The effects of allogenic stem cells in a murine model of hind limb diabetic ischemic tissue

Jesús Álvarez García, Soledad García Gómez-Heras, Luis Riera Del Moral, Carlota Largo, Damián García-Olmo, Mariano García-Arranz, Jesús Álvarez García, Soledad García Gómez-Heras, Luis Riera Del Moral, Carlota Largo, Damián García-Olmo, Mariano García-Arranz

Abstract

Background: Diabetes is one of the major risk factors for peripheral arterial disease. In patients in whom surgery cannot be performed, cell therapy may be an alternative treatment. Since time is crucial for these patients, we propose the use of allogenic mesenchymal cells.

Methods: We obtained mesenchymal cells derived from the fat tissue of a healthy Sprague-Dawley rat. Previous diabetic induction with streptozotocin in 40 male Sprague-Dawley rats, ligation plus left iliac and femoral artery sections were performed as a previously described model of ischemia. After 10 days of follow-up, macroscopic and histo-pathological analysis was performed to evaluate angiogenic and inflammatory parameters in the repair of the injured limb. All samples were evaluated by the same blind researcher. Statistical analysis was performed using the SPSS v.11.5 program (P < 0.05).

Results: Seventy percent of the rats treated with streptozotocin met the criteria for diabetes. Macroscopically, cell-treated rats presented better general and lower ischemic clinical status, and histologically, a better trend towards angiogenesis, greater infiltration of type 2 macrophages and a shortening of the inflammatory process. However, only the inflammatory variables were statistically significant. No immunological reaction was observed with the use of allogeneic cells.

Discussion: The application of allogeneic ASCs in a hind limb ischemic model in diabetic animals shows no rejection reactions and a reduction in inflammatory parameters in favor of better repair of damaged tissue. These results are consistent with other lines of research in allogeneic cell therapy. This approach might be a safe, effective treatment option that makes it feasible to avoid the time involved in the process of isolation, expansion and production of the use of autologous cells.

Keywords: Allogeneic stem cells; Limb ischemia.

Conflict of interest statement

Prof. D. García Olmo and Dr. M. García Arranz have applied for two patents related to Adipose Derived Mesenchymal Stem Cells titled “Identification and Isolation of Multipotent Cells from Non-Osteochondral Mesenchymal Tissue” (WO 2006/057649) and “Use of Adipose Tissue-Derived Stromal Stem Cells in Treating Fistula” (WO 2006/136244). The remaining authors have no other financial or competing interests to declare.

Figures

Figure 1. Images of the surgical procedure.
Figure 1. Images of the surgical procedure.
Figure 2. Flow chart.
Figure 2. Flow chart.
ASC, adipose derived stem cells.
Figure 3. Clinical evolution.
Figure 3. Clinical evolution.
(A) Physical parameters; (B) ischemic parameters.
Figure 4. Macroscopic appearance of the treated…
Figure 4. Macroscopic appearance of the treated limb.
(A) 10 Days after surgery without cellular treatment; (B) 10 Days after surgery and treatment with cells.
Figure 5. Histopathological results.
Figure 5. Histopathological results.
(A) Treatment group. Low number of inflammatory cells (arrow), capillaries and and neoformed arterioles (asterisk). Hematoxiline-eosine staining, 20×. (B) Control Group l, greater number of inflammatory infiltrate; inflammatory cells (arrow), capillaries and neoformed arterioles (asterisk). Hematoxiline-eosine staining, 20×. (C–D) Expression of macrophagues M1/CD68+ in the larger photographs and M2/CD206+ expression in the small-right photographs. Cicatricial area of treated group (C) and control group (D), 20×. (E–F) Regional lymph nodes of treated group (E) and control group (F), 20×.

