The Actuation System of the Ankle Exoskeleton T-FLEX: First Use Experimental Validation in People with Stroke

Daniel Gomez-Vargas, Felipe Ballen-Moreno, Patricio Barria, Rolando Aguilar, José M Azorín, Marcela Munera, Carlos A Cifuentes, Daniel Gomez-Vargas, Felipe Ballen-Moreno, Patricio Barria, Rolando Aguilar, José M Azorín, Marcela Munera, Carlos A Cifuentes

Abstract

Robotic devices can provide physical assistance to people who have suffered neurological impairments such as stroke. Neurological disorders related to this condition induce abnormal gait patterns, which impede the independence to execute different Activities of Daily Living (ADLs). From the fundamental role of the ankle in walking, Powered Ankle-Foot Orthoses (PAFOs) have been developed to enhance the users' gait patterns, and hence their quality of life. Ten patients who suffered a stroke used the actuation system of the T-FLEX exoskeleton triggered by an inertial sensor on the foot tip. The VICONmotion capture system recorded the users' kinematics for unassisted and assisted gait modalities. Biomechanical analysis and usability assessment measured the performance of the system actuation for the participants in overground walking. The biomechanical assessment exhibited changes in the lower joints' range of motion for 70% of the subjects. Moreover, the ankle kinematics showed a correlation with the variation of other movements analyzed. This variation had positive effects on 70% of the participants in at least one joint. The Gait Deviation Index (GDI) presented significant changes for 30% of the paretic limbs and 40% of the non-paretic, where the tendency was to decrease. The spatiotemporal parameters did not show significant variations between modalities, although users' cadence had a decrease of 70% of the volunteers. Lastly, the satisfaction with the device was positive, the comfort being the most user-selected aspect. This article presents the assessment of the T-FLEX actuation system in people who suffered a stroke. Biomechanical results show improvement in the ankle kinematics and variations in the other joints. In general terms, GDI does not exhibit significant increases, and the Movement Analysis Profile (MAP) registers alterations for the assisted gait with the device. Future works should focus on assessing the full T-FLEX orthosis in a larger sample of patients, including a stage of training.

Keywords: Gait Deviation Index (GDI); Gait Profile Score (GPS); Movement Analysis Profile (MAP); Powered Ankle-Foot Orthosis (PAFO); ankle exoskeleton; biomechanical analysis; overground gait.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Figure 1
Figure 1
T-FLEX’s actuation system states for gait assistance. The red arrows indicate the actuator direction of rotation to assist (A) stance phase, (B) propulsion during toe-off, (C) and foot clearance in swing and heel strike phases. The segmented and continuous lines refer to the transmission elements’ participation in each movement, i.e., in plantarflexion, only the posterior element works, and in dorsiflexion only the frontal element is transmitted.
Figure 2
Figure 2
The actuation system of the T-FLEX exoskeleton that was implemented on the passive orthotic structure. The insole of the left part is added to the non-paretic limb to compensate for the effect due to the device’s use.
Figure 3
Figure 3
Biomechanical setup model used in the study for each participant based on the plug-in gait marker model. The red points on the patient represent the markers and the biological landmarks for the VICON acquisition system. This model involves markers in the Right and Left Posterior Iliac Spines (RPSI and LPSI), Right and Left Anterior Superior Iliac Spines (LASI and RASI), Right and Left Thighs (RTHI and LTHI), Right and Left Knees (RKNE and LKNE), Right and Left Tibias (RTIB and LTIB), Right and Left Ankles (RANK and LANK), Right and Left Toes (RTOE and LTOE), and Right and Left Heels (RHEE and LHEE).
Figure 4
Figure 4
Volunteers’ ankle kinematics during the gait cycle. Numbers on the left part represent the assessed participants. The green curve indicates the assisted gait condition. On the other hand, the blue curve refers to the natural gait pattern (i.e., baseline condition). The gray curve shows a healthy gait pattern obtained from a database of people with no pathological gait available in Figshare at a public repository (https://doi.org/10.6084/m9.figshare.12576965.v1 (accessed on 27 June 2020)). Finally, the vertical lines describe the Toe-Off event (TO) for each of these conditions.
Figure 5
Figure 5
Effect of T-FLEX scenario on the joints’ range of motion. Positive changes (green bar) refer to variations that approach the value of a healthy pattern. Negative changes (red bar) comprehend joints where the ROM departs from the normal gait. Undetermined conditions (yellow bar) integrate magnitudes that exhibit variation, but they do not generate an improvement or an impairment. Lastly, no change states (gray bar) include percentages of less than 10%.
Figure 6
Figure 6
Movement analysis profile. Each column represents one of the kinematic variables such as P-A (Pelvis Anterior-posterior), H-F (Hip Flexion-extension), K-F (Knee Flexion-extension), A-F (Ankle dorsi-plantarflexion), P-U (Pelvic Up-down), H-A (Hip Abduction-Adduction), P-R (Pelvic Rotation), F-R (Foot Rotation), and GPS (Gait Profile Score). The height of the bar indicates the median and IQR RMS value during the trial. The gray columns at the bottom denote the mean values for a healthy gait pattern obtained from [29]. Those values are used as the reference to compare the unassisted condition (blue bars) and assisted gait (green columns).
Figure 7
Figure 7
Results of the usability assessment through the Quebec User Evaluation of Satisfaction with assistive Technology (QUEST) test. The percentage of each topic refers to the number of participants who considered that characteristic as relevant.

