The role of host genetics in the immune response to SARS-CoV-2 and COVID-19 susceptibility and severity

Inna G Ovsyannikova, Iana H Haralambieva, Stephen N Crooke, Gregory A Poland, Richard B Kennedy, Inna G Ovsyannikova, Iana H Haralambieva, Stephen N Crooke, Gregory A Poland, Richard B Kennedy

Abstract

This article provides a review of studies evaluating the role of host (and viral) genetics (including variation in HLA genes) in the immune response to coronaviruses, as well as the clinical outcome of coronavirus-mediated disease. The initial sections focus on seasonal coronaviruses, SARS-CoV, and MERS-CoV. We then examine the state of the knowledge regarding genetic polymorphisms and SARS-CoV-2 and COVID-19. The article concludes by discussing research areas with current knowledge gaps and proposes several avenues for future scientific exploration in order to develop new insights into the immunology of SARS-CoV-2.

Keywords: COVID-19; GWAS; HLA; SARS; SARS-CoV-2; alleles; coronavirus; genes; genetic variation; genome-wide association study; immunogenetics; polymorphisms; severe acute respiratory syndrome; single nucleotide; systems biology; vaccine.

Conflict of interest statement

Dr Poland is the chair of a Safety Evaluation Committee for novel investigational vaccine trials being conducted by Merck Research Laboratories. Dr Poland offers consultative advice on vaccine development to Merck & Co. Inc, Avianax, Adjuvance, Valneva, Medicago, Sanofi Pasteur, GlaxoSmithKline, and Emergent Biosolutions. Drs. Poland and Ovsyannikova hold three patents related to measles and vaccinia peptide research. Dr Kennedy holds a patent on vaccinia peptide research. Dr Kennedy has received funding from Merck Research Laboratories to study waning immunity to measles and mumps after immunization with the MMR‐II® vaccine. Drs. Poland, Kennedy, and Ovsyannikova have received grant funding from ICW Ventures for preclinical studies on a peptide‐based COVID‐19 vaccine. All other authors declare no competing financial interests. This research has been reviewed by the Mayo Clinic Conflict of Interest Review Board and was conducted in compliance with Mayo Clinic Conflict of Interest policies.

© 2020 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

Figures

FIGURE 1
FIGURE 1
The impact of host genetics and viral variation on SARS‐CoV‐2 infection and COVID‐19 severity. Individuals in the population harbor single nucleotide polymorphisms (SNPs) across a variety of genes (eg, ACE2, TMPRSS2, HLA, CD147, MIF, IFNG, IL6) that have been implicated in the pathology and immunology of SARS‐CoV‐2 and other pathogenic coronaviruses. These and other genetic variants may modulate disease susceptibility, increase or decrease disease severity, alter the variety of symptoms developed, and affect the magnitude and/or quality of the immune responses against SARS‐CoV‐2. In addition to host genetic variation, genetic variants of SARS‐CoV‐2 (and other pathogenic coronaviruses) can exhibit differences in biological activity. Single amino acid mutations in the spike glycoprotein can modulate ACE2 binding or alter B cell epitopes to promote immune escape or render monoclonal antibodies ineffective, while mutations in non‐structural/accessory proteins can promote the development of resistance to antivirals, alter T cell epitopes, disrupt cell mediated immunity, and modulate host cellular interactions with viral particles

References

    1. Corman VM, Muth D, Niemeyer D, Drosten C. Hosts and sources of endemic human coronaviruses. Adv Virus Res. 2018;100:163‐188.
    1. Ogimi C, Kim YJ, Martin ET, Huh HJ, Chiu CH, Englund JA. What's new with the old coronaviruses? J Pediatric Infect Dis Soc. 2020;9(2):210‐217.
    1. Ogimi C, Greninger AL, Waghmare AA, et al. Prolonged shedding of human coronavirus in hematopoietic cell transplant recipients: risk factors and viral genome evolution. J Infect Dis. 2017;216(2):203‐209.
    1. de Wilde AH, Snijder EJ, Kikkert M, van Hemert MJ. Host factors in coronavirus replication. Curr Top Microbiol Immunol. 2018;419:1‐42.
    1. Drexler JF, Gloza‐Rausch F, Glende J, et al. Genomic characterization of severe acute respiratory syndrome‐related coronavirus in European bats and classification of coronaviruses based on partial RNA‐dependent RNA polymerase gene sequences. J Virol. 2010;84(21):11336‐11349.
    1. Anthony SJ, Gilardi K, Menachery VD, et al. Further evidence for bats as the evolutionary source of middle east respiratory syndrome coronavirus. mBio. 2017;8(2):e00373‐17.
