Choroidal Structural Changes Assessed with Swept-Source Optical Coherence Tomography after Cataract Surgery in Eyes with Diabetic Retinopathy

Huiping Yao, Sha Gao, Xiaoqing Liu, Yufeng Zhou, Yu Cheng, Xi Shen, Huiping Yao, Sha Gao, Xiaoqing Liu, Yufeng Zhou, Yu Cheng, Xi Shen

Abstract

Objective: To determine the influence of phacoemulsification on choroidal vasculature in patients with diabetic retinopathy (DR) undergoing cataract surgery using swept-source optical coherence tomography (SS-OCT).

Methods: The study was conducted in 23 eyes of 23 cataract patients with mild/moderate nonproliferative diabetic retinopathy (NPDR) without diabetic macular edema (DME) and 23 age-matched controls. Choroidal thickness (CT) and choroidal vascularity index (CVI) were measured at baseline and 1 week, 1 month, and 3 months after surgery.

Results: The baseline CVI in the DR group was significantly lower than that in the control group (P=0.001). CVI in DR patients after surgery significantly increased compared with preoperative values (all P < 0.001 for 1 week, 1 month, and 3 months after surgery). Postoperative increase of CVI and CT in the DR group was more than in the control group, and the difference was significant 1 month and 3 months after surgery (all P < 0.05).

Conclusion: Patients with mild/moderate NPDR have reduced CVI compared with nondiabetic patients at baseline; diabetic cataract surgery tended to induce more increase in CVI and CT as compared with nondiabetic patients. This trial is registered with NCT04499768.

Conflict of interest statement

The authors declare that they have no conflicts of interest.

Copyright © 2020 Huiping Yao et al.

Figures

Figure 1
Figure 1
The dark pixels (arrow head) represented the luminal or vascular area and the light pixels (arrow) were defined as stromal or interstitial area. (a) SS-OCT scan image. (b) Image was converted with the auto local threshold tool. (c) The dark pixels were selected using the threshold tool. (d) An overlay image of ROI of the binarized segment of the choroid on SS-OCT scan.
Figure 2
Figure 2
The choroidal vascularity index for patients with mild/moderate NPDR (DR) and nondiabetic patients (control) at the four visits (mean ± SEM). W1: 1 wk postop; M1: 1 mo postop; M3: 3 mo postop.
Figure 3
Figure 3
(a) Changes of CVI, (b) changes of foveal CT, (c) changes of parafoveal CT, and (d) changes of perifoveal CT for patients with mild/moderate NPDR (DR) and nondiabetic patients (control) at 1 week, 1 month, and 3 months postoperatively (mean ± SEM). W1: 1 wk postop; M1: 1 mo postop; M3: 3 mo postop. P < 0.05.
Figure 4
Figure 4
The choroidal thickness of fovea, parafovea, and perifovea for patients with mild/moderate NPDR (a) and nondiabetic patients (b) at four visits (mean ± SEM) W1: 1 wk postop; M1: 1 mo postop; M3: 3 mo postop. P < 0.05.

