Application of deep learning technique to manage COVID-19 in routine clinical practice using CT images: Results of 10 convolutional neural networks

Ali Abbasian Ardakani, Alireza Rajabzadeh Kanafi, U Rajendra Acharya, Nazanin Khadem, Afshin Mohammadi, Ali Abbasian Ardakani, Alireza Rajabzadeh Kanafi, U Rajendra Acharya, Nazanin Khadem, Afshin Mohammadi

Abstract

Fast diagnostic methods can control and prevent the spread of pandemic diseases like coronavirus disease 2019 (COVID-19) and assist physicians to better manage patients in high workload conditions. Although a laboratory test is the current routine diagnostic tool, it is time-consuming, imposing a high cost and requiring a well-equipped laboratory for analysis. Computed tomography (CT) has thus far become a fast method to diagnose patients with COVID-19. However, the performance of radiologists in diagnosis of COVID-19 was moderate. Accordingly, additional investigations are needed to improve the performance in diagnosing COVID-19. In this study is suggested a rapid and valid method for COVID-19 diagnosis using an artificial intelligence technique based. 1020 CT slices from 108 patients with laboratory proven COVID-19 (the COVID-19 group) and 86 patients with other atypical and viral pneumonia diseases (the non-COVID-19 group) were included. Ten well-known convolutional neural networks were used to distinguish infection of COVID-19 from non-COVID-19 groups: AlexNet, VGG-16, VGG-19, SqueezeNet, GoogleNet, MobileNet-V2, ResNet-18, ResNet-50, ResNet-101, and Xception. Among all networks, the best performance was achieved by ResNet-101 and Xception. ResNet-101 could distinguish COVID-19 from non-COVID-19 cases with an AUC of 0.994 (sensitivity, 100%; specificity, 99.02%; accuracy, 99.51%). Xception achieved an AUC of 0.994 (sensitivity, 98.04%; specificity, 100%; accuracy, 99.02%). However, the performance of the radiologist was moderate with an AUC of 0.873 (sensitivity, 89.21%; specificity, 83.33%; accuracy, 86.27%). ResNet-101 can be considered as a high sensitivity model to characterize and diagnose COVID-19 infections, and can be used as an adjuvant tool in radiology departments.

Keywords: COVID-19; Computed tomography; Coronavirus infections; Deep learning; Lung diseases; Machine learning; Pneumonia.

Conflict of interest statement

Declaration of competing interest None.

Copyright © 2020 Elsevier Ltd. All rights reserved.

Figures

Fig. 1
Fig. 1
CT sample images of patients with pneumonia. (a): A 28-year-old male with confirmed COVID-19 pneumonia. The red arrows indicate ground-glass opacity in the right and left lower lobes. (b): A 33-year-old female patient with confirmed COVID-19 pneumonia. The red and yellow arrows indicate typical mixed ground-glass opacity-consolidation patterns in both lobes, and a ground-glass opacity pattern in the peripheral right upper lobe, respectively. (c): An 81-year-old female patient with H1N1 influenza. The red arrows indicate infection with mixed ground-glass opacity and consolidation pattern in both lobes (d): A 72-year-old male patient with atypical pneumonia. The red arrows indicate ground-glass opacity in the right middle lobe.
Fig. 2
Fig. 2
CT sample patch images of patients with COVID-19 (a) and other atypical and viral pneumonia diseases (b).
Fig. 3
Fig. 3
An overview of the ten pre-trained networks architecture used in this study. In each network, the convolution layers with the same color are in the same size. The straight arrows represent the direction of flow and computation. All convolution layers of the AlexNet, VGG-16 and VGG-19 networks are depicted. However, for the other networks, convolution layers of the most repetitive (core) part are depicted.
Fig. 4a
Fig. 4a
(a)ROC curves of individual ten networks and the radiologist on validating dataset.
Fig. 4b
Fig. 4b
(b)Radar plot of individual ten networks and the radiologist on validating dataset.
Fig. 5
Fig. 5
Accuracy (green line) and loss (red line) plot of ten convolutional neural network for training and validating datasets: (a), AlexNet; (b), VGG-16; (c), VGG-19; (d), SqueezeNet; (e), GoogleNet; (f), MobileNet-V2; (g), ResNet-18; (h), ResNet-50; (i), ResNet-101; (j), Xception.
Fig. 5
Fig. 5
Accuracy (green line) and loss (red line) plot of ten convolutional neural network for training and validating datasets: (a), AlexNet; (b), VGG-16; (c), VGG-19; (d), SqueezeNet; (e), GoogleNet; (f), MobileNet-V2; (g), ResNet-18; (h), ResNet-50; (i), ResNet-101; (j), Xception.