    1. Ahmed SF, Quadeer AA, McKay MR. Preliminary identification of potential vaccine targets for the COVID‐19 coronavirus (SARS‐CoV‐2) based on SARS‐CoV Immunological studies. Viruses. 2020;12(3):254.
    1. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507‐513.
    1. Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus‐infected pneumonia in Wuhan, China. JAMA. 2020;323:1061‐1069.
    1. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497‐506.
    1. Novel Coronavirus Pneumonia Emergency Response Epidemiology T . The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID‐19) in China. Zhonghua Liu Xing Bing Xue Za Zhi. 2020;41(2):145‐151.
    1. CDC COVID‐19 Response Team . Severe outcomes among patients with coronavirus disease 2019 (COVID‐19) ‐ United States, February 12‐March 16, 2020. MMWR. 2020;69(12):343‐346.
    1. Han H, Yang L, Liu R, et al. Prominent changes in blood coagulation of patients with SARS‐CoV‐2 infection. Clin Chem Lab Med. 2020;58(7):1116‐1120.
    1. Kim IC, Kim JY, Kim HA, Han S. COVID‐19‐related myocarditis in a 21‐year‐old female patient. Eur Heart J. 2020;41(19):1859.
    1. Li YC, Bai WZ, Hashikawa T. The neuroinvasive potential of SARS‐CoV2 may play a role in the respiratory failure of COVID‐19 patients. J Med Virol. 2020;92(6):552‐555.
    1. Conde Cardona G, Quintana Pajaro LD, Quintero Marzola ID, Ramos Villegas Y, Moscote Salazar LR. Neurotropism of SARS‐CoV 2: mechanisms and manifestations. J Neurol Sci. 2020;412:116824.
    1. Ottaviano G, Carecchio M, Scarpa B, Marchese‐Ragona R. Olfactory and rhinological evaluations in SARS‐CoV‐2 patients complaining of olfactory loss. Rhinology. 2020. 10.4193/rhin20.136
    1. Baig AM. Neurological manifestations in COVID‐19 caused by SARS‐CoV‐2. CNS Neurosci Ther. 2020;26(5):499‐501.
    1. Xiao F, Tang M, Zheng X, Liu Y, Li X, Shan H. Evidence for Gastrointestinal Infection of SARS‐CoV‐2. Gastroenterology. 2020;158(6):1831‐1833.e1833.
    1. Liu R, Paxton WA, Choe S, et al. Homozygous defect in HIV‐1 coreceptor accounts for resistance of some multiply‐exposed individuals to HIV‐1 infection. Cell. 1996;86(3):367‐377.
    1. Dendrou CA, Petersen J, Rossjohn J, Fugger L. HLA variation and disease. Nat Rev Immunol. 2018;18(5):325‐339.
    1. Shen L, Wang C, Zhao J, et al. Delayed specific IgM antibody responses observed among COVID‐19 patients with severe progression. Emerg Microbes Infect. 2020;9(1):1096‐1101.
    1. Sun B, Feng Y, Mo X, et al. Kinetics of SARS‐CoV‐2 specific IgM and IgG responses in COVID‐19 patients. Emerg Microbes Infect. 2020;9(1):940‐948.
    1. Gralinski LE, Ferris MT, Aylor DL, et al. Genome wide identification of SARS‐CoV susceptibility loci using the collaborative cross. PLoS Genet. 2015;11(10):e1005504.
    1. Pyrc K, Berkhout B, van der Hoek L. The novel human coronaviruses NL63 and HKU1. J Virol. 2007;81(7):3051‐3057.
    1. Kahn JS. The widening scope of coronaviruses. Curr Opin Pediatr. 2006;18(1):42‐47.
    1. Berry M, Gamieldien J, Fielding BC. Identification of new respiratory viruses in the new millennium. Viruses. 2015;7(3):996‐1019.
    1. Ohtsuka N, Taguchi F. Mouse susceptibility to mouse hepatitis virus infection is linked to viral receptor genotype. J Virol. 1997;71(11):8860‐8863.
    1. Hirai A, Ohtsuka N, Ikeda T, et al. Role of mouse hepatitis virus (MHV) receptor murine CEACAM1 in the resistance of mice to MHV infection: studies of mice with chimeric mCEACAM1a and mCEACAM1b. J Virol. 2010;84(13):6654‐6666.
    1. Yeager CL, Ashmun RA, Williams RK, et al. Human aminopeptidase N is a receptor for human coronavirus 229E. Nature. 1992;357(6377):420‐422.
    1. Wu K, Li W, Peng G, Li F. Crystal structure of NL63 respiratory coronavirus receptor‐binding domain complexed with its human receptor. Proc Natl Acad Sci USA. 2009;106(47):19970‐19974.