References

    1. Feigin V.L., Nichols E., Alam T., Bannick M.S., Beghi E., Blake N., Fischer F., Murray C.J.L., Zhang Y., Violante F.S., et al. Global, regional, and national burden of neurological disorders, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18:459–480. doi: 10.1016/S1474-4422(18)30499-X.
    1. Langhorne P., Bernhardt J., Kwakkel G. Stroke rehabilitation. Lancet. 2011;377:1693–1702. doi: 10.1016/S0140-6736(11)60325-5.
    1. Wissel J., Manack A., Brainin M. Toward an epidemiology of poststroke spasticity. Neurology. 2013;80:S13–S19. doi: 10.1212/WNL.0b013e3182762448.
    1. Dubin A. Gait: The role of the ankle and foot in walking. Med. Clin. N. Am. 2014;98:205–211. doi: 10.1016/j.mcna.2013.10.002.
    1. Nadeau S., Duclos C., Bouyer L., Richards C.L. Guiding task-oriented gait training after stroke or spinal cord injury by means of a biomechanical gait analysis. Prog. Brain Res. 2011;192:161–180.
    1. Carolus A.E., Becker M., Cuny J., Smektala R., Schmieder K., Brenke C. The interdisciplinary management of foot drop. Dtsch. ÄRzteblatt Int. 2019;116:347. doi: 10.3238/arztebl.2019.0347.
    1. Chen C.L., Chen H.C., Tang S.F.T., Wu C.Y., Cheng P.T., Hong W.H. Gait performance with compensatory adaptations in stroke patients with different degrees of motor recovery. Am. J. Phys. Med. Rehabil. 2003;82:925–935. doi: 10.1097/01.PHM.0000098040.13355.B5.
    1. Wutzke C.J., Sawicki G.S., Lewek M.D. The influence of a unilateral fixed ankle on metabolic and mechanical demands during walking in unimpaired young adults. J. Biomech. 2012;45:2405–2410. doi: 10.1016/j.jbiomech.2012.06.035.
    1. Gorst T., Lyddon A., Marsden J., Paton J., Morrison S.C., Cramp M., Freeman J. Foot and ankle impairments affect balance and mobility in stroke (FAiMiS): The views and experiences of people with stroke. Disabil. Rehabil. 2016;38:589–596. doi: 10.3109/09638288.2015.1052888.
    1. Thibaut A., Chatelle C., Ziegler E., Bruno M.A., Laureys S., Gosseries O. Spasticity after stroke: Physiology, assessment and treatment. Brain Inj. 2013;27:1093–1105. doi: 10.3109/02699052.2013.804202.
    1. Latham N.K., Jette D.U., Slavin M., Richards L.G., Procino A., Smout R.J., Horn S.D. Physical therapy during stroke rehabilitation for people with different walking abilities. Arch. Phys. Med. Rehabil. 2005;86:41–50. doi: 10.1016/j.apmr.2005.08.128.
    1. DeJong G., Hsieh C.H., Putman K., Smout R.J., Horn S.D., Tian W. Physical Therapy Activities in Stroke, Knee Arthroplasty, and Traumatic Brain Injury Rehabilitation: Their Variation, Similarities, and Association With Functional Outcomes. Phys. Ther. 2011;91:1826–1837. doi: 10.2522/ptj.20100424.
    1. Chang W.H., Kim Y.H. Robot-assisted Therapy in Stroke Rehabilitation. J. Stroke. 2013;15:174. doi: 10.5853/jos.2013.15.3.174.
    1. Dobkin B.H., Dorsch A. New Evidence for Therapies in Stroke Rehabilitation. Curr. Atheroscler. Rep. 2013;15:331. doi: 10.1007/s11883-013-0331-y.
    1. Tyson S., Sadeghi-Demneh E., Nester C. A systematic review and meta-analysis of the effect of an ankle-foot orthosis on gait biomechanics after stroke. Clin. Rehabil. 2013;27:879–891. doi: 10.1177/0269215513486497.
    1. Yamamoto S., Ebina M., Iwasaki M., Kubo S., Kawai H., Hayashi T. Comparative study of mechanical characteristics of plastic AFOs. JPO J. Prosthetics Orthot. 1993;5:59. doi: 10.1097/00008526-199304000-00009.
