A prospective, single-arm, open-label, non-randomized, phase IIa trial of a nonavalent prophylactic HPV vaccine to assess immunogenicity of a prime and deferred-booster dosing schedule among 9-11 year-old girls and boys - clinical protocol

Yi Zeng, Anna-Barbara Moscicki, Vikrant V Sahasrabuddhe, Francisco Garcia, Heide Woo, Chiu-Hsieh Hsu, Eva Szabo, Eileen Dimond, Susan Vanzzini, Angelica Mondragon, Valerie Butler, Hillary DeRose, H-H Sherry Chow, Yi Zeng, Anna-Barbara Moscicki, Vikrant V Sahasrabuddhe, Francisco Garcia, Heide Woo, Chiu-Hsieh Hsu, Eva Szabo, Eileen Dimond, Susan Vanzzini, Angelica Mondragon, Valerie Butler, Hillary DeRose, H-H Sherry Chow

Abstract

Background: Human papillomavirus (HPV) vaccines are indicated for the prevention of cancers and genital warts caused by vaccine-covered HPV types. Although the standard regimen requires a two or three-dose vaccine series, there is emerging data suggesting that a single dose of the bivalent or quadrivalent HPV vaccine generates persistently positive antibody titers. No similar data is yet available for the nonavalent HPV vaccine, currently the only HPV vaccine available in the United States. The overall objective of our study is to assess the stability and kinetics of antibody titers for 24 months following a single dose of the nonavalent HPV vaccine among preteen girls and boys.

Methods: This is a prospective, single-arm, open-label, non-randomized, Phase IIa trial among 9-11 year-old girls and boys to determine the immunogenicity after a single dose of the nonavalent HPV vaccine (GARDASIL® 9) over 24 months, with a deferred booster dose at 24 months and an optional booster at 30 months after the first dose. Participants provide blood specimens at 6, 12, 18, 24, and 30 months after the first dose. Serologic geometric mean titers (GMT) of the nine vaccine types (HPV 16/18/ 6/11/31/33/45/52/58) will be measured at each time point. The primary objective is to determine the stability of type-specific serologic GMT of HPV16 and HPV18 between the 6- vs. 12-month, 12- vs. 18-month, and 18- vs. 24-month visits. Secondary objectives are to determine the stability of type-specific serologic GMT of the other HPV types (HPV 6/11/31/33/45/52/58) between the visits and to assess safety and reactogenicity after each vaccine dose.

Discussion: Single dose HPV vaccination could simplify the logistics and reduce costs of HPV vaccination in the US and across the world. This study will contribute important immunogenicity data on the stability and kinetics of type-specific antibody titers and inform feasibility of the single dose HPV vaccination paradigm.

Trial registration: ClinicalTrials.gov Identifier: NCT02568566 . Registered on October 6, 2015.

Keywords: Cervical cancer; Gardasil 9; HPV vaccine; Human papillomavirus; Nonavalent HPV vaccine; Serologic geometric mean titer.

Conflict of interest statement

Ethics approval and consent to participate

The protocol and all recruiting materials have been approved by the Central Institutional Review Board for the National Cancer Institute (protocol #UAZ 2015-05-01) and institutional IRBs. Written informed consent to participate in the study was obtained from the legal representatives (most often parents and legal guardians) of all study participants. Written assent form to participate in the study was obtained from all study participant. Participants and their legal representatives also signed the amended consent, when changes were made to the consent.

Consent for publication

Not applicable

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Projected and actual participant accrual