References

    1. Bourin P, Bunnell BA, Casteilla L, Dominici M, Katz AJ, March KL, Redl H, Rubin JP, Yoshimura K, Gimble JM. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the. Cytotherapy. 2013;15(6):641–648. doi: 10.1016/j.jcyt.2013.02.006.
    1. Bradbury AW, Adam DJ, Bell J, Forbes JF, Fowkes FG, Gillespie I, Ruckley CV, Raab GM. Bypass versus Angioplasty in Severe Ischaemia of the Leg (BASIL) trial: an intention-to-treat analysis of amputation-free and overall survival in patients randomized to a bypass surgery-first or a balloon angioplasty-first revascularization strategy. Journal of Vascular Surgery. 2010;51(5):5S–17S. doi: 10.1016/j.jvs.2010.01.073.
    1. Capla JM, Grogan RH, Callaghan MJ, Galiano RD, Tepper OM, Ceradini DJ, Gurtner GC. Diabetes impairs endothelial progenitor cell-mediated blood vessel formation in response to hypoxia. Plastic and Reconstructive Surgery. 2007;119(1):59–70. doi: 10.1097/01.prs.0000244830.16906.3f.
    1. Domouzoglou EM, Naka KK, Vlahos AP, Papafaklis MI, Michalis LK, Tsatsoulis A, Maratos-Flier E. Fibroblast growth factors in cardiovascular disease: the emerging role of FGF21. American Journal of Physiology. Heart and Circulatory Physiology. 2015;309(6):H1029–H1038. doi: 10.1152/ajpheart.00527.2015.
    1. Freedman SB, Isner JM. Therapeutic angiogenesis for coronary artery disease. Annals of Internal Medicine. 2002;136(1):54–71.
    1. García-Olmo D, García-Arranz M, García LG, Cuellar ES, Blanco IF, Prianes LA, Montes JA, Pinto FL, Marcos DH, García-Sancho L. Autologous stem cell transplantation for treatment of rectovaginal fistula in perianal crohn’s disease: a new cell-based therapy. International Journal of Colorectal Disease. 2003;18(5):451–454. doi: 10.1007/s00384-003-0490-3.
    1. Ginhoux F, Schultze JL, Murray PJ, Ochando J, Biswas SK. New insights into the multidimensional concept of macrophage ontogeny, activation and function. Nature Immunology. 2016;17(1):34–40. doi: 10.1038/ni.3324.
    1. Heijnen H, Van der Sluijs P. Platelet secretory behaviour: as diverse as the granules …or not? Journal of Thrombosis and Haemostasis. 2015;13(12):2141–2151. doi: 10.1111/jth.13147.
    1. Hiatt WR. Medical treatment of peripheral arterial disease and claudication. The New England Journal of Medicine. 2001;344(21):1608–1621. doi: 10.1056/NEJM200105243442108.
    1. Hirsch AT, Haskal ZJ, Hertzer NR, Bakal CW, Creager MA, Halperin JL, Hiratzka LF, Murphy WR, Olin JW, Puschett JB, Rosenfield KA, Sacks D, Stanley JC, Taylor Jr LM, White CJ, White J, White RA. ACC/AHA 2005 practice guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic): a collaborative report from the American association for vascular surgery/society for vascular sur. Circulation. 2006;113(11):e463–e654. doi: 10.1161/CIRCULATIONAHA.106.174526.
    1. Hossain P, Kawar B, El Nahas M. Obesity and diabetes in the developing world—a growing challenge. New England Journal of Medicine. 2007;356(3):213–215. doi: 10.1056/NEJMp068177.
    1. Ishikane S, Ohnishi S, Yamahara K, Sada M, Harada K, Mishima K, Iwasaki K, Fujiwara M, Kitamura S, Nagaya N, Ikeda T. Allogeneic injection of fetal membrane-derived mesenchymal stem cells induces therapeutic angiogenesis in a rat model of hind limb ischemia. Stem Cells. 2008;26(10):2625–2633. doi: 10.1634/stemcells.2008-0236.
    1. Iwase T, Nagaya N, Fujii T, Itoh T, Murakami S, Matsumoto T, Kangawa K, Kitamura S. Comparison of angiogenic potency between mesenchymal stem cells and mononuclear cells in a rat model of hindlimb ischemia. Cardiovascular Research. 2005;66(3):543–551. doi: 10.1016/j.cardiores.2005.02.006.
    1. Katare R, Riu F, Rowlinson J, Lewis A, Holden R, Meloni M, Reni C, Wallrapp C, Emanueli C, Madeddu P. Perivascular delivery of encapsulated mesenchymal stem cells improves postischemic angiogenesis via paracrine activation of VEGF-A. Arteriosclerosis, Thrombosis, and Vascular Biology. 2013;33(8):1872–1880. doi: 10.1161/ATVBAHA.113.301217.