    1. Hofmann H, Simmons G, Rennekamp AJ, et al. Highly conserved regions within the spike proteins of human coronaviruses 229E and NL63 determine recognition of their respective cellular receptors. J Virol. 2006;80(17):8639‐8652.
    1. von Brunn A, Ciesek S, von Brunn B, Carbajo‐Lozoya J. Genetic deficiency and polymorphisms of cyclophilin A reveal its essential role for Human Coronavirus 229E replication. Curr Opin Virol. 2015;14:56‐61.
    1. Luo C, Luo H, Zheng S, et al. Nucleocapsid protein of SARS coronavirus tightly binds to human cyclophilin A. Biochem Biophys Res Commun. 2004;321(3):557‐565.
    1. Neuman BW, Joseph JS, Saikatendu KS, et al. Proteomics analysis unravels the functional repertoire of coronavirus nonstructural protein 3. J Virol. 2008;82(11):5279‐5294.
    1. Li W, Moore MJ, Vasilieva N, et al. Angiotensin‐converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426(6965):450‐454.
    1. Li W, Sui J, Huang IC, et al. The S proteins of human coronavirus NL63 and severe acute respiratory syndrome coronavirus bind overlapping regions of ACE2. Virology. 2007;367(2):367‐374.
    1. Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270‐273.
    1. Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565‐574.
    1. Hoffmann M, Kleine‐Weber H, Schroeder S, et al. SARS‐CoV‐2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271‐280.
    1. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS‐CoV‐2 spike glycoprotein. Cell. 2020;181(2):281‐292.
    1. Chiu RW, Tang NL, Hui DS, et al. ACE2 gene polymorphisms do not affect outcome of severe acute respiratory syndrome. Clin Chem. 2004;50(9):1683‐1686.
    1. Itoyama S, Keicho N, Hijikata M, et al. Identification of an alternative 5'‐untranslated exon and new polymorphisms of angiotensin‐converting enzyme 2 gene: lack of association with SARS in the Vietnamese population. Am J Med Genet A. 2005;136(1):52‐57.
    1. Ansari MA, Marchi E, Ramamurthy N, et al. A gene locus that controls expression of ACE2 in virus infection. medRxiv. 2020. 10.1101/2020.04.26.20080408
    1. Glowacka I, Bertram S, Muller MA, et al. Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. J Virol. 2011;85(9):4122‐4134.
    1. Bertram S, Glowacka I, Muller MA, et al. Cleavage and activation of the severe acute respiratory syndrome coronavirus spike protein by human airway trypsin‐like protease. J Virol. 2011;85(24):13363‐13372.
    1. Chan VS, Chan KY, Chen Y, et al. Homozygous L‐SIGN (CLEC4M) plays a protective role in SARS coronavirus infection. Nat Genet. 2006;38(1):38‐46.
    1. Jeffers SA, Tusell SM, Gillim‐Ross L, et al. CD209L (L‐SIGN) is a receptor for severe acute respiratory syndrome coronavirus. Proc Natl Acad Sci USA. 2004;101(44):15748‐15753.
    1. Pohlmann S, Zhang J, Baribaud F, et al. Hepatitis C virus glycoproteins interact with DC‐SIGN and DC‐SIGNR. J Virol. 2003;77(7):4070‐4080.
    1. Lin G, Simmons G, Pohlmann S, et al. Differential N‐linked glycosylation of human immunodeficiency virus and Ebola virus envelope glycoproteins modulates interactions with DC‐SIGN and DC‐SIGNR. J Virol. 2003;77(2):1337‐1346.
    1. Pohlmann S, Soilleux EJ, Baribaud F, et al. DC‐SIGNR, a DC‐SIGN homologue expressed in endothelial cells, binds to human and simian immunodeficiency viruses and activates infection in trans. Proc Natl Acad Sci USA. 2001;98(5):2670‐2675.
    1. Marzi A, Gramberg T, Simmons G, et al. DC‐SIGN and DC‐SIGNR interact with the glycoprotein of Marburg virus and the S protein of severe acute respiratory syndrome coronavirus. J Virol. 2004;78(21):12090‐12095.
    1. Zhi L, Zhou G, Zhang H, et al. Lack of support for an association between CLEC4M homozygosity and protection against SARS coronavirus infection. Nat Genet. 2007;39(6):692‐694; author reply 694–696.
    1. Li H, Tang NL, Chan PK, et al. Polymorphisms in the C‐type lectin genes cluster in chromosome 19 and predisposition to severe acute respiratory syndrome coronavirus (SARS‐CoV) infection. J Med Genet. 2008;45(11):752‐758.
