
    1. Sonne DP, Engstrøm T, Treiman M (2008) Protective effects of GLP-1 analogues exendin-4 and GLP-1(9-36) amide against ischemia-reperfusion injury in rat heart. Regul Pept 146: 243-249. doi:10.1016/j.regpep.2007.10.001. PubMed: .
    1. Barrera JG, D'Alessio DA, Drucker DJ, Woods SC, Seeley RJ (2009) Differences in the central anorectic effects of glucagon-like peptide-1 and exendin-4 in rats. Diabetes 58: 2820-2827. doi:10.2337/db09-0281. PubMed: .
    1. Erreger K, Davis AR, Poe AM, Greig NH, Stanwood GD et al. (2012) Exendin-4 decreases amphetamine-induced locomotor activity. Physiol Behav 106: 574-578. doi:10.1016/j.physbeh.2012.03.014. PubMed: .
    1. Graham DL, Erreger K, Galli A, Stanwood GD (2012) GLP-1 analog attenuates cocaine reward. Mol Psychiatry, 18: 961–2. doi:10.1038/mp.2012.141. PubMed: .
    1. Gutniak M, Orskov C, Holst JJ, Ahrén B, Efendic S (1992) Antidiabetogenic effect of glucagon-like peptide-1 (7-36)amide in normal subjects and patients with diabetes mellitus. N Engl J Med 326: 1316-1322. doi:10.1056/NEJM199205143262003. PubMed: .
    1. Matsuyama T, Komatsu R, Namba M, Watanabe N, Itoh H et al. (1988) Glucagon-like peptide-1 (7-36 amide): a potent glucagonostatic and insulinotropic hormone. Diabetes Res Clin Pract 5: 281-284. doi:10.1016/S0168-8227(88)80063-9. PubMed: .
    1. Schirra J, Kuwert P, Wank U, Leicht P, Arnold R et al. (1997) Differential effects of subcutaneous GLP-1 on gastric emptying, antroduodenal motility, and pancreatic function in men. Proc Assoc Am Physicians 109: 84-97. PubMed: .
    1. Holst JJ, Vilsbøll T, Deacon CF (2009) The incretin system and its role in type 2 diabetes mellitus. Mol Cell Endocrinol 297: 127-136. doi:10.1016/j.mce.2008.08.012. PubMed: .
    1. Kanoski SE, Rupprecht LE, Fortin SM, De Jonghe BC, Hayes MR (2012) The role of nausea in food intake and body weight suppression by peripheral GLP-1 receptor agonists, exendin-4 and liraglutide. Neuropharmacology 62: 1916-1927. doi:10.1016/j.neuropharm.2011.12.022. PubMed: .
    1. Cagniard B, Murphy NP (2012) Affective taste responses in the presence of reward- and aversion-conditioned stimuli and their relationship to psychomotor sensitization and place conditioning. Behav Brain Res 236: 289-294. PubMed: .
    1. Neugebauer NM, Henehan RM, Hales CA, Picciotto MR (2011) Mice lacking the galanin gene show decreased sensitivity to nicotine conditioned place preference. Pharmacol Biochem Behav 98: 87-93. doi:10.1016/j.pbb.2010.12.015. PubMed: .
    1. von der Goltz C, Koopmann A, Dinter C, Richter A, Rockenbach C et al. (2010) Orexin and leptin are associated with nicotine craving: a link between smoking, appetite and reward. Psychoneuroendocrinology 35: 570-577. doi:10.1016/j.psyneuen.2009.09.005. PubMed: .
    1. Rasmussen K, Czachura JF, Kallman MJ, Helton DR (1996) The CCK-B antagonist LY288513 blocks the effects of nicotine withdrawal on auditory startle. Neuroreport 7: 1050-1052. doi:10.1097/00001756-199604100-00019. PubMed: .

Source: PubMed

3
S'abonner