References

    1. Zhu N., Zhang D., Wang W., Li X., Yang B., Song J., Zhao X., Huang B., Shi W., Lu R., Niu P., Zhan F., Ma X., Wang D., Xu W., Wu G., Gao G.F., Tan W. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 2020;382:727–733.
    1. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., Cheng Z., Yu T., Xia J., Wei Y., Wu W., Xie X., Yin W., Li H., Liu M., Xiao Y., Gao H., Guo L., Xie J., Wang G., Jiang R., Gao Z., Jin Q., Wang J., Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506.
    1. World Health Organization (WHO) Novel Coronavirus. (2019-nCoV) Technical Guidance: Laboratory Guidance. Geneva: WHO. Available from:
    1. Kanne J.P., Little B.P., Chung J.H., Elicker B.M., Ketai L.H. Essentials for radiologists on COVID-19: an update—radiology scientific expert panel. Radiology. 2020 doi: 10.1148/radiol.2020200527. 200527.
    1. Z.Y. Zu, M.D. Jiang, P.P. Xu, W. Chen, Q.Q. Ni, G.M. Lu, L.J. Zhang, Coronavirus disease 2019 (COVID-19): a perspective from China, Radiology, 0 200490. doi: 10.1148/radiol.2020200490.
    1. Chung M., Bernheim A., Mei X., Zhang N., Huang M., Zeng X., Cui J., Xu W., Yang Y., Fayad Z.A., Jacobi A., Li K., Li S., Shan H. CT imaging features of 2019 novel coronavirus (2019-nCoV) Radiology. 2020;295:202–207.
    1. Koo H.J., Lim S., Choe J., Choi S.-H., Sung H., Do K.-H. Radiographic and CT features of viral pneumonia. Radiographics. 2018;38:719–739.
    1. Bai H.X., Hsieh B., Xiong Z., Halsey K., Choi J.W., Tran T.M.L., Pan I., Shi L.-B., Wang D.-C., Mei J., Jiang X.-L., Zeng Q.-H., Egglin T.K., Hu P.-F., Agarwal S., Xie F., Li S., Healey T., Atalay M.K., Liao W.-H. Performance of radiologists in differentiating COVID-19 from viral pneumonia on chest CT. Radiology. 2020 doi: 10.1148/radiol.2020200823. 200823.
    1. Nihashi T., Ishigaki T., Satake H., Ito S., Kaii O., Mori Y., Shimamoto K., Fukushima H., Suzuki K., Umakoshi H., Ohashi M., Kawaguchi F., Naganawa S. Monitoring of fatigue in radiologists during prolonged image interpretation using fNIRS. Jpn. J. Radiol. 2019;37:437–448.
    1. Taylor-Phillips S., Stinton C. Fatigue in radiology: a fertile area for future research. Br. J. Radiol. 2019;92 20190043.
    1. Lodwick G. Computer-aided diagnosis in radiology. A research plan. Invest. Radiol. 1965;1:72–80.
    1. Doi K. Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Comput. Med. Imag. Graph. 2007;31:198–211.
    1. Castellano G., Bonilha L., Li L.M., Cendes F. Texture analysis of medical images. Clin. Radiol. 2004;59:1061–1069.
    1. Than J.C.M., Saba L., Noor N.M., Rijal O.M., Kassim R.M., Yunus A., Suri H.S., Porcu M., Suri J.S. Lung disease stratification using amalgamation of Riesz and Gabor transforms in machine learning framework. Comput. Biol. Med. 2017;89:197–211.
    1. Gu Y., Lu X., Yang L., Zhang B., Yu D., Zhao Y., Gao L., Wu L., Zhou T. Automatic lung nodule detection using a 3D deep convolutional neural network combined with a multi-scale prediction strategy in chest CTs. Comput. Biol. Med. 2018;103:220–231.
    1. Zhang W., Wang X., Li X., Chen J. 3D skeletonization feature based computer-aided detection system for pulmonary nodules in CT datasets. Comput. Biol. Med. 2018;92:64–72.
    1. Sun L., Wang Z., Pu H., Yuan G., Guo L., Pu T., Peng Z. Spectral analysis for pulmonary nodule detection using the optimal fractional S-Transform. Comput. Biol. Med. 2020;119:103675.
    1. Sun W., Zheng B., Qian W. Automatic feature learning using multichannel ROI based on deep structured algorithms for computerized lung cancer diagnosis. Comput. Biol. Med. 2017;89:530–539.
    1. Barbosa E.M., Simpson S., Lee J.C., Tustison N., Gee J., Shou H. Multivariate modeling using quantitative CT metrics may improve accuracy of diagnosis of bronchiolitis obliterans syndrome after lung transplantation. Comput. Biol. Med. 2017;89:275–281.