    1. Ip WK, Chan KH, Law HK, et al. Mannose‐binding lectin in severe acute respiratory syndrome coronavirus infection. J Infect Dis. 2005;191(10):1697‐1704.
    1. Yuan FF, Tanner J, Chan PK, et al. Influence of FcgammaRIIA and MBL polymorphisms on severe acute respiratory syndrome. Tissue Antigens. 2005;66(4):291‐296.
    1. Zhang H, Zhou G, Zhi L, et al. Association between mannose‐binding lectin gene polymorphisms and susceptibility to severe acute respiratory syndrome coronavirus infection. J Infect Dis. 2005;192(8):1355‐1361.
    1. Ruskamp JM, Hoekstra MO, Rovers MM, Schilder AG, Sanders EA. Mannose‐binding lectin and upper respiratory tract infections in children and adolescents: a review. Arch Otolaryngol Head Neck Surg. 2006;132(5):482‐486.
    1. Tang F, Liu W, Zhang F, et al. IL‐12 RB1 genetic variants contribute to human susceptibility to severe acute respiratory syndrome infection among Chinese. PLoS One. 2008;3(5):e2183.
    1. Chan KY, Xu MS, Ching JC, et al. CD209 (DC‐SIGN) ‐336A>G promoter polymorphism and severe acute respiratory syndrome in Hong Kong Chinese. Hum Immunol. 2010;71(7):702‐707.
    1. Chan KY, Ching JC, Xu MS, et al. Association of ICAM3 genetic variant with severe acute respiratory syndrome. J Infect Dis. 2007;196(2):271‐280.
    1. Chong WP, Ip WK, Tso GH, et al. The interferon gamma gene polymorphism +874 A/T is associated with severe acute respiratory syndrome. BMC Infect Dis. 2006;6:82.
    1. Ng MW, Zhou G, Chong WP, et al. The association of RANTES polymorphism with severe acute respiratory syndrome in Hong Kong and Beijing Chinese. BMC Infect Dis. 2007;7:50.
    1. Tu X, Chong WP, Zhai Y, et al. Functional polymorphisms of the CCL2 and MBL genes cumulatively increase susceptibility to severe acute respiratory syndrome coronavirus infection. J Infect. 2015;71(1):101‐109.
    1. Eisen DP. Mannose‐binding lectin deficiency and respiratory tract infection. J Innate Immun. 2010;2(2):114‐122.
    1. Lau YL, Peiris JS. Pathogenesis of severe acute respiratory syndrome. Curr Opin Immunol. 2005;17(4):404‐410.
    1. Eisen DP, Dean MM, Boermeester MA, et al. Low serum mannose‐binding lectin level increases the risk of death due to pneumococcal infection. Clin Infect Dis. 2008;47(4):510‐516.
    1. Roy S, Knox K, Segal S, et al. MBL genotype and risk of invasive pneumococcal disease: a case‐control study. Lancet. 2002;359(9317):1569‐1573.
    1. Areeshi MY, Mandal RK, Akhter N, et al. A meta‐analysis of MBL2 polymorphisms and tuberculosis risk. Sci Rep. 2016;6:35728.
    1. Faber J, Schuessler T, Finn A, et al. Age‐dependent association of human mannose‐binding lectin mutations with susceptibility to invasive meningococcal disease in childhood. Pediatr Infect Dis J. 2007;26(3):243‐246.
    1. Lau YL, Peiris JS. Association of cytokine and chemokine gene polymorphisms with severe acute respiratory syndrome. Hong Kong Med J. 2009;15(Suppl 2):43‐46.
    1. Smith CA, Tyrell DJ, Kulkarni UA, et al. Macrophage migration inhibitory factor enhances influenza‐associated mortality in mice. JCI Insight. 2019;4(13). e128034.
    1. Yende S, Angus DC, Kong L, et al. The influence of macrophage migration inhibitory factor gene polymorphisms on outcome from community‐acquired pneumonia. FASEB J. 2009;23(8):2403‐2411.
    1. Savva A, Brouwer MC, Roger T, et al. Functional polymorphisms of macrophage migration inhibitory factor as predictors of morbidity and mortality of pneumococcal meningitis. Proc Natl Acad Sci USA. 2016;113(13):3597‐3602.
    1. Lin M, Tseng HK, Trejaut JA, et al. Association of HLA class I with severe acute respiratory syndrome coronavirus infection. BMC Med Genet. 2003;4:9.
    1. Ng MH, Lau KM, Li L, et al. Association of human‐leukocyte‐antigen class I (B*0703) and class II (DRB1*0301) genotypes with susceptibility and resistance to the development of severe acute respiratory syndrome. J Infect Dis. 2004;190(3):515‐518.