References

    1. Klein B. E. K., Klein R., Lee K. E. Diabetes, cardiovascular disease, selected cardiovascular disease risk factors, and the 5-year incidence of age-related cataract and progression of lens opacities: the Beaver dam eye study. American Journal of Ophthalmology. 1998;126(6):782–790. doi: 10.1016/s0002-9394(98)00280-3.
    1. Cunliffe I. A., Flanagan D. W., George N. D., Aggarwaal R. J., Moore A. T. Extracapsular cataract surgery with lens implantation in diabetics with and without proliferative retinopathy. British Journal of Ophthalmology. 1991;75(1):9–12. doi: 10.1136/bjo.75.1.9.
    1. Schatz H., Atienza D., McDonald H. R., Johnson R. N. Severe diabetic retinopathy after cataract surgery. American Journal of Ophthalmology. 1994;117(3):314–321. doi: 10.1016/s0002-9394(14)73138-1.
    1. Campos A., Campos E. J., Martins J., Ambrósio A. F., Silva R. Viewing the choroid: where we stand, challenges and contradictions in diabetic retinopathy and diabetic macular oedema. Acta Ophthalmologica. 2017;95(5):446–459. doi: 10.1111/aos.13210.
    1. Nickla D. L., Wallman J. The multifunctional choroid. Progress in Retinal and Eye Research. 2010;29(2):144–168. doi: 10.1016/j.preteyeres.2009.12.002.
    1. Hidayat A. A., Fine B. S. Diabetic choroidopathy. Ophthalmology. 1985;92(4):512–522. doi: 10.1016/s0161-6420(85)34013-7.
    1. Lutty G. A. Diabetic choroidopathy. Vision Research. 2017;139:161–167. doi: 10.1016/j.visres.2017.04.011.
    1. Pierru A., Carles M., Gastaud P., Baillif S. Measurement of subfoveal choroidal thickness after cataract surgery in enhanced depth imaging optical coherence tomography. Investigative Opthalmology & Visual Science. 2014;55(8):4967–4974. doi: 10.1167/iovs.14-14172.
    1. Shahzad R., Siddiqui M. A. R., Zafar S., Kausar F., Shahzad M. H. Choroidal thickness changes following cataract surgery using swept source optical coherence tomography. Canadian Journal of Ophthalmology. 2018;53(1):60–64. doi: 10.1016/j.jcjo.2017.06.019.
    1. Jiang H., Li Z., Sun R., Liu D., Liu N. Subfoveal choroidal and macular thickness changes after phacoemulsification using enhanced depth imaging optical coherence tomography. Ophthalmic Research. 2018;60(4):243–249. doi: 10.1159/000480240.
    1. Agrawal R., Gupta P., Tan K. A., Cheung C. M., Wong T. Y., Cheng C. Y. Choroidal vascularity index as a measure of vascular status of the choroid: measurements in healthy eyes from a population-based study. Scientific Reports. 2016;6 doi: 10.1038/srep21090.
    1. Agrawal R., Salman M., Tan K. A., et al. Choroidal vascularity index (CVI)--A novel optical coherence tomography parameter for monitoring patients with panuveitis? PLoS One. 2016;11 doi: 10.1371/journal.pone.0146344.
    1. Tan K.-A., Laude A., Yip V., Loo E., Wong E. P., Agrawal R. Choroidal vascularity index - a novel optical coherence tomography parameter for disease monitoring in diabetes mellitus? Acta Ophthalmologica. 2016;94(7):e612–e616. doi: 10.1111/aos.13044.
    1. Agrawal R., Ding J., Sen P., et al. Exploring choroidal angioarchitecture in health and disease using choroidal vascularity index. Progress in Retinal and Eye Research. 2020;77 doi: 10.1016/j.preteyeres.2020.100829.
    1. Iovino C., Pellegrini M., Bernabei F., et al. Choroidal vascularity index: an in-depth analysis of this novel optical coherence tomography parameter. Journal of Clinical Medicine. 2020;9 doi: 10.3390/jcm9020595.
    1. Endo H., Kase S., Ito Y., et al. Relationship between choroidal structure and duration of diabetes. Graefe’s Archive for Clinical and Experimental Ophthalmology. 2019;257(6):1133–1140. doi: 10.1007/s00417-019-04295-1.
    1. Miki A., Ikuno Y., Jo Y., Nishida K. Comparison of enhanced depth imaging and high-penetration optical coherence tomography for imaging deep optic nerve head and parapapillary structures. Clinical Ophthalmology. 2013;7:1995–2001. doi: 10.2147/opth.s50120.