    1. Pancaldi F., Sebastiani M., Cassone G., Luppi F., Cerri S., Della Casa G., Manfredi A. Analysis of pulmonary sounds for the diagnosis of interstitial lung diseases secondary to rheumatoid arthritis. Comput. Biol. Med. 2018;96:91–97.
    1. Horáček J., Koucký V., Hladík M. Novel approach to computerized breath detection in lung function diagnostics. Comput. Biol. Med. 2018;101:1–6.
    1. Krizhevsky A., Sutskever I., Hinton G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012:1097–1105.
    1. Simonyan K., Zisserman A. 2014. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv preprint arXiv:1409.1556.
    1. Iandola F.N., Han S., Moskewicz M.W., Ashraf K., Dally W.J., Keutzer K. 2016. SqueezeNet: AlexNet-Level Accuracy with 50x Fewer Parameters And< 0.5 MB Model Size. arXiv preprint arXiv:1602.07360.
    1. Szegedy C., Liu W., Jia Y., Sermanet P., Reed S., Anguelov D., Erhan D., Vanhoucke V., Rabinovich A. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015. Going deeper with convolutions; pp. 1–9.
    1. Sandler M., Howard A., Zhu M., Zhmoginov A., Chen L.-C. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018. Mobilenetv2: inverted residuals and linear bottlenecks; pp. 4510–4520.
    1. He K., Zhang X., Ren S., Sun J. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016. Deep residual learning for image recognition; pp. 770–778.
    1. Chollet F. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017. Xception: deep learning with depthwise separable convolutions; pp. 1251–1258.
    1. Van Erkel A.R., Pattynama P.M.T. Receiver operating characteristic (ROC) analysis: basic principles and applications in radiology. Eur. J. Radiol. 1998;27:88–94.
    1. L. Li, L. Qin, Z. Xu, Y. Yin, X. Wang, B. Kong, J. Bai, Y. Lu, Z. Fang, Q. Song, K. Cao, D. Liu, G. Wang, Q. Xu, X. Fang, S. Zhang, J. Xia, J. Xia, Artificial intelligence distinguishes COVID-19 from community acquired pneumonia on chest CT, Radiology, 0 200905. doi: 10.1148/radiol.2020200905.
    1. Zhang G., Jiang S., Yang Z., Gong L., Ma X., Zhou Z., Bao C., Liu Q. Automatic nodule detection for lung cancer in CT images: a review. Comput. Biol. Med. 2018;103:287–300.
    1. Cunha B.A. The atypical pneumonias: clinical diagnosis and importance. Clin. Microbiol. Infect. 2006;12:12–24.
    1. Long C., Xu H., Shen Q., Zhang X., Fan B., Wang C., Zeng B., Li Z., Li X., Li H. Diagnosis of the Coronavirus disease (COVID-19): rRT-PCR or CT? Eur. J. Radiol. 2020;126:108961.
    1. A. Bernheim, X. Mei, M. Huang, Y. Yang, Z.A. Fayad, N. Zhang, K. Diao, B. Lin, X. Zhu, K. Li, S. Li, H. Shan, A. Jacobi, M. Chung, Chest CT findings in coronavirus disease-19 (COVID-19): relationship to duration of infection, Radiology, 0 200463. doi: 10.1148/radiol.2020200463.
    1. Yang W., Cao Q., Qin L., Wang X., Cheng Z., Pan A., Dai J., Sun Q., Zhao F., Qu J., Yan F. Clinical characteristics and imaging manifestations of the 2019 novel coronavirus disease (COVID-19):A multi-center study in Wenzhou city, Zhejiang, China. J. Infect. 2020;80:388–393.
    1. X. Xie, Z. Zhong, W. Zhao, C. Zheng, F. Wang, J. Liu, Chest CT for typical 2019-nCoV pneumonia: relationship to negative RT-PCR testing, Radiology, 0 200343. doi: 10.1148/radiol.2020200343.
    1. T. Ai, Z. Yang, H. Hou, C. Zhan, C. Chen, W. Lv, Q. Tao, Z. Sun, L. Xia, Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases, Radiology, 0 200642. doi: 10.1148/radiol.2020200642.
    1. Huang P., Liu T., Huang L., Liu H., Lei M., Xu W., Hu X., Chen J., Liu B. Use of chest CT in combination with negative RT-PCR assay for the 2019 novel coronavirus but high clinical suspicion. Radiology. 2020;295:22–23.
    1. F.D.A Fact sheet for healthcare providers: CDC - 2019-nCoV real-time RT-PCR diagnostic panel.
    1. Bedford J., Enria D., Giesecke J., Heymann D.L., Ihekweazu C., Kobinger G., Lane H.C., Memish Z., Oh M.-d., Schuchat A. COVID-19: towards controlling of a pandemic. Lancet. 2020;395(10229):1015–1018. doi: 10.1016/S0140-6736(20)30673-5.

Source: PubMed

3
S'abonner