    1. Chen YM, Liang SY, Shih YP, et al. Epidemiological and genetic correlates of severe acute respiratory syndrome coronavirus infection in the hospital with the highest nosocomial infection rate in Taiwan in 2003. J Clin Microbiol. 2006;44(2):359‐365.
    1. Nguyen A, David JK, Maden SK, et al. Human leukocyte antigen susceptibility map for SARS‐CoV‐2. J Virol. 2020;94(13), e00510–20.
    1. Ng MH, Cheng SH, Lau KM, et al. Immunogenetics in SARS: a case‐control study. Hong Kong Med J. 2010;16(5 Suppl 4):29‐33.
    1. Keicho N, Itoyama S, Kashiwase K, et al. Association of human leukocyte antigen class II alleles with severe acute respiratory syndrome in the Vietnamese population. Hum Immunol. 2009;70(7):527‐531.
    1. Wang SF, Chen KH, Chen M, et al. Human‐leukocyte antigen class I Cw 1502 and class II DR 0301 genotypes are associated with resistance to severe acute respiratory syndrome (SARS) infection. Viral Immunol. 2011;24(5):421‐426.
    1. Li X, Geng M, Peng Y, Meng L, Lu S. Molecular immune pathogenesis and diagnosis of COVID‐19. J Pharm Anal. 2020;10(2):102‐108.
    1. Yuan FF, Velickovic Z, Ashton LJ, et al. Influence of HLA gene polymorphisms on susceptibility and outcome post infection with the SARS‐CoV virus. Virol Sin. 2014;29(2):128‐130.
    1. Xiong P, Zeng X, Song MS, et al. Lack of association between HLA‐A, ‐B and ‐DRB1 alleles and the development of SARS: a cohort of 95 SARS‐recovered individuals in a population of Guangdong, southern China. Int J Immunogenet. 2008;35(1):69‐74.
    1. Widagdo W, Sooksawasdi Na Ayudhya S, Hundie GB, Haagmans BL. Host determinants of MERS‐CoV transmission and pathogenesis. Viruses. 2019;11(3):280.
    1. Widagdo W, Okba NMA, Li W, et al. Species‐specific colocalization of middle east respiratory syndrome coronavirus attachment and entry receptors. J Virol. 2019;93(16).e00107–19.
    1. van Doremalen N, Miazgowicz KL, Milne‐Price S, et al. Host species restriction of Middle East respiratory syndrome coronavirus through its receptor, dipeptidyl peptidase 4. J Virol. 2014;88(16):9220‐9232.
    1. Hajeer AH, Balkhy H, Johani S, Yousef MZ, Arabi Y. Association of human leukocyte antigen class II alleles with severe Middle East respiratory syndrome‐coronavirus infection. Ann Thorac Med. 2016;11(3):211‐213.
    1. Van Dyke AL, Cote ML, Wenzlaff AS, Land S, Schwartz AG. Cytokine SNPs: Comparison of allele frequencies by race and implications for future studies. Cytokine. 2009;46(2):236‐244.
    1. Maiers M, Gragert L, Klitz W. High‐resolution HLA alleles and haplotypes in the United States population. Hum Immunol. 2007;68(9):779‐788.
    1. Buhler S, Sanchez‐Mazas A. HLA DNA sequence variation among human populations: molecular signatures of demographic and selective events. PLoS One. 2011;6(2):e14643.
    1. de Magalhaes JP, Curado J, Church GM. Meta‐analysis of age‐related gene expression profiles identifies common signatures of aging. Bioinformatics. 2009;25(7):875‐881.
    1. Grath S, Parsch J. Sex‐biased gene expression. Annu Rev Genet. 2016;50:29‐44.
    1. Ellegren H, Parsch J. The evolution of sex‐biased genes and sex‐biased gene expression. Nat Rev Genet. 2007;8(9):689‐698.
    1. Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708‐1720.
    1. Conti P, Younes A. Coronavirus COV‐19/SARS‐CoV‐2 affects women less than men: clinical response to viral infection. J Biol Regul Homeost Agents. 2020;34(2). 10.23812/Editorial-Conti-3
    1. Gudbjartsson DF, Helgason A, Jonsson H, et al. Spread of SARS‐CoV‐2 in the icelandic population. N Engl J Med. 2020;382(24):2302‐2315.
    1. Zhao J, Yang Y, Huang H, et al. Relationship between the ABO blood group and the COVID‐19 susceptibility. medRxiv. 2020. 10.1101/2020.03.11.20031096
    1. Zietz M, Tatonetti NP. Testing the association between blood type and COVID‐19 infection, intubation, and death. medRxiv. 2020. 10.1101/2020.04.08.20058073
    1. Garg S, Kim L, Whitaker M, et al. Hospitalization rates and characteristics of patients hospitalized with laboratory‐confirmed coronavirus disease 2019 ‐ COVID‐NET, 14 States, March 1–30, 2020. MMWR. 2020;69(15):458‐464.