    1. Park H.-Y. L., Shin H.-Y., Park C. K. Imaging the posterior segment of the eye using swept-source optical coherence tomography in myopic glaucoma eyes: comparison with enhanced-depth imaging. American Journal of Ophthalmology. 2014;157(3):550–557. doi: 10.1016/j.ajo.2013.11.008.
    1. Wilkinson C. P., Ferris F. L., Klein R. E., et al. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology. 2003;110(9):1677–1682. doi: 10.1016/s0161-6420(03)00475-5.
    1. Chen H., Wu Z., Chen Y., He M., Wang J. Short-term changes of choroidal vascular structures after phacoemulsification surgery. BMC Ophthalmology. 2018;18 doi: 10.1186/s12886-018-0749-7.
    1. Alpar J. J. Cataract extraction and diabetic retinopathy. American Intra-ocular Implant Society Journal. 1984;10(4):433–437. doi: 10.1016/s0146-2776(84)80042-7.
    1. Jaffe G. J., Burton T. C. Progression of nonproliferative diabetic retinopathy following cataract extraction. Archives of Ophthalmology. 1988;106(6):745–749. doi: 10.1001/archopht.1988.01060130815029.
    1. Hong T., Mitchell P., de Loryn T., Rochtchina E., Cugati S., Wang J. J. Development and progression of diabetic retinopathy 12 months after phacoemulsification cataract surgery. Ophthalmology. 2009;116(8):1510–1514. doi: 10.1016/j.ophtha.2009.03.003.
    1. Squirrell D., Bhola R., Bush J., Winder S., Talbot J. F. A prospective, case controlled study of the natural history of diabetic retinopathy and maculopathy after uncomplicated phacoemulsification cataract surgery in patients with type 2 diabetes. British Journal of Ophthalmology. 2002;86(5):565–571. doi: 10.1136/bjo.86.5.565.
    1. Koh L. H. L., Agrawal R., Khandelwal N., Sai Charan L., Chhablani J. Choroidal vascular changes in age-related macular degeneration. Acta Ophthalmologica. 2017;95(7):e597–e601. doi: 10.1111/aos.13399.
    1. Ng W. Y., Ting D. S. W., Agrawal R., et al. Choroidal structural changes in myopic choroidal neovascularization after treatment with antivascular endothelial growth factor over 1 year. Investigative Opthalmology & Visual Science. 2016;57(11):4933–4939. doi: 10.1167/iovs.16-20191.
    1. Bayhan S. A., Bayhan H. A., Muhafiz E., Kırboğa K., Gurdal C. Evaluation of choroidal thickness changes after phacoemulsification surgery. Clinical Ophthalmology. 2016;10:961–967. doi: 10.2147/opth.s94096.
    1. Ohsugi H., Ikuno Y., Ohara Z., et al. Changes in choroidal thickness after cataract surgery. Journal of Cataract & Refractive Surgery. 2014;40(2):184–191. doi: 10.1016/j.jcrs.2013.07.036.
    1. Yilmaz T., Karci A. A., Yilmaz I., et al. Long-Term changes in subfoveal choroidal thickness after cataract surgery. Medical Science Monitor. 2016;22:1566–1570.
    1. Brito P. N., Rosas V. M., Coentrão L. M., et al. Evaluation of visual acuity, macular status, and subfoveal choroidal thickness changes after cataract surgery in eyes with diabetic retinopathy. Retina. 2015;35(2):294–302. doi: 10.1097/iae.0000000000000298.
    1. Yip V. C.-H., Laude A., Tan K. A., Ding J., Wong E., Agrawal R. A longitudinal study of choroidal changes following cataract surgery in patients with diabetes. Diabetes and Vascular Disease Research. 2019;16(4):369–377. doi: 10.1177/1479164119841536.
    1. Xu H., Chen M., Forrester J. V., Lois N. Cataract surgery induces retinal pro-inflammatory gene expression and protein secretion. Investigative Opthalmology & Visual Science. 2011;52(1):249–255. doi: 10.1167/iovs.10-6001.
    1. Lutty G. A., McLeod D. S., Merges C., Diggs A., Plouet J. Localization of vascular endothelial growth factor in human retina and choroid. Archives of Ophthalmology. 1996;114(8):971–977. doi: 10.1001/archopht.1996.01100140179011.

Source: PubMed

3
S'abonner