    1. Boes M.K., Bollaert R.E., Kesler R.M., Learmonth Y.C., Islam M., Petrucci M.N., Motl R.W., Hsiao-Wecksler E.T. Six-minute walk test performance in persons with multiple sclerosis while using passive or powered ankle-foot orthoses. Arch. Phys. Med. Rehabil. 2018;99:484–490. doi: 10.1016/j.apmr.2017.06.024.
    1. Sanchez-Villamañan M., Gonzalez-Vargas J., Torricelli D., Moreno J.C., Pons J.L. Compliant lower limb exoskeletons: A comprehensive review on mechanical design principles. J. Neuroeng. Rehabil. 2019;16:55. doi: 10.1186/s12984-019-0517-9.
    1. Dimyan M.A., Cohen L.G. Neuroplasticity in the context of motor rehabilitation after stroke. Nat. Rev. Neurol. 2011;7:76–85. doi: 10.1038/nrneurol.2010.200.
    1. Sheffler L.R., Chae J. Technological Advances in Interventions to Enhance Poststroke Gait. Phys. Med. Rehabil. Clin. N. Am. 2013;24:305–323. doi: 10.1016/j.pmr.2012.11.005.
    1. Mikolajczyk T., Ciobanu I., Badea D.I., Iliescu A., Pizzamiglio S., Schauer T., Seel T., Seiciu P.L., Turner D.L., Berteanu M. Advanced technology for gait rehabilitation: An overview. Adv. Mech. Eng. 2018;10:1–19. doi: 10.1177/1687814018783627.
    1. Moltedo M., Baček T., Verstraten T., Rodriguez-Guerrero C., Vanderborght B., Lefeber D. Powered ankle-foot orthoses: The effects of the assistance on healthy and impaired users while walking. J. Neuroeng. Rehabil. 2018;15:86. doi: 10.1186/s12984-018-0424-5.
    1. Manchola M., Serrano D., Gómez D., Ballen F., Casas D., Munera M., Cifuentes C.A. Wearable Robotics: Challenges and Trends. Volume 16. Springer; Berlin/Heidelberg, Germany: 2018. T-FLEX: Variable Stiffness Ankle-Foot Orthosis for Gait Assistance; pp. 160–164.
    1. Sánchez Manchola M.D.S., Pinto Bernal M.J.P., Munera M., Cifuentes C.A. Gait Phase Detection for Lower-Limb Exoskeletons using Foot Motion Data from a Single Inertial Measurement Unit in Hemiparetic Individuals. Sensors. 2019;19:2988. doi: 10.3390/s19132988.
    1. Gomez-Vargas D., Pinto-Bernal M.J., Ballen-Moreno F., Munera M., Cifuentes C.A. Therapy with T-FLEX Ankle-Exoskeleton for Motor Recovery: A Case Study with a Stroke Survivor; Proceedings of the 8th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob); New York, NY, USA. 29 November–1 December 2020.
    1. Nair S.P., Gibbs S., Arnold G., Abboud R., Wang W. A method to calculate the centre of the ankle joint: A comparison with the Vicon® Plug-in-Gait model. Clin. Biomech. 2010;25:582–587. doi: 10.1016/j.clinbiomech.2010.03.004.
    1. Schwartz M.H., Rozumalski A. The Gait Deviation Index: A new comprehensive index of gait pathology. Gait Posture. 2008;28:351–357. doi: 10.1016/j.gaitpost.2008.05.001.
    1. Guzik A., Drużbicki M. Application of the Gait Deviation Index in the analysis of post-stroke hemiparetic gait. J. Biomech. 2020;99:109575. doi: 10.1016/j.jbiomech.2019.109575.
    1. Baker R., McGinley J.L., Schwartz M.H., Beynon S., Rozumalski A., Graham H.K., Tirosh O. The Gait Profile Score and Movement Analysis Profile. Gait Posture. 2009;30:265–269. doi: 10.1016/j.gaitpost.2009.05.020.
    1. Pons J.L. Wearable Robots: Biomechatronic Exoskeletons. John Wiley & Sons; Hoboken, NJ, USA: 2008.
    1. Demers L., Weiss-Lambrou R., Ska B. Development of the Quebec User Evaluation of Satisfaction with assistive Technology (QUEST) Assist. Technol. 1996;8:3–13. doi: 10.1080/10400435.1996.10132268.