    1. Gold JAW, Wong KK, Szablewski CM, et al. Characteristics and clinical outcomes of adult patients hospitalized with COVID‐19 ‐ Georgia, March 2020. MMWR Morb Mortal Wkly Rep. 2020;69(18):545‐550.
    1. Zeng F, Dai C, Cai P, et al. A comparison study of SARS‐CoV‐2 IgG antibody between male and female COVID‐19 patients: a possible reason underlying different outcome between sex. J Med Virol. 2020. 10.1002/jmv.25989
    1. Benetti E, Tita R, Spiga O, et al. ACE2 variants underlie interindividual variability and susceptibility to COVID‐19 in Italian population. medRxiv. 2020. 10.1101/2020.04.03.20047977
    1. Stawiski EW, Diwanji D, Suryamohan K, et al. Human ACE2 receptor polymorphisms predict SARS‐CoV‐2 susceptibility. bioRxiv. 2020. 10.1101/2020.04.07.024752
    1. Li Q, Cao Z, Rahman P. Genetic variability of human angiotensin‐converting enzyme 2 (hACE2) among various ethnic populations. bioRxiv. 2020. 10.1101/2020.04.14.041434
    1. Pinto BG, Oliveira AE, Singh Y, et al. ACE2 expression is increased in the lungs of patients with comorbidities associated with severe COVID‐19. medRxiv. 2020. 10.1101/2020.03.21.20040261
    1. Cristiani L, Mancino E, Matera L, et al. Will children reveal their secret? The coronavirus dilemma. Eur Respir J. 2020;55(4):2000749.
    1. Xie X, Chen J, Wang X, Zhang F, Liu Y. Age‐ and gender‐related difference of ACE2 expression in rat lung. Life Sci. 2006;78(19):2166‐2171.
    1. Kuba K, Imai Y, Rao S, Jiang C, Penninger JM. Lessons from SARS: control of acute lung failure by the SARS receptor ACE2. J Mol Med. 2006;84(10):814‐820.
    1. Tukiainen T, Villani AC, Yen A, et al. Landscape of X chromosome inactivation across human tissues. Nature. 2017;550(7675):244‐248.
    1. Zhao Y, Zhao Z, Wang Y, Zhou Y, Ma Y, Zuo W. Single‐cell RNA expression profiling of ACE2, the putative receptor of Wuhan 2019‐nCov. bioRxiv. 2020.
    1. Asselta R, Paraboschi EM, Mantovani A, Duga S. ACE2 and TMPRSS2 variants and expression as candidates to sex and country differences in COVID‐19 severity in Italy. medRxiv. 2020. 10.1101/2020.03.30.20047878
    1. Cai G. Bulk and single‐cell transcriptomics identify tobacco‐use disparity in lung gene expression of ACE2, the receptor of 2019‐nCov. medRxiv. 2020. 10.1101/2020.02.05.20020107
    1. Gibson WT, Evans DM, An J, Jones SJ. ACE 2 coding variants: a potential X‐linked risk factor for COVID‐19 disease. bioRxiv. 2020. 10.1101/2020.04.05.026633
    1. Iyer SP, Ensor J, Anand K, et al. Higher mortality in men from COVID19 infection‐understanding the factors that drive the differences between the biological sexes. medRxiv. 2020. 10.1101/2020.04.19.20062174
    1. Gebhard C, Regitz‐Zagrosek V, Neuhauser HK, Morgan R, Klein SL. Impact of sex and gender on COVID‐19 outcomes in Europe. Biol Sex Differ. 2020;11(1):29.
    1. Russo R, Andolfo I, Lasorsa VA, Iolascon A, Capasso M. Genetic analysis of the novel SARS‐CoV‐2 host receptor TMPRSS2 in different populations. bioRxiv. 2020. 10.1101/2020.04.23.057190
    1. Warren RL, Birol I. HLA predictions from the bronchoalveolar lavage fluid samples of five patients at the early stage of the Wuhan seafood market COVID‐19 outbreak. arXiv. 2004.07108 [q‐]. 2020.