    1. Kim SW, Han H, Chae GT, Lee SH, Bo S, Yoon JH, Lee YS, Lee KS, Park HK, Kang KS. Successful stem cell therapy using umbilical cord blood-derived multipotent stem cells for buerger’s disease and ischemic limb disease animal model. Stem Cells. 2006;24(6):1620–1626. doi: 10.1634/stemcells.2005-0365.
    1. Loomans CJ, De Koning EJ, Staal FJ, Rookmaaker MB, Verseyden C, De Boer HC, Verhaar MC, Braam B, Rabelink TJ, Van Zonneveld AJ. Endothelial progenitor cell dysfunction: a novel concept in the pathogenesis of vascular complications of type 1 diabetes. Diabetes. 2004;53(1):195–199.
    1. Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA, Fowkes FG, TASC II Working Group Inter-Society consensus for the management of peripheral arterial disease (TASC II) European Journal of Vascular and Endovascular Surgery. 2007;33(Suppl 1):S1–S75. doi: 10.1016/j.ejvs.2006.09.024.
    1. Paek R, Chang DS, Brevetti LS, Rollins MD, Brady S, Ursell PC, Hunt TK, Sarkar R, Messina LM. Correlation of a simple direct measurement of muscle pO(2) to a clinical ischemia index and histology in a rat model of chronic severe hindlimb ischemia. Journal of Vascular Surgery. 2002;36(1):172–179.
    1. Salazar Álvarez AE, García Arranz M, Reira Del Moral L, Mendieta Azcona C, Leblic Ramírez I, Fernández Heredero Á. Adipose mesenchymal stromal cell therapy in a desperate case of right-hand ischemia. Cytotherapy. 2016;18(6):725–728. doi: 10.1016/j.jcyt.2016.03.297.
    1. Shevchenko EK, Makarevich PI, Tsokolaeva ZI, Boldyreva MA, Sysoeva VY, Tkachuk VA, Parfyonova YV. Transplantation of modified human adipose derived stromal cells expressing VEGF165 results in more efficient angiogenic response in ischemic skeletal muscle. Journal of Translational Medicine. 2013;11(1):138–155. doi: 10.1186/1479-5876-11-138.
    1. Shibata T, Naruse K, Kamiya H, Kozakae M, Kondo M, Yasuda Y, Nakamura N, Ota K, Tosaki T, Matsuki T, Nakashima E, Hamada Y, Oiso Y, Nakamura J. Transplantation of bone marrow-derived mesenchymal stem cells improves diabetic polyneuropathy in rats. Diabetes. 2008;57(11):3099–3107. doi: 10.2337/db08-0031.
    1. Simons M, Ware JA. Therapeutic angiogenesis in cardiovascular disease. Nature Reviews. Drug Discovery. 2003;2(11):863–871. doi: 10.1038/nrd1226.
    1. Stamler J, Vaccaro O, Neaton JD, Wentworth D. Diabetes, other risk factors, and 12-Yr Cardiovascular mortality for men screened in the multiple risk factor intervention trial. Diabetes Care. 1993;16(2):434–444. doi: 10.2337/diacare.16.2.434.
    1. Tajima H, Iwai-Takano M, Yaoita H, Ogawa K, Yamaki T, Takeishi Y, Maruyama Y. Mast cells contribute to flow restoration by bone marrow cell transplantation in rats with ischemic limbs. International Heart Journal. 2009;50(2):247–257.
    1. Thum T, Fraccarollo D, Schultheiss M, Froese S, Galuppo P, Widder JD, Tsikas D, Ertl G, Bauersachs J. Endothelial nitric oxide synthase uncoupling impairs endothelial progenitor cell mobilization and function in diabetes. Diabetes. 2007;56(3):666–674. doi: 10.2337/db06-0699.
    1. Williams AR, Trachtenberg B, Velazquez DL, McNiece I, Altman P, Rouy D, Mendizabal AM, Pattany PM, Lopera GA, Fishman J, Zambrano JP, Heldman AW, Hare JM. Intramyocardial stem cell injection in patients with ischemic cardiomyopathy: functional recovery and reverse remodeling. Circulation Research. 2011;108(7):792–796. doi: 10.1161/CIRCRESAHA.111.242610.
    1. Wu KK, Huan Y. Streptozotocin-induced diabetic models in mice and rats. In: Enna SJ, editor. Current protocols in pharmacology. John Wiley & Sons, Inc.; United States: 2008. Chapter 5: Unit 547.
    1. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH. Human adipose tissue is a source of multipotent stem cells. Molecular Biology of the Cell. 2002;13(12):4279–4295. doi: 10.1091/mbc.E02-02-0105.

Source: PubMed

3
S'abonner