References

    1. de Sanjose S, Quint WG, Alemany L, Geraets DT, Klaustermeier JE, Lloveras B, Tous S, Felix A, Bravo LE, Shin HR, et al. Human papillomavirus genotype attribution in invasive cervical cancer: a retrospective cross-sectional worldwide study. Lancet Oncol. 2010;11(11):1048–1056. doi: 10.1016/S1470-2045(10)70230-8.
    1. Lacey CJ, Lowndes CM, Shah KV. Chapter 4: burden and management of non-cancerous HPV-related conditions: HPV-6/11 disease. Vaccine. 2006;24(Suppl 3):S3/35–S3/41.
    1. Machalek DA, Garland SM, Brotherton JML, Bateson D, McNamee K, Stewart M, Rachel Skinner S, Liu B, Cornall AM, Kaldor JM, et al. Very low prevalence of vaccine human papillomavirus types among 18- to 35-year old Australian women 9 years following implementation of vaccination. J Infect Dis. 2018;217(10):1590–1600. doi: 10.1093/infdis/jiy075.
    1. Stokley S, Jeyarajah J, Yankey D, Cano M, Gee J, Roark J, Curtis RC, Markowitz L, Immunization services division NCfI, respiratory diseases CDC et al. Human papillomavirus vaccination coverage among adolescents, 2007-2013, and postlicensure vaccine safety monitoring, 2006-2014--United States. MMWR Morb Mortal Wkly Rep. 2014;63(29):620–624.
    1. Agosti JM, Goldie SJ. Introducing HPV vaccine in developing countries--key challenges and issues. N Engl J Med. 2007;356(19):1908–1910. doi: 10.1056/NEJMp078053.
    1. Kreimer AR, Rodriguez AC, Hildesheim A, Herrero R, Porras C, Schiffman M, Gonzalez P, Solomon D, Jimenez S, Schiller JT, et al. Proof-of-principle evaluation of the efficacy of fewer than three doses of a bivalent HPV16/18 vaccine. J Natl Cancer Inst. 2011;103(19):1444–1451. doi: 10.1093/jnci/djr319.
    1. Kreimer AR, Herrero R, Sampson JN, Porras C, Lowy DR, Schiller JT, Schiffman M, Rodriguez AC, Chanock S, Jimenez S, et al. Evidence for single-dose protection by the bivalent HPV vaccine-Review of the Costa Rica HPV vaccine trial and future research studies. Vaccine. 2018;36(32 Pt A):4774–4782. doi: 10.1016/j.vaccine.2017.12.078.
    1. Sankaranarayanan R, Prabhu PR, Pawlita M, Gheit T, Bhatla N, Muwonge R, Nene BM, Esmy PO, Joshi S, Poli UR, et al. Immunogenicity and HPV infection after one, two, and three doses of quadrivalent HPV vaccine in girls in India: a multicentre prospective cohort study. Lancet Oncol. 2016;17(1):67–77. doi: 10.1016/S1470-2045(15)00414-3.
    1. Sankaranarayanan R, Joshi S, Muwonge R, Esmy PO, Basu P, Prabhu P, Bhatla N, Nene BM, Shaw J, Poli URR, et al. Can a single dose of human papillomavirus (HPV) vaccine prevent cervical cancer? Early findings from an Indian study. Vaccine. 2018;36(32 Pt A):4783–4791. doi: 10.1016/j.vaccine.2018.02.087.
    1. Schiller J, Lowy D. Explanations for the high potency of HPV prophylactic vaccines. Vaccine. 2018;36(32 Pt A):4768–4773. doi: 10.1016/j.vaccine.2017.12.079.
    1. Smolen KK, Gelinas L, Franzen L, Dobson S, Dawar M, Ogilvie G, Krajden M, Fortuno ES, 3rd, Kollmann TR. Age of recipient and number of doses differentially impact human B and T cell immune memory responses to HPV vaccination. Vaccine. 2012;30(24):3572–3579. doi: 10.1016/j.vaccine.2012.03.051.
    1. Romanowski B, Schwarz TF, Ferguson LM, Ferguson M, Peters K, Dionne M, Schulze K, Ramjattan B, Hillemanns P, Behre U, et al. Immune response to the HPV-16/18 AS04-adjuvanted vaccine administered AS a 2-dose or 3-dose schedule up to 4 years after vaccination: results from a randomized study. Hum Vaccin Immunother. 2014;10(5):1155–1165. doi: 10.4161/hv.28022.
    1. Dauner JG, Pan Y, Hildesheim A, Kemp TJ, Porras C, Pinto LA. Development and application of a GuHCl-modified ELISA to measure the avidity of anti-HPV L1 VLP antibodies in vaccinated individuals. Mol Cell Probes. 2012;26(2):73–80. doi: 10.1016/j.mcp.2012.01.002.
    1. Dessy FJ, Giannini SL, Bougelet CA, Kemp TJ, David MP, Poncelet SM, Pinto LA, Wettendorff MA. Correlation between direct ELISA, single epitope-based inhibition ELISA and pseudovirion-based neutralization assay for measuring anti-HPV-16 and anti-HPV-18 antibody response after vaccination with the AS04-adjuvanted HPV-16/18 cervical cancer vaccine. Hum Vaccin. 2008;4(6):425–434. doi: 10.4161/hv.4.6.6912.
    1. Robbins HA, Kemp TJ, Porras C, Rodriguez AC, Schiffman M, Wacholder S, Gonzalez P, Schiller J, Lowy D, Poncelet S, et al. Comparison of antibody responses to human papillomavirus vaccination as measured by three assays. Front Oncol. 2014;3:328. doi: 10.3389/fonc.2013.00328.
    1. Chow SC, Shao J, Wang H. Sample size calculation in clinical research. New York: Marcel Dekker; 2003.
    1. Safaeian M, Porras C, Pan Y, Kreimer A, Schiller JT, Gonzalez P, Lowy DR, Wacholder S, Schiffman M, Rodriguez AC, et al. Durable antibody responses following one dose of the bivalent human papillomavirus L1 virus-like particle vaccine in the Costa Rica vaccine trial. Cancer Prev Res (Phila) 2013;6(11):1242–1250. doi: 10.1158/1940-6207.CAPR-13-0203.
    1. Weber DJ, Rutala WA, Samsa GP, Bradshaw SE, Lemon SM. Impaired immunogenicity of hepatitis B vaccine in obese persons. N Engl J Med. 1986;314(21):1393.
    1. Sheridan PA, Paich HA, Handy J, Karlsson EA, Hudgens MG, Sammon AB, Holland LA, Weir S, Noah TL, Beck MA. Obesity is associated with impaired immune response to influenza vaccination in humans. Int J Obes. 2012;36(8):1072–1077. doi: 10.1038/ijo.2011.208.

Source: PubMed

3
S'abonner