    1. Hyun‐Jung Lee C, Koohy H. In silico identification of vaccine targets for 2019‐nCoV. F1000Res. 2020;9:145.
    1. Campbell KM, Steiner G, Wells DK, Ribas A, Kalbasi A. Prediction of SARS‐CoV‐2 epitopes across 9360 HLA class I alleles. bioRxiv. 2020. 10.1101/2020.03.30.016931
    1. Ellinghaus D, Degenhardt F, Bujanda L, et al. The ABO blood group locus and a chromosome 3 gene cluster associate with SARS‐CoV‐2 respiratory failure in an Italian‐Spanish genome‐wide association analysis. medRxiv. 2020. 10.1101/2020.05.31.20114991
    1. Gubernatorova EO, Gorshkova EA, Polinova AI, Drutskaya MS. IL‐6: relevance for immunopathology of SARS‐CoV‐2. Cytokine Growth Factor Rev. 2020;6:13‐24.
    1. Kadkhoda K. COVID‐19: an immunopathological view. mSphere. 2020;5(2).e00344–20.
    1. Chen G, Wu D, Guo W, et al. Clinical and immunologic features in severe and moderate coronavirus disease 2019. J Clin Invest. 2020;130(5):2620‐2629.
    1. Hung IF, Lung KC, Tso EY, et al. Triple combination of interferon beta‐1b, lopinavir‐ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID‐19: an open‐label, randomised, phase 2 trial. Lancet. 2020;395(10238):1695‐1704.
    1. Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID‐19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020;46(5):846‐848.
    1. Herold T, Jurinovic V, Arnreich C, et al. Elevated levels of IL‐6 and CRP predict the need for mechanical ventilation in COVID‐19. J Allergy Clin Immunol. 2020S0091‐6749(20), 30685.
    1. Ulhaq ZS, Soraya GV. Interleukin‐6 as a potential biomarker of COVID‐19 progression. Med Mal Infect. 2020;50(4):382‐383.
    1. Ulhaq ZS, Soraya GV. Anti‐IL‐6 Receptor Antibody Treatment for Severe COVID‐19 and the Potential Implication of IL‐6 Gene Polymorphisms in Novel Coronavirus Pneumonia (May 2, 2020). SSRN: or 2020, 10.2139/ssrn.3592878.
    1. Kirtipal N, Bharadwaj S. Interleukin 6 polymorphisms as an indicator of COVID‐19 severity in humans. J Biomol Struct Dyn. 2020;1‐4. 10.1080/07391102.2020.1776640
    1. The COVID‐19 host genetics initiative. 2020.
    1. COVID‐19 Host Genetics Initiative . The COVID‐19 Host Genetics Initiative, a global initiative to elucidate the role of host genetic factors in susceptibility and severity of the SARS‐CoV‐2 virus pandemic. Eur J Hum Genet. 2020;28(6):715‐718.
    1. COVID human genetic effort. 2020.
    1. National Institute for Health Research . Genetics of susceptibility and mortality in critical care (GenOMICC). 2020.
    1. Sanjuan R, Domingo‐Calap P. Mechanisms of viral mutation. Cell Mol Life Sci. 2016;73(23):4433‐4448.
    1. Narasimhan VM, Rahbari R, Scally A, et al. Estimating the human mutation rate from autozygous segments reveals population differences in human mutational processes. Nat Commun. 2017;8(1):303.
    1. Karamitros T, Papadopoulou G, Bousali M, Mexias A, Tsiodras S, Mentis A. SARS‐CoV‐2 exhibits intra‐host genomic plasticity and low‐frequency polymorphic quasispecies. bioRxiv. 2020. 10.1101/2020.03.27.009480
    1. Karlsson EK, Kwiatkowski DP, Sabeti PC. Natural selection and infectious disease in human populations. Nat Rev Genet. 2014;15(6):379‐393.
    1. Forster P, Forster L, Renfrew C, Forster M. Phylogenetic network analysis of SARS‐CoV‐2 genomes. Proc Natl Acad Sci U S A. 2020;117(17):9241‐9243.
    1. The Nextstrain Team . Genomic epidemiology of novel coronavirus‐Global sampling. 2020.
    1. Hadfield J, Megill C, Bell SM, et al. Nextstrain: real‐time tracking of pathogen evolution. Bioinformatics. 2018;34(23):4121‐4123.
    1. Schleunes A. Relatively Stable SARS‐CoV‐2 Genome Is Good News for a Vaccine. The Scientist 2020.
    1. Genomics Research Technology . March 25, 2020.
    1. Korber B, Fischer W, Gnanakaran S, et al. Spike mutation pipeline reveals the emergence of a more transmissible form of SARS‐CoV‐2. bioRxiv. 2020. 10.1101/2020.04.29.069054
    1. Becerra‐Flores M, Cardozo T. SARS‐CoV‐2 viral spike G614 mutation exhibits higher case fatality rate. Int J Clin Pract. 2020. 10.1111/ijcp.13525
    1. Pachetti M, Marini B, Benedetti F, et al. Emerging SARS‐CoV‐2 mutation hot spots include a novel RNA‐dependent‐RNA polymerase variant. J Transl Med. 2020;18(1):179.