    1. Dormans J.P. Orthopedic management of children with cerebral palsy. Pediatr. Clin. N. Am. 1993;40:645–657. doi: 10.1016/S0031-3955(16)38556-X.
    1. Burpee J.L., Lewek M.D. Biomechanical gait characteristics of naturally occurring unsuccessful foot clearance during swing in individuals with chronic stroke. Clin. Biomech. 2015;30:1102–1107. doi: 10.1016/j.clinbiomech.2015.08.018.
    1. Takahashi K.Z., Lewek M.D., Sawicki G.S. A neuromechanics-based powered ankle exoskeleton to assist walking post-stroke: A feasibility study. J. Neuroeng. Rehabil. 2015;12:23. doi: 10.1186/s12984-015-0015-7.
    1. Kim J., Hwang S., Sohn R., Lee Y., Kim Y. Development of an active ankle foot orthosis to prevent foot drop and toe drag in hemiplegic patients: A preliminary study. Appl. Bionics Biomech. 2011;8:377–384. doi: 10.1155/2011/530375.
    1. Yeung L.F., Ockenfeld C., Pang M.K., Wai H.W., Soo O.Y., Li S.W., Tong K.Y. Design of an exoskeleton ankle robot for robot-assisted gait training of stroke patients; Proceedings of the 2017 International Conference on Rehabilitation Robotics (ICORR); London, UK. 17–20 July 2017; pp. 211–215.
    1. Ward J., Sugar T., Boehler A., Standeven J., Engsberg J.R. Stroke survivors’ gait adaptations to a powered ankle-foot orthosis. Adv. Robot. 2011;25:1879–1901. doi: 10.1163/016918611X588907.
    1. Shakti D., Mathew L., Kumar N., Kataria C. Effectiveness of robo-assisted lower limb rehabilitation for spastic patients: A systematic review. Biosens. Bioelectron. 2018;117:403–415. doi: 10.1016/j.bios.2018.06.027.
    1. Young A.J., Ferris D.P. State of the art and future directions for lower limb robotic exoskeletons. IEEE Trans. Neural Syst. Rehabil. Eng. 2016;25:171–182. doi: 10.1109/TNSRE.2016.2521160.
    1. Schrade S.O., Dätwyler K., Stücheli M., Studer K., Türk D.A., Meboldt M., Gassert R., Lambercy O. Development of VariLeg, an exoskeleton with variable stiffness actuation: First results and user evaluation from the CYBATHLON 2016. J. Neuroeng. Rehabil. 2018;15:18. doi: 10.1186/s12984-018-0360-4.
    1. Ries A.J., Novacheck T.F., Schwartz M.H. The Efficacy of Ankle-Foot Orthoses on Improving the Gait of Children With Diplegic Cerebral Palsy: A Multiple Outcome Analysis. PM&R. 2015;7:922–929.
    1. Ries A.J., Novacheck T.F., Schwartz M.H. Gait & Posture A data driven model for optimal orthosis selection in children with cerebral palsy. Gait Posture. 2014;40:539–544.
    1. Schwarze M., Block J., Kunz T., Alimusaj M., Heitzmann D.W.W., Putz C., Dreher T., Wolf S.I. Gait & Posture The added value of orthotic management in the context of multi-level surgery in children with cerebral palsy. Gait Posture. 2019;68:525–530.
    1. Galli M., Cimolin V., Rigoldi C., Albertini G. Quantitative Evaluation of the Effects of Ankle Foot Orthosis on Gait in Children with Cerebral Palsy Using the Gait Profile Score and Gait Variable Scores. J. Dev. Phys. Disabil. 2016;28:367–379. doi: 10.1007/s10882-016-9472-6.
    1. Skaaret I., Steen H., Huse A.B., Holm I. Comparison of gait with and without ankle-foot orthoses after lower limb surgery in children with unilateral cerebral palsy. J. Child. Orthop. 2019;13:180–189. doi: 10.1302/1863-2548.13.180146.

Source: PubMed

3
S'abonner