    1. Agostini ML, Andres EL, Sims AC, et al. Coronavirus susceptibility to the antiviral remdesivir (GS‐5734) is mediated by the viral polymerase and the proofreading exoribonuclease. mBio. 2018;9(2).e00221–18.
    1. Goldhill DH, Te Velthuis AJW, Fletcher RA, et al. The mechanism of resistance to favipiravir in influenza. Proc Natl Acad Sci USA. 2018;115(45):11613‐11618.
    1. Jia Y, Shen G, Zhang Y, et al. Analysis of the mutation dynamics of SARS‐CoV‐2 reveals the spread history and emergence of RBD mutant with lower ACE2 binding affinity. bioRxiv. 2020. 10.1101/2020.04.09.034942
    1. Ou J, Zhou Z, Dai R, et al. Emergence of RBD mutations in circulating SARS‐CoV‐2 strains enhancing the structural stability and human ACE2 receptor affinity of the spike protein. bioRxiv. 2020. 10.1101/2020.03.15.991844
    1. Yao H, Lu X, Chen Q, et al. Patient‐derived mutations impact pathogenicity of SARS‐CoV‐2. medRxiv. 2020. 10.1101/2020.04.14.20060160
    1. Aiewsakun P, Wongtrakoongate P, Thawornwattana Y, Hongeng S, Thitithanyanont A. SARS‐CoV‐2 genetic variations associated with COVID‐19 severity. medRxiv. 2020. 10.1101/2020.05.27.20114546
    1. National Institute of Allergy and Infectious Diseases . NIAID strategic plan for COVID‐19 research. April 22, 2020.
    1. Schafer A, Baric RS. Epigenetic landscape during coronavirus infection. Pathogens. 2017;6:1.
    1. Hussain M, Jabeen N, Raza F, et al. Structural variations in human ACE2 may influence its binding with SARS‐CoV‐2 spike protein. J Med Virol. 2020. 10.1002/jmv.25832
    1. Le Thanh T, Andreadakis Z, Kumar A, et al. The COVID‐19 vaccine development landscape. Nat Rev Drug Discov. 2020;19(5):305‐306.
    1. Lurie N, Saville M, Hatchett R, Halton J. Developing Covid‐19 vaccines at pandemic speed. N Engl J Med. 2020;382(21):1969‐1973.
    1. Wu Z, McGoogan JM. Characteristics of and Important lessons from the coronavirus disease 2019 (COVID‐19) outbreak in China: summary of a report of 72314 cases from the chinese center for disease control and prevention. JAMA. 2020;323(13):1239.
    1. Poland GA. Tortoises, hares, and vaccines: a cautionary note for SARS‐CoV‐2 vaccine development. Vaccine. 2020;38(27):4219‐4220.
    1. Ricke D, Malone RW. Medical countermeasures analysis of 2019‐nCoV and vaccine risks for antibody‐dependent enhancement (ADE) (2/27/2020). Preprint available at SSRN: or 10.2139/ssrn.3546070 In:2020.
    1. Tseng CT, Sbrana E, Iwata‐Yoshikawa N, et al. Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virus. PLoS One. 2012;7(4):e35421.
    1. Liu L, Wei Q, Lin Q, et al. Anti‐spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS‐CoV infection. JCI Insight. 2019;4(4).e123158
    1. Weingartl H, Czub M, Czub S, et al. Immunization with modified vaccinia virus Ankara‐based recombinant vaccine against severe acute respiratory syndrome is associated with enhanced hepatitis in ferrets. J Virol. 2004;78(22):12672‐12676.
    1. Graham BS. Rapid COVID‐19 vaccine development. Science. 2020;368(6494):945‐946.
    1. Ruckwardt TJ, Morabito KM, Graham BS. Immunological lessons from respiratory syncytial virus vaccine development. Immunity. 2019;51(3):429‐442.
    1. Jin JM, Bai P, He W, et al. Gender differences in patients with COVID‐19: Focus on severity and mortality. Front Public Health. 2020;8:152.
    1. McCoy J, Wambier CG, Vano‐Galvan S, et al. Racial variations in COVID‐19 deaths may be due to androgen receptor genetic variants associated with prostate cancer and androgenetic alopecia. Are anti‐androgens a potential treatment for COVID‐19? J Cosmet Dermatol. 2020;19(7):1542‐1543.
    1. Poland GA, Kennedy RB, McKinney BA, et al. Vaccinomics, adversomics, and the immune response network theory: individualized vaccinology in the 21st century. Semin Immunol. 2013;25(2):89‐103.

Source: PubMed

3
S'abonner